
CaZF, a Plant Transcription Factor Functions through and
Parallel to HOG and Calcineurin Pathways in
Saccharomyces cerevisiae to Provide Osmotolerance
Deepti Jain1, Nilanjan Roy2, Debasis Chattopadhyay1*

1 National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India, 2 National Institute for Pharmaceutical Education and Research, SAS Nagar, Punjab,

India

Abstract

Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is
differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in
transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two
interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin
(CAN), a Ca2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF
provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF
partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG
and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to
stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of
CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and
basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant
salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can
be stimulated in absence of their regulatory enzymes to provide osmotolerance.
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Introduction

Plants have to cope with several types of environmental stress

conditions. Water deficit, salty soils and cold are the common

stress conditions affecting plant development [1]. Among them,

high salinity is one of the most serious limiting factors in plant

growth and productivity [1]. Cells constantly evaluate and respond

to sudden and adverse changes in environment by certain

mechanisms that not only initiate the repair of macromolecular

damage but also establish a tolerant state, which helps to prevent

further damage. Budding yeast (Saccharomyces cerevisiae) has been

considered an excellent model for the study of the mechanisms

underlying tolerance, particularly to saline stress [2], because of

the high degree of evolutionary conservation of stress pathways

between higher eukaryotes and S. cerevisiae and the ease with which

yeast genes encoding components of the pathways can be

manipulated.

In high osmotic condition, S. cerevisiae, initiates an efficient

adaptive response, which maintains cellular Na+/K+ balance,

retains turgor and repairs cellular damages. Principally, two

interconnected pathways regulate this adaptive response. Elevated

cytosolic Ca2+ activates Calcineurin (CAN) due to extracellular

hyperionic stress, a heterodimeric phosphatase 2B with two

catalytic subunits, CNA1 and CNA2, and a regulatory subunit

CNB. It then dephosphorylate a C2H2 zinc finger transcription

factor CRZ1/TCN1 [3,4] causing its transport to nucleus to

activate expression of a P-type ATPase ENA1/PMR2A for Na+

and Li+ efflux [5], but only a part of ENA1 expression is CAN-

dependent [4] suggesting that other Na+-stress response pathways

also contribute to ENA1 induction [6]. Calcineurin mutants (i.e.,

cna1cna2 and cnb) fail to grow in growth medium having high

concentration of either Na+, Li+, or Mn2+ [7–9] suggest that CAN

participates in regulating the intracellular concentration of several

ions [10,11]. In addition to ENA1, some other gene(s) are also

contributing to salt tolerances that have been regulated by

calcineurin osmopathway [12].

The high osmolarity glycerol (HOG) pathway is regulated by a

mitogen activated protein kinase (MAPK) Hog1p [13,14]. Drastic

reduction of osmotolerance in the hog1 mutants demonstrates the

essentiality of this module in hyperosmotic stress. At least two

osmosignalling branches, through a series of downstream compo-

nents, activate MAPK kinase Pbs2p, which in turn phosphorylate

and activates MAPK, Hog1p [15–17]. Activated Hog1p after

moving to nucleus further induces downstream osmoresponsive

genes through at least five transcription regulators. Msn2p, Msn4p

[18–20] are two functionally redundant C2H2 zinc finger proteins

and activate STRE (Stress responsive upstream activator element)

mediated induction of several general stress responsive genes
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CTT1, HSP12, DDR2, TPS2 etc, required possibly for damage

repair [21–23]. Two other Hog1p-regulated transcription activa-

tors, Msn1p and Hot1p regulate GPD1, GPP2, genes for glycerol

biosynthesis enzymes [19]. Under osmotic stress Hog1p regulated

transcription factors recruit activated Hog1p directly to osmor-

esponsive promoters [24,25] that further stimulate recruitment of

RNA Pol II [26] and Rpd3 histone deacetylase to promote

transcription initiation [27]. Sko1p [28], related to bZIP/ATF

family of transcriptional regulators [29], represses ENA1 expres-

sion through CRE (Cyclic AMP Responsive Element) in

unstressed condition. Under hypertonic stress Sko1p is phosphor-

ylated by Hog1p and converted into a transcription activator by

recruiting SAGA histone deacetylase and SWI/SNF complex to

promote chromatin remodeling [25] and induce ENA1 expression

in conjunction with Calcineurin/Crz1p mediated pathway [28].

Research over the past decade has identified several cellular

mechanisms of salt tolerance in yeast that are conserved in plant

cells; and isolation, and characterization of a number of plant salt

tolerance determinants was based on homologous function [30–

35] in yeast. Calcium sensor-regulated stress response pathways

seem to be structurally and functionally conserved in plants [36–

38] and some abiotic stress-related proteins are often found to

functionally complement yeast calcineurin knockouts. In tobacco

and Arabidopsis NACK-PQR pathway, similar to HOG pathway,

have been reported [39]. Tobacco MAPK kinase NQK1 can

functionally complement Pbs2p [39].

As drought and high salinity are amongst the major challenges

for plant survival, our interest is focused on one chickpea (Cicer

arietinum) gene highly expressed in a drought tolerant cultivar in

comparison to a drought sensitive cultivar in response to drought

and provided tolerance to high salt when expressed in tobacco.

The gene, CaZF encodes a C2H2 zinc finger protein. As zinc

finger proteins are ubiquitous; and drought and salt stress share

some common signaling pathways we decided to investigate if

there is any osmoregulatory response mediated by CaZF in S.

cerevisiae, in an attempt to outline the in vivo function of chickpea

CaZF. Overexpression of CaZF cDNA in a galactose-inducible

manner in yeast demonstrated that CaZF is able to rapidly

improve salt tolerance of yeast cells under saline stress. Moreover,

CaZF is able to complement osmotolerance deficiencies in hog1,

cnb1, and hog1cnb1 double mutants concomitantly with an

increased accumulation of osmolyte glycerol and stress-responsive

genes regulated by Hog1p and CAN.

Results and Discussion

Differential expression of CaZF, a gene for C2H2 zinc
finger protein from chickpea

Subtracted cDNA libraries constructed between two chickpea

(Cicer arietinum) cultivars at different points of drought-stress

resulted in a number of EST clones expressing higher in the

drought tolerant BGD72 than in the sensitive ICCV2 in response

to drought. An EST encoding a putative zinc finger protein

expressing more in BGD72 than in ICCV2 at different points of

stress (Figure 1) was taken for further studies. Full-length cDNA

(CaZF) constructed by 59 RACE was 1185 bp in length (GenBank

accession EU513298). Sequence analysis revealed an 843 bp open

reading frame (ORF) of 280 amino acid, 139 bp long 59 and

203 bp long 39 untranslated region. Deduced amino acid sequence

shows (Figure 2A) CaZF is an EPF type C2H2 zinc finger protein

having two canonical TFIIIA-type zinc finger motifs

(CX2CX3FX5LX2HX3H). Both the zinc finger motifs contain

conserved QALGGH sequence. A short spacer sequence of 28

amino acids separates two zinc fingers. Among the studied proteins

PIF1 (GB: AAQ54302), a pathogen inducible zinc finger protein

from capsicum shows maximum sequence similarity with CaZF of

only about 55% homology (expect = 5e-45). Notably, PIF1 is also

highly expressed in a pathogen tolerant variety compared to a

sensitive one in response to infection [40]. Detailed comparisons of

the amino acid sequences among plant zinc finger proteins

revealed three conserved regions other than the zinc fingers. CaZF

contains a short basic region with a consensus of KXKRSKRXR

(B-box), near the N-terminus, which may function as a potential

nuclear localization signal (NLS) and/or may participate in DNA

binding. Another is a region, consisting of three acidic residues

followed by hydrophobic residues rich in leucine, with a consensus

of EXEXXAXCLXXL (L-box) located between B-box and the

first zinc-finger. The other is a short hydrophobic region

containing a highly conserved DLNL sequence as a core (DLN-

box) close to the C-terminus. The latter two may play a role in

protein-protein interactions or in maintaining the folded structure.

CaZF possesses a serine-glutamine rich region at the N-terminus,

between L-box and first zinc-finger, which might function as a

transactivation domain as suggested for ZPT2-1 and Pszf1 [41,42]

or might be a phosphorylation site for post-translational

modification; and an asparagine rich stretch after the second zinc

finger at the C-terminus. Similar asparagine-rich domains are also

present in some stress-inducible zinc finger proteins such as

SCOF-1, EPF2-5, and STZ [43]. Like STO and STZ, the

Arabidopsis cDNAs, which increase salt tolerance in yeast in a

Calcineurin independent manner, SCOF-1 and EPF2-5, CaZF

contains highly basic region followed by acidic amino acids near

the C-terminus. But, CaZF has two such combinations of basic

and acidic amino acid stretches. Phylogenetic analysis showed that

CaZF and one Arachis protein (ZFP248) shares the same clad

(Figure 2B).

CaZF binds in vitro to EP sequence repeat and activates
transcription in yeast

CaZF possesses EPF type C2H2 zinc finger motifs that has been

identified in some transcription factors from petunia by their

ability to bind a target sequence EP1S core sequence (TGA-

Figure 1. Expression of CaZF in chickpea varieties BGD72 and
ICCV2 under different drought conditions. Samples harvested at
day post-irrigation (DPI) is mentioned. Total RNA (20 mg/lane) from
chickpea seedlings were hybridized with probe prepared from CaZF
cDNA as described under ‘‘Experimental Procedures’’. Ribosomal RNAs
(rRNA) are shown as loading control.
doi:10.1371/journal.pone.0005154.g001

CaZF Provides Osmotolerance
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CAGTGTCA) present in the promoter of their target gene EPSPS

(5-enolpyruvylshikimate-3-phosphate synthase) [41,44]. Therefore,

CaZF protein was tested for its ability to bind EP1S sequence.

EP1S is a 13 bp sequence with an inverted repeat of TGACA

separated by a G (Figure 3A). EPF family proteins have spacers of

variable lengths between two zinc fingers. Proteins with spacers

shorter than 44 amino acids show high specificity of binding to

tandemly repeated EP1S with the core G residue separated by

13 bp [44]. Therefore, an EP2S (EP1S dimer) tetramer with 13 bp

separations between the core G residues was used as a probe for

gel shift assay. Figure 3B shows that glutathion-S-transferase

(GST) fused CaZF protein expressed in E. coli efficiently bound

EP2S tetramer. Expression of CaZF protein fused to green

fluorescence protein (GFP) at the C-terminal end under 35S CamV

promoter in tobacco demonstrated that the protein is localized in

nucleus (Figure 3C). To determine whether CaZF protein is

capable of regulating transcription, CaZF ORF was expressed as a

fusion to GAL4 DNA-binding domain in a yeast reporter strain

carrying His3, Ade2 and LacZ reporter genes under GAL4 promoter.

Transformed yeast colonies grew on auxotropic medium lacking

histidine and adenine (Figure 3D) suggesting that CaZF can

function as a transcriptional activator. In order to identify the

transactivation domain, two CaZF deletion constructs were

introduced into the yeast reporter strain and b-galactosidase

activity was assayed. Deletion of C-terminal amino acids after the

second C2H2 domain (-Asn) produced higher b-galactosidase

activity than the full-length protein (Figure 3E). Increase in

transactivation activity after C-terminal deletion of CaZF is most

likely due to removal of DLN-box mediated repression. Tran-

scription repressor proteins e.g. ERF, STZ and AZF have a

conserved DLN-box motif (L/FDLNL/FP) at their C-terminus and

that was shown to be essential for repressor activity [45,46].

Removal of N-terminal amino acids up to the first C2H2 domain

(-N99) caused significant reduction of b-galactosidase activity

demonstrating essentiality of this domain for transactivation. To

further locate the transactivation domain, two more N-terminal

deletion mutants, one from 1–44 aminoacids (N44) and other 1–75

aminoacids (N75) were constructed. b-galactosidase assay showed

that the aminoacids from 44–75 (L-box) are most important for

transactivation property of the protein.

CaZF-expressing transgenic tobacco plants show salt-
tolerance

To establish the functional significance of CaZF in planta the

complete ORF of CaZF gene was introduced into tobacco plants

using Agrobacterium-mediated transformation. Out of twelve

transgenic lines harboring single copy of the transgene, two

relatively high expressing and two relatively low expressing lines

Figure 2. In silico analysis of CaZF protein. A, Deduced amino acid sequence of CaZF. The basic B-box in CaZF is indicated by bold letters, L-box
by an underline, zinc finger motifs by underlined grey letters and Asn-rich region by underlined bold letters. B, Phylogenetic tree showing relationship
between CaZF and other well-studied C2H2 zinc-finger family proteins. The tree was generated using the neighbor-joining algorithm of MEGA 2.0
software, version 2.1. The bar indicates the scale for branch length.
doi:10.1371/journal.pone.0005154.g002
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(Figure 4A) were chosen for salt-tolerance analysis. The vector

transformed and the CaZF-expressing T1 transgenic lines were

germinated simultaneously and grew normally in 0.5 MS

(Murashige and Skoog) medium (Figure 4B). To assess the effect of

high salt on the seed germination/growth of the vector control and

T1 plants overexpressing CaZF, surface-sterilized seeds were

plated on 0.5 MS supplemented with 200 mM NaCl. In the

presence of high salt, vector transformed seeds showed almost no

germination (only one out of thirty-two seeds in one repeat) until

20 d, while on average 85–95% CaZF overexpressing T1 seeds

showed germination within 15 d (Figure 4C). To test for salinity

tolerance, leaf disks from all four lines of T1 transgenic plants and

vector transformed plants were floated separately on water,

150 mM or 300 mM NaCl for 72 h and subsequently total

Figure 3. DNA binding, cellular localization and transactivation assay of CaZF. A, The 32 bp EP2S sequence tested for gel-shift assay is
either wild-type or mutant version M1. Monomers are shown, and tetramers were used in the experiments. Core nucleotides are underlined and
modified bases are in bold small case letters. B, Gel-shift assays demonstrating that CaZF binds to the EP2S probe. C, CaZF protein localizes in nucleus.
Leaf peels of the CaZF overexpressing transgenic and vector transformed plant were analyzed under microscope for phase contrast (a) for GFP
activity (c). The sample was restained with DAPI to confirm the nucleus position (b) as indicated. D, E, Transactivation assay of CaZF in yeast. Full
length and truncated CaZF cDNA were cloned into pGBKT7 for expression of CaZF protein as a fusion with GAL4-DNA binding domain. Activation of
HIS3 and ADE2 reporter genes is shown by growth of the transformants growing in SD (-histidine,-adenine) medium against control (con.) and vector
(vec.) transformed (D). LacZ activation by different deletion constructs of CaZF is shown by b-galactosidase assay (taken as an average of three
independent experiments) of the transformants presented as fold increase in activity (E).
doi:10.1371/journal.pone.0005154.g003
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chlorophyll content was quantitated. Chlorophyll content of the

vector-transformed and CaZF-expressing plants was comparable

in presence of water. However, salinity-induced loss of chlorophyll

was much lower in CaZF overexpressing lines (average 13.2% and

23.1% for L1/L21, and 27.8% and 51.2% for L17/L46 at

150 mM and 300 mM NaCl respectively) compared with that in

the vector control (average 62.3% and 76.4% at 150 mM and

300 mM NaCl respectively) (Figure 4D). From the damage caused

by salt stress it was evident that CaZF overexpressing transgenic

tobacco plants have a better ability to tolerate salinity stress as

compared to vector control plants. The degree of bleaching

(yellow color) observed in leaf disks after 72 h can reflect the extent

of damage caused by stress. CaZF-expressing transgenic tobacco

seedlings also exhibited improved drought tolerance (data not

shown).

CaZF enhances osmotolerance in yeast
Several reports describe use of yeast mutants to screen and

characterize plant salt tolerance determinants [45,47]. As CaZF

encodes a ubiquitous C2H2 zinc finger protein, and as yeast and

Figure 4. Expression of CaZF and salt tolerance of transgenic tobacco. A, Northern blot showing expression of CaZF in T1 transgenic tobacco
lines transformed with pBI121 without (vector) or with CaZF (L21, L1, L17 and L46). Full length CaZF cDNA was used as probe. B, Vector control and T1

transgenic progenies were grown on 0.5 MS (Murashige and Skoog) medium for 10 d. C, Effect of salt stress on tobacco seedlings from vector control
and T1 transgenic progenies (CaZFL21, CaZFL1, CaZFL17 and CaZFL46) was demonstrated by germinating seeds on 0.5 MS medium supplemented
with 200 mM NaCl for 20 d. Representative figure of three independent experiments are shown. D, Chlorophyll content determined by leaf disc
senescence assay for salinity tolerance of 30d-old vector control and transgenic tobacco lines overexpressing CaZF, after incubation in water, 150 mM
and 300 mM NaCl solutions for 72 hr under continuous white light at 2562uC. Results of three independent experiments are shown.
doi:10.1371/journal.pone.0005154.g004
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plant stress tolerance systems share quite similar pathways we

intended to use yeast salt-sensitive mutants for the characterization

of CaZF. CaZF cDNA was expressed under a galactose-inducible

promoter in a protease deficient S. cerevisiae strain BCY123 that

reduces degradation of the heterologous protein [48]. In contrast

to vector transformed control the CaZF-transformed colonies were

able to grow in galactose-containing medium supplemented with

250 mM lithium chloride (LiCl) or 500 mM NaCl. Li+ and Na+

are transported through the plasma membrane by same system.

The maximum concentration of each salt tolerated by the

transformed colonies is 300 mM LiCl and 700 mM NaCl at

1026 dilution when incubated at 30uC for 4 days. Introduction of

CaZF cDNA in two other yeast strains, BY4742 and PJ69-4A (data

not shown) with different genetic background allowed the

transformed colonies to grow on a medium supplemented with

250 mM LiCl or 500 mM NaCl, demonstrated that CaZF could

function in a broad genetic spectrum. Salt tolerance of the

transformed colonies was galactose inducible, as they did not grow

LiCl-supplemented medium when galactose was replaced with

glucose showing expression of the cDNA was necessary for salt

tolerance (Figure 5A). BCY123 harboring CaZF cDNA also

exhibited tolerance against other ionic and non-ionic osmolytes

such as MnCl2, KCl and sorbitol (Figure 5B) demonstrating CaZF

can provide tolerance against general osmotic stress. In liquid

medium (YPGalRaf) BCY123 harboring CaZF grew almost two

fold (doubling time 4.860.2 hrs) faster than the vector control

strain (doubling time 8.960.2 hrs) in presence of 500 mM NaCl.

In absence of salt no difference was observed between the growth

rates of yeast strains with or without CaZF (doubling time

3.160.1 hr) as shown in the solid medium indicating CaZF

requires osmotic stress for its function and provides growth

advantages only in osmotic stress.

CaZF partially suppresses salt sensitivity of Calcineurin
and HOG pathway mutants

Exposure to high salinity causes hypercationic and hyperos-

motic stresses to eukaryotic cells [31]. Inter-connected pathways

regulated by Hog1p MAP kinase and CAN protein phosphatase

determine most of the responses to hyperosmotic stress. A number

of salt tolerance determinants in plants have been isolated by their

ability to suppress salt sensitivity of the yeast mutants [49].

Therefore, CaZF was tested for its ability to provide osmotic

tolerance to some of the well-studied yeast mutants. CaZF

suppressed the salt sensitivity when expressed in cna1cna2 double

mutant, lacking both the redundant catalytic subunits and cnb

mutant lacking the regulatory subunit of Calcineurin on 400 mM

NaCl (Figure 6A). However, CaZF could not protect the cnb

mutant against the ionic osmolytes KCl (data not shown) and

Figure 5. CaZF provides tolerance to yeast cells against osmotic stress. A, Yeast strain BCY123 harboring only vector (pYES2.1) or CaZF was
spotted onto YPGalRaf medium supplemented with 250 mM LiCl or 700 mM NaCl, or onto YPGlu medium containing 250 mM LiCl. Plates without or
with salt were shown after incubation at 30uC for 2 d or 4 d respectively. B, The same strains, as in A, were spotted onto YPGalRaf medium containing
either 500 mM KCl, 500 mM sorbitol or MnCl2 and incubated at 30uC for 4 d. Representative figures from three independent experiments are shown.
doi:10.1371/journal.pone.0005154.g005
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NaCl to the extent as it did for the wild type cells. This was also

reflected when growth rates were measured in liquid medium. cnb

mutant cells expressing CaZF grew faster (doubling time

7.260.16 h) than that carrying only vector (doubling time

11.860.3 h) but grew at a much slower rate than the wild type

cells expressing CaZF (doubling time 4.860.2 h). These data

indicate that CaZF functions through a pathway, which is additive

to but independent of Calcineurin pathway. Alternatively, CaZF

can partially complement salt sensitivity of the can mutants but

requires the CAN pathway for its full function. Interestingly,

growth rates of the cnb mutant and the wild type cells harboring

CaZF in non-ionic osmolyte sorbitol containing medium were

comparable (Figure 6B). The probable explanation is Calcineurin

pathway protects the cells against toxicity of only ionic osmolytes

while HOG pathway protects against hypertonic stress due to both

ionic and nonionic osmolytes [50].

As CaZF enhanced growth of wild type yeast in presence of

nonionic osmolyte, we wanted to test whether it can function in

the background of HOG pathway mutants. Expression of CaZF

suppressed salt sensitivity of hog1 mutant. As in case of the

calcineurin mutants, CaZF provided much less tolerance to the

hog1 strain than it provided for the wild type strain carrying only

Figure 6. CaZF suppresses salt sensitive phenotype of Hog and Calcineurin mutants. A, Wild type and mutant BCY123 cells harbouring
either only vector (pYES2.1) or CaZF were spotted onto YPGalRaf plates, containing 0.4 M NaCl. Right panel demonstrated the CaZF expression level
in WT and mutant BCY123 yeast strain. rRNA was taken as loading control. B, Wild type BCY123 and hog1 or cnb mutants expressing CaZF were
spotted onto YPGalRaf medium containing 0.5 M sorbitol. All spotting experiments were performed, as described in Figure. 4. Representative figures
from three independent experiments are shown.
doi:10.1371/journal.pone.0005154.g006
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vector against the ionic and nonionic osmolytes. The result in the

solid medium was also supported by the growth rates in liquid

medium with 500 mM NaCl; as doubling time of hog1 strain

carrying pYES was 12.060.15 h as opposed to 7.860.2 h for the

hog1 cells expressing CaZF that was much higher than that

required for the wild type cells expressing CaZF (4.860.2 h). The

osmosensitive phenotype of yeast mutant lacking both Hot1 and

Msn1, transcriptional activators of the Hog pathway, can also be

suppressed by CaZF expression (Figure 6A) in solid and liquid

hypertonic medium as well. Under hypertonic stress Hog1p,

through Sko1p, activates expression of Ena1 [28,51,52], which is

also regulated by Calcineurin independent of Hog1p through a

transcription activator Crz1p, a C2H2 zinc finger protein [3,4,12].

As CaZF could suppress osmosensitivity of hog1 and cnb mutants

separately, we constructed a double mutant hog1cnb to test the

functional ability of CaZF in absence of both Hog1p and

Calcineurin. Surprisingly, CaZF expression partially suppressed

salt sensitivity of hog1cnb. Analysis of the effect of CaZF expression

in these mutants of HOG and CAN pathways mutants suggests

that CaZF mediated suppression of osmosensitivity involves a

pathway(s) that is independent of but additive to Hog1p and

Calcineurin regulated pathways. Simultaneously, reduced growth

rate of CaZF expressing mutant cells in comparison to the wild

type cells expressing the plant gene also evokes a possibility that

CaZF may require both the pathways to function in its full

strength. The data presented above suggests that hyperosmotic-

adaptation pathway (s) independent of Hog1p and Calcineurin can

be created in yeast.

CaZF induces expression of HOG and Calcineurin
regulated genes

We have shown that CaZF can enhance hyperosmotic stress

tolerance in budding yeast and it can partially suppress the

osmosensitive phenotype of the mutants lacking Hog1p and/or

Calcineurin activities. We further investigated whether CaZF

expression has any influence on expressions of the genes those are

regulated by HOG1p and involved in glycerol production and

damage repair. We analyzed in wild type and hog1 background,

expressions of two genes, GPD1 and GPP2, involved in glycerol

synthesis and two general stress response genes CTT1 and HSP12,

predominantly controlled through STRE. Expressions of all the

four genes, with different expression kinetics, in the vector control

wild type are enhanced quickly after the salt stress and remained

expressed even after 3 h (Figure 7A). Expression of CaZF did not

show any significant effect on the expression of these genes under

control condition except an increase in CTT1 expression.

However, under salt stress, expression of CTT1 and of HSP12

throughout the course of experiment was higher in CaZF

expressing cells, suggesting that CaZF function in yeast is not

constitutive and it requires some stress-induced pathway(s) for its

function. As expected, hog1 mutation caused significant reduction

in expression of all these genes. Surprisingly, hog1 mutant

harboring CaZF induced expression of all these genes almost at

the level of CaZF expressing wild type strain in response to salt

stress. HOG pathway regulated genes were shown to recruit

Hog1p at their promoter for the osmotic stress-mediated

expression. Salt induced expression of these genes in absence of

Hog1p suggests that either CaZF along with some Hog1p-

independent factors is directly activating the expression of these

genes or a Hog1p-independent salt-inducible pathway in yeast is

activated by CaZF under salt stress and ultimately causing

expression of these genes. CaZF-regulated Hog1p-independent

expression of these genes though is not sufficient for providing

osmotolerance to the extent as with the wild type background

indicating that Hog1p is indispensable for a part of the

osmoadaptation mechanism.

Figure 7. Effect of CaZF on stress-responsive gene expression. Wild type or mutant cells as mentioned harboring either only vector (pYES2.1)
or CaZF were grown in YPGalRaf medium and treated with 500 mM NaCl for mentioned period of time. Northern analysis was performed with probes
representing genes mentioned in the figure subpanels A, B and C. Representative figures from three independent experiments are shown.
doi:10.1371/journal.pone.0005154.g007
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Expressions of the genes mentioned so far are also regulated by

complex mechanisms, which are not related with HOG pathway

and are also involved in other stress responses [53]. Therefore, we

have analyzed a comparatively simpler expression system that is

exclusively controlled by Hog1p. As reported earlier [48], STL1 (a

gene encoding a putative hexose transporter) expression is

completely abolished in hog1 and hot1 mutants in response to salt

stress. Hog1p and Hot1p are recruited in an interdependent

manner on STL1 promoter during acute salt stress as supported by

chromatin immunoprecipitation [54]. In this study, expression of

STL1 was undetectable in absence of salt stress in wild type cells

with or without CaZF expression, again supporting the data that

the plant protein is not constitutively active in yeast. In presence of

500 mM NaCl, STL1 expression was quickly increased with a

peak at 20 min at the experimental condition (Figure 7B).

Expression of CaZF had no significant effect on STL1 expression

in wild type cells in presence of salt. As expected STL1 expression

was undetectable in hog1 mutant, however, under salt stress CaZF

in hog1 mutant not only induced STL1 expression to the extent as it

did in wild type background, the expression peak was shifted to

10 min; the shifting of peak of STL1 expression was also evident in

msn1hot1 double mutant, where the expression at 10 min was

comparable to that at 20 min. Interestingly, CaZF-mediated STL1

expression persisted for relatively shorter time period in hog1.

Induction of STL1 expression in response to salt stress in hog1 and

msn11hot1 mutants confirmed that CaZF functions in a salt stress-

dependent manner in yeast and indicates that CaZF also possesses

a Hog1p-independent function to activate the expression of some

Hog1p-regulated genes.

As CaZF could partially suppress salt sensitivity of hog1cnb

double mutant we intended to analyze ENA1 expression, which is

regulated independently by both Calcineurin and Hog1p, in CaZF

expressing cells (Figure 7C). In wild type and mutant background,

CaZF did not alter steady state low expression level of ENA1

transcript in control condition. Expression of ENA1 was increased

rapidly after exposure to salt in wild type cells and that is further

enhanced by more than 1.5 fold in cells harboring CaZF. ENA1

expression was hardly detectable in hog1cnb cells and that is slightly

enhanced in response to salt. However, in CaZF expressing

mutant cells ENA1 transcript was accumulated at an equivalent

level of wild type cells. To test whether ENA1 gene product is

essential for CaZF function, it was expressed in hog1ena1 double

mutant. Figure 6A shows that CaZF expression suppressed salt

stress sensitivity not only of hog1cnb but also of hog1crz1 and

hog1ena1 double mutant indicating ENA1 is not essential for CaZF

function.

Both HOG and CAN pathways function through a number of

transcriptional activators of zinc finger family of proteins e.g.

Msn2p/Msn4p, Sgd1p and Crz1p/Tcn1p. Among them Msn2p/

Msn4p and Crz1p belongs to C2H2 zinc finger family [3,4].

Despite of the fact that Msn2p/Msn4p and Crz1p are much larger

proteins and have no overall sequence similarity with CaZF, the

plant protein most likely is able to functionally substitute both

these transcription activators. This is quite evident in case of

CTT1, HSP12 and ENA1 expression in CaZF expressing wild type

cells in stress. Expressions of CTT1 and HSP12, predominantly

regulated by Msn2p/Msn4p through STRE [21,55] and that of

GPD1 and GPP2, regulated by Hot1p and Msn1p [14,19] and not

dependent on functional STREs, reveals a striking difference when

compared in CaZF-expressing wild type cells in presence of salt. In

wild type cells CaZF further induced expressions of CTT1 and

HSP12 but not of GPD1 and GPP2 in salt stress. Thus, CaZF

function is not redundant rather additive to Hog1p-mediated

expression of these C2H2 zinc finger and STRE-regulated genes.

In hog1 background, under salt stress CaZF is able to induce

expression of these genes to a similar extent as Hog1p does in the

wild type cells. This also seems to be the mechanism for Crz1p-

regulated gene ENA1. ENA1 expression is partially regulated by

Crz1p [4,28]. Accordingly, CaZF further enhanced ENA1

expression by only about 1.5 fold in wild type background under

salt stress. In hog1cnb background it was found that CaZF was able

to activate expression of ENA1 independent of Hog1p and

Calcineurin to the same level as those regulatory enzymes do in

wild type cells. While Crz1p requires Calcineurin-mediated post-

translational modification to be active [3], CaZF does not require

that. However, CaZF seems to require Hog1p and Calcineurin-

independent but stress-dependent post-translational modifications

and/or protein-protein interaction for its full functional ability.

For the genes (GPD1, GPP2 and STL1) that are regulated

predominantly by Hot1p, which is not a C2H2 zinc finger protein,

influence of CaZF on their expression was evident only in absence

of Hog1 and Hot1. GPD1 and GPP2 expressions are also regulated

by other proteins (e.g. Rap1p for GPD1) [56] and irrespective of

combination of gene knockouts involving Hog1p and Hot1p;

GPD1 and GPP2 remains salt inducible. But CaZF seems to induce

expression of these genes by similar mechanism used by Hog1p

and Hot1p. The reason being it induces expression of STL1, which

is exclusively regulated by Hog1p and Hot1p [54]. There is

possibility that CaZF utilizes other proteins and/or other salt

inducible pathways to mimic Hog1p-regulated activation, but

cannot totally replace Hog1p as STL1 expression kinetics differs in

presence and in absence of Hog1p. CaZF seems to require these

genes for salt-tolerance because their end product, the glycerol

synthesis in the mutant cells harboring the plant gene nicely

correlates their growth in presence of salt.

ENA1, a P-type ATPase, is the first member of cluster of four to

five genes encoding very similar proteins and plays a major role in

detoxification of sodium and lithium cations. A complex

mechanism involving different pathways regulates ENA1 induction

in response to salt. Involvements of Hog1p and calcineurin are

already discussed. At least two other pathways namely TOR and

Hal3/Ppz also regulate ENA1 expression in response to salt [for

review [57,58]]. However, in our experimental system ENA1

expression increased marginally in hog1cnb cells in response to salt

suggesting these two enzymes (Hog1p and Calcineurin) are the

major regulators of salt-responsive ENA1 expression. Expression of

CaZF confers salt tolerance and induces ENA1 expression in

hog1cnb suggests that CaZF functions by activating Na+/Li+

extrusion system and at the same time also by mechanisms not

involving ENA1p as it enhanced salt tolerance of hog1ena1 mutants.

ENA1-independent mechanism may involve other cation efflux

systems, such as NHA1 and SNQ2 or K+-influx systems like TRK1

[7,59,60]. Similar ENA1-independent salt tolerance was also

provided by other plant proteins e.g. STO and SLT1 [61,62].

CaZF induces glycerol accumulation
To further clarify, whether the effects of CaZF on HOG and

CAN-pathway gene expression described above are relevant for a

functional osmotic stress response; we estimated glycerol produc-

tion during or after stress exposure. Figure 8 shows that in control

condition mutation of the HOG pathway genes and CaZF

expression had no influence on constitutive level of total glycerol.

Mutant lacking Hog1 did not stimulate glycerol production in

response to stress even at the later stage, while msn1hot1 double

mutant started accumulating glycerol later in stress. However,

irrespective of genetic background CaZF enhanced production of

glycerol in response to stress though comparatively less in the

mutant strains than in the wild type cells corroborating the
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comparative osmotic tolerance levels of the wild type and the

mutant strains expressing CaZF. This result shows that CaZF not

only increases the expression of HOG-pathway genes, but also

activates the functional osmotic stress response to salt stress in

absence of Hog1.

CaZF directly binds to STRE and activates CTT1 promoter
CTT1, HSP12, GPD1 and GPP2, the well-studied general stress

response genes regulated by HOG pathway possess stress tolerance

responsive elements in their upstream activating sequence. Msn2p

and Msn4p, two C2H2 zinc finger proteins bind to STRE of

CTT1 and HSP12 to activate their expressions. To determine the

mechanism of action of CaZF in yeast we, therefore, tested the

ability of CaZF to bind STRE. CaZF protein fused to glutathione-

S-transferase (GST) was purified from bacteria and used for gel

mobility shift assay using a radiolabeled probe derived from CTT1

promoter having tetramer of STRE core element (AAGGGG).

Figure 9A clearly shows that CaZF bound to STRE in a sequence

specific manner as replacement of a ‘G’ residue with ‘A’ residue in

the core element of the probe (M1) totally abolished the binding

while another replacement outside the core element (M2)

maintained the binding efficiency.

We have shown that expression of CaZF was able to induce

expression of CTT1 (and three other STRE-containing genes) in

hog1 background. Therefore, we tested the ability of CaZF to

activate CTT1 promoter in wild type and hog1 mutant. 800 bp

(2137 to 2937) upstream activating sequence including the

translation start codon of CTT1 was amplified and inserted before

LacZ reporter gene to regulate its expression. Wild type and hog1

yeast strains were co-transformed with the reporter construct and

CaZF-expressing plasmid and activity of LacZ was assayed.

Figure 9B shows that CaZF induced CTT1 expression by more

than 50 fold in absence of salt and almost 150 fold of the basal

level in presence of salt in the wild type strain. In hog1 background

the inductions were 10 and 60 folds in absence and in presence of

salt stress respectively. A CaZF deletion construct lacking its

transactivation domain could not activate the CTT1 promoter and

a CTT1 promoter construct with mutated STRE was not activated

by CaZF. This result demonstrated that CaZF was able to activate

yeast stress tolerance responsive element in Hog1-independent

manner by directly binding to it.

Requirement of CaZF C-terminal domain for salt
tolerance

Transactivation assay in yeast determined that the N-terminal

domain of CaZF is responsible for its transactivation property and

accordingly removal of that domain made CaZF unable to provide

salt-tolerance. To investigate whether the C-terminal domain has

any role in its activity, we made serial deletion constructs from the

C-terminal end of the protein. Removal of last 22 amino acids did

not make any difference in the activity of CaZF. However, further

removal of 33 amino acids totally abolished the capability of CaZF

to provide any salt-tolerance (Figure 10). A close analysis of the

amino acid sequence reveals that this domain contains apart from

alternate stretches of basic and acidic amino acids, a potential site

for protein kinase C phosphorylation (SKK) and a potential site for

cAMP/cGMP-dependent protein kinase phosphorylation

(KKKS). In yeast, cAMP-dependent protein kinase A (PKA) is

an essential component of general stress response pathway. In

normal growth condition PKA phosphorylates C2H2 zinc finger

proteins Crz1p, Msn2p and Msn4p to prevent their nuclear

localization. Upon inactivation of PKA or activation of the

phosphatase calcineurin during stress those proteins get dephos-

phorylated and are accumulated in the nucleus to activate their

Figure 8. Effect of CaZF expression on accumulation of glycerol in response to salt treatment. Total glycerol [(mg/ml); equivalent to
Triloen content] was estimated in wild type and mutant cells carrying either only vector (pYES2.1) or expressing CaZF after treatment with sodium
chloride for mentioned time period in the figure. Glycerol assay was done with three experimental repeats and the average value was considered.
doi:10.1371/journal.pone.0005154.g008
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target genes [63–65]. CaZF, being a C2H2 zinc finger protein

may be regulated by the same mechanism and, thereby, stress-

mediated activation of CaZF-function can be explained. Alto-

gether, these results suggest importance of the C-terminal domain

with acidic and basic stretches in CaZF function.

Conclusion
We have identified a chickpea gene, CaZF encoding a C2H2

zinc finger protein, which is expressed relatively in higher amount

in response to drought stress in a drought-tolerant variety in

comparison to a sensitive one. We raised tobacco transgenics

overexpressing CaZF showing tolerance to high salinity.

Most likely, in yeast, CaZF does not function at the level of

Hog1p; rather it works downstream to it. The reasons being,

CaZF structurally resembles a transcription factor and expression

of CaZF is not toxic like expression of ASR1. ASR1 expression in

control condition was growth-inhibitory like a constitutively active

Hog1p mutant [47,66]. In spite of inducing gene expression and

glycerol production, expression of CaZF could not provide

equivalent salt-tolerance to hog1 and cnb mutants as it did in wild

type cells. There might be several reasons for that. We have

analyzed expressions of only a few genes while Hog1p and

Calcineurin together regulate expression of a wide number of

genes involved in several pathways. Secondly, Hog1p-mediated

stress relief mechanism begins much before of Hog1p-regulated

transcriptional induction of downstream genes. Osmotic stress-

activated Hog1p phosphorylates Nha1 Na+/H+ antiporter, which

is crucial for rapid reassociation of those proteins, which were

Figure 9. CaZF directly binds to STRE and activates CTT1 promoter. A, Gel-shift assay demonstrating that CaZF binds to the STRE sequence
containing probe. Either wild-type or mutant versions (M1 and M2) are used. STRE sequences are underlined and modified bases are in bold small case
letters (left panel). B, Transactivation assay of CTT1-LacZ construct by CaZF. Full length or truncated CaZF protein and LacZ reporter fused to CTT1
promoter fragment or its mutant were cointroduced in wild type (WT) or hog1 BCY123 yeast strains. The transformed yeast strains were treated with/
without 500 mM NaCl for 30 min. Activity of b-galactosidase of each sample (average of three independent transformants) as mentioned in table (left
panel) was determined and presented in the form of fold induction in activity (right panel).
doi:10.1371/journal.pone.0005154.g009
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dissociated from the chromatin due to stress, with their target sites

[24,67]. Apart from that, HOG pathway shares kinases and

phosphatases with a lot of interconnecting pathways [for review

[53]], which cannot be replaced totally by heterologous expression

of one transcription factor.

In conclusion, expression of CaZF in yeast provides evidence

that at least some of the crucial stress tolerance determining genes,

which are regulated by Hog1p MAP kinase, Calcineurin protein

phosphatase and their target transcription factors during osmotic

stress, can also be activated to the same extent in absence of their

regulatory enzymes/transcriptional activators. Activation of those

genes by a heterologous gene leads to production of the HOG

pathway end product i.e. glycerol. In at least one previous instance

it was shown that a plant gene (ASR1) could induce synthesis of

glycerol in salt stress in absence of Hog1p [47,66]. The level of

dependence of yeast cells on Hog1 differs with intensity and extent

of stress conditions. After 20 min of exposure at 800 mM NaCl,

75% of salt stress-responsive genes are strongly dependent on Hog1

while only 32% of them are strongly dependent on Hog1 after

10 min exposure at 400 mM NaCl exposure. At 400 mM NaCl

36% of salt-induced genes are independent of Hog1 in contrast to

only 3% at 800 mM [2]. Therefore, influence of Hog1p on

expression of genes is relative to the experimental condition. We

have analyzed gene expression and glycerol estimation at 500 mM

NaCl and so there may be a possibility that in this experimental

condition influence of Hog1p is relatively less in providing salt-

adaptation. A salt-inducible but Hog1p and Calcineurin-indepen-

dent pathway definitely uses CaZF as a substrate for post-

translational modification and/or target for protein-protein

interaction, because it can induce gene expression and conse-

quently provide growth advantage only in presence of stress; and

secondly it requires its C-terminal domain, which is not required

for its transcription activation property, for its function. CaZF

might be a potential target for cyclic AMP-dependent protein

Kinase such as protein kinase A. Altogether our experiments in

tobacco and in yeast demonstrate that CaZF, a C2H2 zinc finger

protein from chickpea is a potential salt tolerant determinant in

plant. Unlike several other zinc finger proteins having ‘DLNL’

motif and acting as transcription repressor, CaZF acts as

transcription activator. Other than its transactivation domain,

which resides at its N-terminus, the C-terminal aminoacids also

play a major role in its activity. CaZF requires post-translational

modification and/or interaction with other stress-inducible

proteins for its full activity. Our results in yeast model suggest

that CaZF can act as a general osmotolerance-determinant by

inducing the production of osmolytes by directly activating their

promoters.

Materials and Methods

Yeast Strains and Culture Conditions
Yeast strains used in this study are BCY123, BY4742 and PJ69-

4A (Table 1). Different mutants used in this study are the

derivatives of Saccharomyces cerevisiae BCY123 (wild type) [48]. To

culture cells, standard yeast media and growth conditions were

used. Yeast cells were grown in either YP containing 2% bacto-

peptone, 1% Difco yeast extract, 50 mg/mL adenine sulphate

supplemented with either 2% dextrose (YPD) or 2% galactose and

2% raffinose (YPGalRaf) or synthetic media containing 0.7% (w/

v) yeast nitrogen base supplemented with the required amino acids

at 30 mg/mL, 2% (w/v) Glucose, 50 mM succinic acid/Tris

(pH 5.5) at 30uC. Escherichia coli strain DH5a, used in this study,

was grown in Luria broth (LB) medium containing 1% peptone,

0.5% yeast extract and 0.5% NaCl supplemented with ampicillin

(50 mg/L) at 37uC. Antibiotics were filter sterilized and added to

autoclaved medium.

Figure 10. Determination of salt tolerance ability of CaZF deletion constructs. BCY123 cells transformed with C-terminal deletion constructs
of CaZF as shown in the schematic representation were tested for their ability of providing salt tolerance against 250 mM LiCl. Representative figures
from three independent experiments are shown.
doi:10.1371/journal.pone.0005154.g010
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Plant material used and Identification of cDNA coding for
CaZF

A drought-tolerant (BGD72) and a drought-sensitive (ICCV2)

cultivar of chickpea (Cicer arietinum) were used in this study. The

cultivars were grown in same pot containing soilrite:vermiculite

(1:1). The seedlings were grown in same pot to keep same soil

moisture content for both the cultivars. Drought treatment was

applied by stopping irrigation to 10 d old chickpea seedlings.

Samples were harvested after 0, 3, 6 and 12 d post-irrigation.

Subtractive cDNA libraries constructed with these cultivars at

different stages of drought resulted in some EST clones that

express higher in the drought-tolerant cultivar in response to

drought. One such EST encoding C2H2 zinc finger protein was

used in this study. 59RACE System (Life Technologies, Rockville,

MD) was used to construct the full length cDNA of CaZF. For

functional study in yeast the complete and truncated ORF of

CaZF was directionally cloned into pYES-2.1-V5 His-TOPO

flanked by XhoI and XbaI restriction sites under galactose-inducible

GAL1 promoter.

Subcellular Localization Analysis of Transiently Expressed
Fusion Proteins

The CaZF coding region without the translation stop codon was

cloned in pCAMBIA1302 to produce the protein fused to GFP

using following PCR primers (59CATGCCATGGCTTTA-

GAGTTAGAAGCT39) and (59GAAGATCTTGCACCGTTT-

CATCATC39). The PCR amplified fragments were digested with

NcoI and BglII and cloned in pCAMBIA1302 vector. The

construct was introduced into tobacco (Nicotiana tabaccum cv. xanthii)

by Agrobacterium mediated transformation. For the nuclear staining,

tobacco leaf peals were incubated for 10 min with DAPI (1 mg/ml)

before observing under fluorescent microscope with FITC filter.

Raising of CaZF Overexpressing Transgenic Tobacco
Plants

The complete ORF of CaZF gene was cloned into the Xbal-Smal

site of the pBl-121 vector (Clontech) in the sense orientation.

pBI121 without (vector-control) and with CaZF were chemically

mobilized in to Agrobacterium tumefaciens strain GV3101. Tobacco

(Nicotiana tabaccum cv. xanthii) leaf discs were transformed following

standard protocol [68]. Putative T0 transgenic plants were

regenerated from the callus in the presence of kanamycin and

integration of the transgene was further confirmed by PCR

amplification. The seeds from these plants, i.e. T0 seeds, were

germinated on kanamycin-containing medium and on the basis of

segregation analysis and genomic Southern blot; transgenic lines

with single transgene insertion were selected for further analyses.

Leaf Disc Assay of CaZF Transgenic Plants
Leaf discs of 1.0 cm diameter were excised from healthy and

fully expanded tobacco leaves of same age (30 d post germination)

from CaZF-expressing and vector-control plants. The discs were

floated in a solution of NaCl (150 mM or 300 mM) or water

(experimental control) for 72 h [69]. The discs were then used for

measuring chlorophyll spectrophotometrically after extraction in

80% cold acetone. The salinity and water treatments were carried

out in continous white light at 2562uC. The experiments were

done with three experimental repeats of each vector-control and

transgenic lines.

Preparation of Recombinant Proteins and Gel Mobility
Shift Assay

To generate a GST-fusion protein, the corresponding ORF of

CaZF was amplified by PCR with primers flanked with restriction

site for EcoRI and inserted into pGEX4T2 expression vector and

introduced into Escherichia coli BL21 (DE3). Protein expression was

induced by 0.5 mM IPTG for 3 h at 30uC. The recombinant

proteins were purified from bacterial lysates with Glutathione-

Sepharose beads (GE-Amersham) and subsequently monitored by

10% SDS-PAGE. All DNA binding reactions were carried out in

25 mM HEPES-KOH; pH 7.6, 40 mM KCl, 0.1% Nonidet P-40,

0.01 mM ZnCl2, 10 mg/ml poly (dI-dC), and 0.1 mM dithiothre-

itol. Gel-shift assays were performed with 10,000 c.p.m. of 32P-

end-labeled probe A, a tetramer of TTGACAGTGTCACGCG

TTGACAGTGTCACGCG (core nucleotides are underlined) or

mutated probe M1, a tetramer of TTcAgAGTGTCACcCgTT-

GACAGTGTCACGCG (mutated bases are in bold lower case

letters. After incubation for 20 min at room temperature, the

mixtures were subjected to electrophoresis in 8% polyacrylamide

gel as described previously [70].

Yeast One-Hybrid Assay
CaZF protein coding sequence or the truncated forms were

cloned in yeast (S. cerevisiae) expression vector pGBKT7 (Clone-

Table 1. S. cerevisiae strains used in this study.

S. NO. STRAIN GENOTYPE SOURCE OF REFERENCE

1 BCY123 Mat a, pep4::HIS3 prb1::LEU2 bar1::HISG lys2::GAL1/10-GAL4 can1 ade2 trp1 ura3 his3 leu2-3, 112
Dlys2cir+GAL+RAF+SUC

[48]

2 BCY123a Same as BCY213, except cna1::HIS3 cna2::TRP1 This Study

3 BCY123b Same as BCY213, except cnb::TRP1 This Study

4 BCY123c Same as BCY213, except hog1::TRP1 This Study

5 BCY123d Same as BCY213, except msn2::HIS3 msn4::TRP1 This Study

6 BCY123e Same as BCY213, except msn1::HIS3 hot1::TRP1 This Study

7 BCY123f Same as BCY213, except hog1::TRP1 cnb::HIS3 This Study

8 BCY123g Same as BCY213, except hog1::TRP1 crz1::HIS3 This Study

9 BCY123h Same as BCY213, except hog1::TRP1 ena1::HIS3 This Study

10 BY4742 MAT a his3D leu2D lys2D ura3D YJL059W::kanMX4 [76]

11 PJ69-4A MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL-HIS3 GAL2-ADE2 met2::GAL7-lacZ [71]

doi:10.1371/journal.pone.0005154.t001
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tech) at NdeI-EcoRI site to express CaZF proteins fused to GAL4

DNA-binding domain. The constructs were transformed into an

auxotropic yeast strain PJ69-4A [71] that contains three reporter

genes, HIS3, ADE2, and b-GAL, under the control of GAL4

promoter, and plated on synthetic medium lacking histidine and

adenine. b-Galactosidase assay of three independent transformed

colonies was done in triplicates with ortho-nitrophenyl-b-D-

galactoside (ONPG). Presence of different form of CaZF in the

transformed colonies were confirmed by PCR and sequencing.

Gene disruption, Complementation and Transformation
of Yeast

Direct gene deletion of the target genes with the marker module

was done by PCR-based gene deletion strategy [72,73] using the

primers mentioned in Supplemental Table S1. HIS3 and TRP1

markers were amplified from plasmids pRS413 and pGBKT7

respectively. Correct deletion of the target genes was detected by

diagnostic PCR using whole yeast cells from isolated colonies and

a set of oligonucleotides designed to bind outside or inside of the

replaced target sequence and within the marker module.

Disruption of Hog1 gene was confirmed by Western Blot analysis

with Hog1p-specific antibody (Supplemental Figure S1). After

confirmation of the fidelity of the constructs by sequencing,

different yeast strains were transformed with constructed plasmids

or with empty pYES-2.1 by the Lithium-acetate/PEG method

[74]. Transformants were selected for uracil prototrophy by

plating on synthetic media lacking uracil (SC-Ura2). Ura+ colonies

were selected thereupon. For osmotolerance experiments and to

monitor the growth of mutant yeast strains complemented by

CaZF and/or truncated forms, drop tests were performed.

Yeast Spot Assay
For drop tests, overnight YPGal grown yeast cells were diluted

to OD600 = 0.4 in 2% Gal, 50 mM MES pH 5.5 and incubated for

3 h and then further serially diluted with YP to obtain 10, 102, 103

and 104 cells. Three microliters of each dilution was then spotted

onto YPGalRaf with/without NaCl, LiCl, KCl or sorbitol as

mentioned or onto complete synthetic uracil2 medium supple-

mented with 2% Gal, 0.2% sucrose and MnCl2 as indicated in the

figures. Plates were incubated at 30uC and unless otherwise

indicated, colony growth was inspected after 2–4 d.

RNA Isolation
Cells were grown in YPGalRaf at 30uC to late log/stationary

phase. Cultures were diluted to an OD600 of ca. 0.1 in YPGalRaf

medium, and then further grown at 30uC till OD600 reached to

0.5. Then the, cells were subjected to saline stress for different time

points as mentioned in figures. The saline stress was given by

suspending pelleted cells in salt-containing medium. After saline

stress, cells were centrifuged for 3 min at 7,000 rpm, and total

RNA was extracted from untreated cells or cells treated with NaCl

by using hot phenol method as described [75].

Northern and Western Blot Analyses
For Northern blot analysis, total RNA (20 mg/lane) was

electrophoresed on 1.2% agarose-formaldehyde gels and transferred

to positively charged nylon membranes (GE-Amersham, UK).

Membranes were hybridized at 60uC in the presence of hybridization

buffer (700 mM NaCl, 40 mM NaH2PO4;pH 7.6, 4 mM EDTA,

0.2% polyvinylpyrrolidone, 0.2% Ficoll, 0.1% SDS, 0.2 mg/ml

salmon sperm DNA) and 106 cpm/ml appropriate 32P-labeled DNA

fragment. DNA fragments containing the ORF of the following genes

were used as probes: CTT1 (YGR088W) from position +1 to +540

(0.54 kb), HSP12 (YFL014W) from position +1 to +330 (0.33 kb),

GPD1(YDL022W from position +1 to +540 (0.54 kb), GPP2/HOR2

(YER062C) from position +1 to +480 (0.48 kb), ENA1 from position

+90 to +1000 (0.91 kb) and STL1 (YDR536W) from position +40 to

+1032 (0.99 kb). Probes were labeled using the random-primed DNA

labeling kit (GE-Amersham, UK). Filters were washed in 0.16SSC

(16 SSC is 150 mM NaCl, 15 mM sodium citrate, pH 7.0), 0.1%

SDS at 55uC. Blots were exposed on Kodak X- Ray films. For

Western blot analysis, 20 mg of total cell lysate was analyzed by 12%

SDS-PAGE, subsequently transferred to Hybond-C membrane.

Specific proteins were detected using antibodies from Santacruz

Biotechnology and electrochemiluminiscence (ECL) kit from GE

Healthcare. c-Myc (9E-11) and Hog1p (yC-20) antibodies were used

to detect myc-tagged GalBD-CaZF and S. cerevisae Hog1p respec-

tively. Ponceau-S stained membranes were checked for equal protein

loading. For semiquantitative RT-PCR, 1 mg RNA was converted to

cDNA using Superscript Reverse Transcriptase (Invitogen). One-

tenth of the cDNA product was used for PCR amplification.

Amplified product was visible after 22 cycles. Primers used for CaZF

are (59ATGGCTTTAGAGTTAGAAGCTTTCAATTCTTC39;

59AGACGGATACAGTGTCGTTGAAGGCTGTGGATG 39)

and for actin are (59ATGGATTCTGAGGTTGCTGCTTTGGT-

TATT39; 59AAAGAGTAACCACGTTCACTCAAGATCTTC39).

Glycerol estimation
Overnight grown yeast cells in YPGal medium were diluted to

OD600 = 0.3 and grown for 4 h at 30uC. Then they were subjected

to increased osmolarity (500 mM NaCl). For glycerol measure-

ment, at time points indicated in the Figure. 7, 2 ml samples were

taken, boiled for 15 min and then centrifuged to remove cellular

debris. The supernatant was used for glycerol measurement by

using Free Glycerol Reagent (Sigma, USA) according to the

manufacturers’ instructions. Assay was done with three indepen-

dent experimental repeats. Glycerol accumulation was expressed

in mg/ml (equivalent to triloen content).

CTT1-LacZ b-galactosidase assay
Wild type BCY123 or hog1 yeast cells were cotransformed with

pYES-CTT1-LacZ construct containing a 800 bp (2137 to 2937)

upstream region of CTT1 fused to LacZ and pGBKT7-CaZF

construct expressing full length or truncated form of CaZF cDNA.

Three independent transformants were grown to late log phase in

SD medium without uracil and histidine. Cells were collected and

re-suspended in YPD medium to an OD of 0.2–0.3. Growth was

assumed until A600 of 0.5–0.7. Cells were harvested and

resuspended in YPD with or without salt (500 mM NaCl) for

30 min. Cells from three independent transformants were

collected and assayed for b-galactosidase activity as described

above.

Electrophoresis mobility shift assays
Recombinant CaZF protein was expressed in E. coli DH5a as

GST-fused proteins and purified by GST-agarose columns. Gel-

shift assays were performed with 10,000 c.p.m. of 32P-end-labeled

probe A, a dimer of CTTTTTCAAGGGGATCACCGG-

TAAGGGGCCAAG (STRE sequences are underlined) or mutated

probe M1, a dimer of CTTTTTCAAGGaGATCACCGGTAAG-

GaGCCAAG or probe M2, a dimer of CTaTTTCAAGGGGAT-

CACCGGTAAGGGGCCAAG (mutated bases are in bold lower

case letters). After incubation for 20 min at room temperature, the

mixtures were subjected to electrophoresis in 8% polyacrylamide gel

as described previously [70].
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Supporting Information

Figure S1 Detection of Hog1p. Hog1p was detected in S.

cerevisiae BCY123 (WT) and the corresponding hog1 mutant

strain by Western Blot with Hog1p-antibody (yC-20, sc-6815).

Blotted membrane stained with Ponceau-S is shown for equivalent

loading of protein (20 mg)

Found at: doi:10.1371/journal.pone.0005154.s001 (9.28 MB TIF)

Table S1 Oligonucleotides used in this study

Found at: doi:10.1371/journal.pone.0005154.s002 (0.07 MB

DOC)
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