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Abstract

Background: Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of
treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency,
efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a
susceptible murine model.

Methods and Findings: To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost
(HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression
vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses
and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively
enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection.
Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-c, IL-12, nitric oxide, IgG2a/IgG1
ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA
either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of
protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and
splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this
study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against
VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against
Leishmania major infection.

Conclusion/Significance: HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral
responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results
emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in
maintaining long-term immunity against intracellular pathogen like Leishmania.
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Introduction

Leishmaniasis comprise of several diseases caused by a

unicellular, digenetic and most genetically diverse protozoan

parasites belonging to the genus Leishmania. The clinical manifes-

tations range from the self-limiting cutaneous infections to

overwhelming visceral disease. There are approximately 1.5

million cases of cutaneous leishmaniasis (CL) and 500,000 visceral

leishmaniasis (VL) cases per year [1,2]. Furthermore, the clinical

manifestations of human leishmaniasis depend on the infective

parasite species as well as on the host immune response. Current

control measures rely on chemotherapy, vector control and

control of reservoir host populations. The chemotherapeutic

agents used presently are expensive, toxic and emerging drug

resistance [3]. For these reasons, reinforced measures for

leishmaniasis control, particularly by the development of an

affordable and effective vaccine is highly recommended.

Genetic immunization is a relatively new tool for achieving

specific immune activation with several advantages such as

expression of concerned genes nearest to its native form, induction

of cellular immune response, persistent expression of desired

antigen (Ag) and induction of memory responses against the

infectious disease [4]. Moreover, host cells take up coding

plasmids, transcribe and translate the encoded gene, and produce

protein that stimulates an immune response when presented to the

immune system in the context of self-MHC [5–7]. Notably,

vaccination with plasmid DNA has been shown to induce

protective immunity through both MHC class I- and class II-

restricted T cell responses in a variety of infections [8–10].

Therefore, the plasmid DNA encoding specific Ag induced both
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CD4+ and CD8+ T cells, which is essential for protection against

intracellular diseases that require cell mediated immunity like

leishmaniasis [11]. Although DNA vaccines have proved effective

in the murine system, they are far less protective despite the high

doses used in humans [12–14]. On the other hand, protein based

vaccination induces CD4+ T cells probably through MHC-class II

restricted pathway resulting in enhanced humoral responses.

Despite these advantages, a major limitation in protein vaccination

is their inability to elicit strong, durable immune responses when

administered alone. Although substantial progress has been

obtained toward the effective vaccination strategy, most of the

responses they exhibited were short-lived. One promising

approach towards the development of potential vaccine candidate

in maintaining strong and durable immunity is the ‘‘prime-boost’’

strategy in which immune response is primed with a plasmid DNA

and subsequently boosted with either a protein Ag or with a

modified viral vector expressing the same Ag [15]. When mice

primed with DNA vaccine and later received the same Ag in the

form of recombinant protein as boost, production of Th1-type

cytokines was increased significantly, as was the IgG2 to IgG1

ratio [15]. In addition, heterologous prime-boost (HPB) vaccina-

tion strategy has gained significant momentum against wide ranges

of diseases include malaria [16], tuberculosis [17], influenza [18],

and HIV [19]. Previous attempts to enhance the protective

immune responses against experimental murine leishmaniasis were

successful using HPB vaccination strategy [20,21]. Several

leishmanial Ags have been examined as vaccine candidates against

murine VL model in prime-boost approach, such as, ORFF [22],

CPs [23], and LACK [24]. Moreover, comparative vaccine

potential of DNA, protein or HPB vaccination were evaluated

against cutaneous form of leishmaniasis in murine model [25].

While all of these studies have resulted in some degree of efficacy,

long-term protection (LTP) has rarely been observed. Therefore,

in an attempt to examine these findings, to compare the vaccine

efficacies and evaluate the durability of such vaccine regimens, we

selected gp63 in its DNA and a recombinant form as a vaccine

candidate against VL infection.

gp63, a highly conserved protein, is abundantly expressed in

promastigotes, and considered the major Ag determinant

recognized by the serum samples of patients obtained from

different clinical forms of leishmaniasis [26,27]. Moreover, gp63

has an intrinsic ability to stimulate protective immunity and is a

promising vaccine candidate against leishmaniasis. In our previous

study, we observed gp63 from Leishmania donovani when entrapped

within cationic liposomes elicited sustained immune responses

against experimental VL [28]. In the present study, we have

evaluated the protective and durable immunity raised through

gp63 by different vaccination strategies: DNA/DNA, DNA-

prime/Protein-boost, Protein/Protein in the susceptible BALB/c

mice against experimental VL using CpG-ODN as adjuvant. In

addition, we validated the efficiency of the gp63-based vaccine

against Leishmania major infection in BALB/c mice.

Materials and Methods

Animals and parasites
BALB/c mice 4–6 weeks old, reared in the animal care facility

under pathogen free conditions were used, for experimental

purposes. The studies were approved by the IICB Animal Ethical

Committee (147/1999/CPSCEA) and the animals were handled

according to their guidelines. L. donovani strain AG83 (MHOM/

IN/1983/AG83) was maintained by passage in Syrian Hamsters.

Promastigotes were cultured in Medium 199 supplemented with

penicillin G sodium (100 U/ml), streptomycin sulphate (100 mg/

ml) and 10% heat inactivated fetal bovine serum (FBS) (Sigma-

aldrich, St. Louis, MO). Parasites from stationary-phase culture

were sub-cultured to maintain an average density of 26106 cells/

ml [29]. L. major parasites (5ASKH) were grown in Medium 199

supplemented with penicillin G sodium (100 U/ml), streptomycin

sulphate (100 mg/ml) and 20% heat inactivated FBS at 22uC.

Plasmid construction
The gene encoding full-length gp63 of L. donovani (GenBank

accession number GQ301544) was subcloned from pET16b in

frame into pcDNA 3.1 (2/2) (Invitrogen, San Diego, CA) at the

BamHI/HindIII restriction sites. The full length gp63 was

amplified with gp63-specific primers. The primers used were 59

CGG GAT CCG GTA TGG GAT CCG TGG ACA GCA GCA

GCA CG (forward), and 59 CCC AAG CTT CTA GAG CGC

CAC GGC CAG CAG CGC (reverse) in a Thermocycler (Gene

Amp PCR System 9700; Applied Biosystems) using pfx Taq DNA

polymerase (Invitrogen). PCR conditions were one cycle of 5 min

at 94uC, 40 cycles of 1 min at 94uC, 1 min 20 s at 59.5uC, and

2 min at 72uC, followed by a final cycle of 7 min at 72uC.

Amplified PCR product was electrophoresed in agarose gel and

eluted from the gel (QIA quick gel extraction kit, Qiagen,

Valencia, CA). The eluted product was subsequently cloned into

mammalian expression vector pcDNA3.1 (2/2) and transformed

into competent Escherichia coli DH5a cells. The transformants were

screened for the presence of recombinant plasmids in presence of

ampicillin (Himedia, Mumbai, India). Isolated positive clones were

sequenced by DNA sequencer (ABI Prism, Model 377; Applied

Biosystems). Recombinant plasmids were then maintained and

propagated in DH5a E. coli. Endotoxin-free plasmid DNA was

isolated using Endo-free plasmid isolation kit (Qiagen) and used

for in vitro transfection and vaccination studies in BALB/c mice.

Transfection of plasmid constructs and Western blot
CHO-S cells (a gift from Dr. Shiv Sankar Roy) were maintained

in RPMI-1640 medium (Invitrogen) supplemented with 10% FBS.

The expression of gp63 was detected in mammalian cell by

transfecting pcDNA3.1-gp63 construct in CHO-S cell using

lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions with slight modifications. Briefly, CHO-S cells were

cultured at 16106 per well in 6-well plates to produce 85–90%

confluence on the day of transfection. Lipofectamine 2000 and

both pcDNA3.1 vector and pcDNA3.1-gp63 construct were

diluted in serum-free Opti-MEM media (invitrogen) at 17 ml/

250 ml and 8 mg/250 ml, respectively. The diluted lipofectamine

2000 and plasmid DNA were mixed together and incubated for

25 min at room temperature. The mixture was then added drop

wise onto the cell under gentle rocking condition, and incubated

for 45 min at room temperature. The transfected cells were

incubated 4–6 h at 37uC with 5% CO2. 1 ml of RPMI-1640

complemented with 10% FCS was added. The media was

replaced 24 h later with fresh media and transfected cells were

maintained in presence of 250 mg/ml of G418.

The lysate of stably transfected CHO-S cells was prepared and

subjected to SDS-PAGE. Thereafter, the protein bands were

electrophoretically transferred to PVDF membrane. To detect the

expressed protein, a primary polyclonal antibody against native

gp63 [28] was used at 1:1000 dilution followed by 1:1000 dilution

of HRP-conjugated goat anti-rabbit IgG secondary antibody

(Bangalore Genei, Bangalore, India).

Expression and purification of rgp63
The full-length gp63 was successfully cloned into pET16b vector

(Novagen, Madison, USA) previously. For expression of rgp63, E.

Long-Term Protection with gp63
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coli BL21 (DE3) pLysS was transformed with pET16bLdgp63 and

the construct was grown in 1 L culture medium at 37uC until

OD600 nm 0.6 was reached. Protein production was then induced by

adding isopropyl b-D-thiogalactoside (IPTG) to a final concentra-

tion of 0.5 mM, and incubating for an additional 4 h at 23.5uC.

The culture was then harvested by centrifugation at 5,000 g, for

5 min, at 4uC, and the cell pellet was resuspended in 6 ml of

resuspension buffer (25 mM Tris-HCl, 500 mM NaCl, and 1 mg/

ml of Lysozyme, pH 8.0). The cell lysate was sonicated on ice for

5 min with 1 min pulse and 1 min interval between pulses using an

ultrasonicator (Misonix, Farmingdale, NY, USA). The sonicated

lysate was then centrifuged at 14,000 g for 25 min at 4uC and the

pellet containing inclusion bodies was solubilised with 5 ml of

solublization buffer (25 mM Tris-HCl, 500 mM NaCl, 8 M urea,

pH 8.0), kept at room temperature for 30 min and centrifuged at

12,000 g for 25 min. The supernatant containing solubilised protein

was loaded onto Ni2+-nitrilotriacetic acid-agarose (Ni-NTA) column

(Qiagen) and purified under denaturing condition. The agarose

column was pre equilibriated with equilibriation buffer (25 mM

Tris-HCl, 500 mM NaCl, 10 mM imidazole, 8 M urea, pH 8.0).

The column was washed with wash buffer (25 mM Tris-HCl,

500 mM NaCl, 50 mM imidazole, 8 M urea, pH 8.0) and eluted

with elution buffer (25 mM Tris-HCl, 500 mM NaCl, 500 mM

imidazole, 8 M urea, pH 8.0). To refold, the purified materials were

diluted 2 fold in dilution buffer containing 25 mM Tris-HCl,

500 mM NaCl, 500 mM imidazole, pH 8.0, and then dialyzed

against 25 mM Tris-HCl, 250 mM NaCl, pH 8.0 with decreasing

concentration of urea and imidazole. The recombinant proteins

were concentrated by Amicon ultrafiltration using a 10-kDa cutoff

membrane, exchanged with 25 mM Tris-HCl, 200 mM NaCl,

pH 8.0, and finally stored at 270uC. Protein concentrations were

determined by Lowry method [30]. Purity and homogeneity of

purified proteins was checked by using SDS-PAGE, and the gel was

subsequently stained with silver nitrate.

Immunization of mice and challenge infection
For immunization, BALB/c mice were injected intramuscularly

(i.m.) in the hind leg thigh muscle with 50 mg (in 50 ml of PBS) of

pcDNA3.1 (2/2) (only vector) or pcDNA3.1-gp63 or PBS. In

some groups, CpG-ODN-1826 (20 mg) was used as an adjuvant in

combination with plasmid construct. The oligodeoxy nucleotide

was synthesized with a nuclease resistant phopshorothioate

backbone (Imperial Life Sciences, Haryana, India) and the

sequence was 59 TCC ATG ACG TTC CTG ACG TT 39. This

ODN contained two copies of a CpG motif known to have potent

immunostimulatory effects on the murine system [31].

There were two groups in which mice received DNA vaccine

either alone (36gp63 DNA) or in presence of CpG-ODN (36gp63

DNA+CpG). For immunization with protein, mice were injected

through subcutaneous (s.c.) route with 5 mg of rgp63 in combination

with 20 mg of CpG-ODN (36 rgp63+CpG). In the heterologous

group, mice were primed with two injections of pcDNA3.1-gp63

construct plus CpG, and boosted once with rgp63 plus CpG (26
gp63 DNA+CpG/rgp63+CpG). In some experiments, mice were

immunized with either CpG-ODN or rgp63 alone.

For all immunization study, all groups were boosted twice at 2-

week intervals. Ten days and twelve weeks after the final booster

mice were challenged with 2.56107 freshly transformed stationary

phase L. donovani promastigotes in 200 ml PBS injected intrave-

nously as described earlier [29]. For cutaneous infection, 26106

stationary phase L. major promastigotes were injected subcutane-

ously in the hind footpad. Weekly footpad swelling measurements

were recorded using caliper (Starrett Company, Athol, MA).

Measurement of delayed type hypersensitivity responses
(DTH)

DTH response was determined by measuring the difference in

the footpad swelling at 24 h following inoculation of the test

footpad with 25 ml of rgp63 (200 mg/ml) from that of the control

(PBS-injected) footpad with a constant pressure caliper [29].

Determination of antibody responses
Serum samples of individual mice were obtained before

infection, at ten days post vaccination for short-term and twelve

weeks post-vaccination for long-term, and after infection, 3

months post challenge for both short and long-term studies. Sera

of individual mice were assayed for the presence of gp63-specific

IgG1, IgG2a antibodies using enzyme-linked immunosorbent

assay (ELISA) as described earlier [29]. In brief, 96-well microtiter

plates (Nunc, Naperville, IL) were coated with rgp63 (5 mg/ml)

and blocked to prevent nonspecific binding. The plates were then

incubated with sera at a 1:200 dilution, followed by horseradish

peroxidase (HRP)-conjugated goat IgG1, and IgG2a (1:1,000) (BD

Pharmingen, San Diego, CA). The color reaction was developed,

and the absorbance was read in an ELISA plate reader (Thermo,

Waltham, MA) at 450 nm [29].

Cell proliferation and cytokine assays
Spleens were removed aseptically from experimental mice at the

indicated time before and after infection, and the single cell

suspensions were prepared in RPMI-1640 supplemented with

penicillin G sodium (100 U/ml), streptomycin sulphate (100 mg/

ml) and 10% heat inactivated FBS and 50 mM mercaptoethanol

(Sigma-Aldrich, St. Loius, MO). Erythrocytes were removed by

lysis with 0.14 M Tris-buffered NH4Cl. The splenocytes were

washed twice and resuspended in the culture medium, and viable

mononuclear cell numbers were determined by trypan blue

exclusion [32]. The cells were then cultured in triplicate in a 96

well flat bottom plate (Nunc, Roskilde, Denmark) at a density of

26105 cells/well in a final volume of 200 ml complete medium

and stimulated with rgp63 (5 mg/ml). Cells were incubated at

37uC in a humified chamber containing 5% CO2. For cytokine

analysis, cells were stimulated for 96 h, and supernatants were

collected and the concentrations of of IFN-c, IL-4, IL-12(p40) and

IL-10 (BD Pharmingen,) were quantitated by ELISA in accor-

dance with the manufacturer’s instructions [32].

For blocking experiments, aliquots of viable splenocyte cells

were incubated with anti-CD4 and anti-CD8 monoclonal

antibodies (mAbs) or the respective control IgGs for 1 h at 4uC
and washed twice in complete medium. The efficiency of blocking

was checked by flow cytometry. Almost 93% of CD4+ and 75% of

CD8+ T cells were blocked through this procedure. Total, and

CD4- or CD8-blocked splenocytes [33] were stimulated in vitro

with medium alone or with rgp63 (5 mg/ml) for 96 h.

For cell proliferation assay, the cells were incubated for 96 h

and pulsed with 1 mCi of [3H]-Thymidine (Amersham Bioscienc-

es, Buckinghamshire, UK) per well 18 h before they were

harvested on glass fiber paper. Thymidine uptake was measured

in a b-scintillation counter (Beckman Instruments, Fullerton, CA)

[34].

Measurement of NO production
Nitric oxide (NO) levels, quantified by the accumulation of

nitrite in the culture medium, were measured as described

previously [32]. Briefly, 100 ml of splenocyte culture supernatants

were mixed with an equal volume of Griess reagent (1%

sulfanilamide and 0.1% N-1-naphthylethylene diamine hydrochlo-

Long-Term Protection with gp63
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ride in 50% H3PO4) and incubated at room temperature for

10 min. Absorbance was then measured at 540 nm.

Evaluation of parasite burden in liver and spleen
Following 3 months post-challenge infection in both short-and

long-term studies, parasite load was evaluated by limiting dilution

assay (LDA) with slight modifications [35]. Briefly, a weighted

piece of liver or spleen from an experimental mouse was

homogenized in complete Schneider’s Drosophila medium

(Invitrogen, Grand island, USA) containing 10% heat inactivated

FBS and diluted with the same medium to a final concentration of

1 mg/ml. Five-fold serial dilutions of homogenized tissue suspen-

sions were then plated in a 96-well tissue culture plates (Nunc,

Roskilde, Denmark) and were cultured for one month at 22uC.

Wells were examined for viable and motile promastigotes at 5 day-

interval, and the reciprocal of the highest dilution that was positive

for parasites was considered to be the concentration of parasites

per mg of tissue. The total organ burden was calculated using the

weight of the respective organs.

Statistical analysis
One-way ANOVA analysis (Multiple comparisons Tukey’s post

hoc test) was performed using the GraphPad InStat software. A

value of p,0.05 was considered to be significant.

Results

Construction of full-length gp63 gene in mammalian
pcDNA3.1 (2/2) expression vector, its expression into
CHO cell line, and expression and purification of rgp63 in
E. coli strain

Full length GP63 was successfully subcloned in right orientation

under the mammalian expression vector pcDNA3.1 (2/2). The

positive clones were selected by using PCR and restriction enzyme

digestion analysis (Figure 1A), and the PCR product was further

sent for sequence analysis. The recombinant plasmids were then

transfected into the CHO cell line and the expression at the

protein level was confirmed by western blot analysis using anti-

gp63 antibody raised in rabbits (Figure 1B). The results showed

that the recombinants were correctly constructed and could be

expressed in mammalian cell line.

The over expressed protein from E. coli BL21 (DE3) pLysS cells

harboring plasmid pET16bLdgp63 was purified through Ni+2-

NTA agarose column under denaturing conditions. The recom-

binant protein was refolded, dialyzed and finally concentrated

using Amicon ultrafiltration 10-kDa cut-off membrane. The yield

of purified protein was approximately 0.5 mg per liter of culture.

Analysis of the purified rgp63 showed that the protein was

essentially homogeneous (Figure 1C).

Humoral responses
Since the outcome of VL may be determined by the extent of

immune system activation, it was highly important to characterize

the changes in the immunoglobulin ratios after immunization. It is

well established that the cytokines such as IFN-c and IL-4 direct

immunoglobulin class switching of IgG2a and IgG1, respectively.

We therefore analyzed rgp63-specific production of these

antibodies before infection. Although very low levels of IgG2a

and IgG1 titers in all vaccinated group was observed, sera from

mice immunized with HPB regimen showed significantly en-

hanced IgG2a (p,0.001), a surrogate marker for Th1, (Table 1) in

comparison to gp63 DNA vaccinated groups in short-term study.

This humoral response was maintained till twelve weeks after

vaccination, and reached levels that were significantly higher than

groups of mice receiving rgp63 along with CpG (Table 2)

(p,0.001). Moreover, IgG1, a surrogate marker for Th2 cell

differentiation, was elevated particularly in HPB vaccine groups

and mice receiving rgp63 and CpG in both short-and long-term

studies (Table 1 and 2). Therefore, mice vaccinated either

heterologously or homologously using protein based vaccination

with CpG- ODN were able to elicit mixed Th1/Th2 responses

before infection.

Next, we investigated IgG2a and IgG1 titers in all the

vaccinated mice following challenge with L. donovani. After

Figure 1. Cloning and expression of L. donovani gp63 in mammalian expression vector and purification from E. coli. (A) Clone
confirmation of gp63 in pcDNA3.1 (2/2) vector. M, lDNA digested with HindIII marker; lane 1, PCR of cloned construct; lane 2, BamHI/HindIII
digested pcDNA3.1-gp63 construct. (B) Expression of gp63 in transfected CHO cell line. Lane 1, western blot of pcDNA3.1-gp63 transfected construct
in CHO cell line; lane 2, western blot of pcDNA3.1 transfected vector in CHO cell line. (C) Silver nitrate staining of 10% SDS-PAGE, M, molecular mass
marker; lane 1, Purified recombinant gp63.
doi:10.1371/journal.pone.0014644.g001
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challenge infection, although mice immunized with rgp63 plus

CpG-ODN showed enhanced IgG2a and IgG1 titers, mice

vaccinated with either gp63 DNA alone or in association with

CpG-ODN or DNA-prime/Protein-boost slightly induced the

levels of IgG2a and IgG1 (Table 1 and 2). In the LTP study, twelve

weeks after final vaccination and at 3 months post-infection, only

gp63 DNA immunization increased IgG2a titer by 2.3 fold and

incorporation of CpG motifs to the gp63 DNA vaccination

increased the titer by 2.56 fold (Table 2). Most surprisingly, almost

4.22 fold IgG2a titer was obtained in mice receiving rgp63 along

Table 1. Ag-specific IgG isotype responses in mice vaccinated with different vaccine regimens in short-term protected group (ten
days post boost) before and 3 months after L. donovani challenge infection.

Time points
Vaccination groups (Short-term
protection) Antibody titer (O.D at 450 nm)

Serum IgG2a Serum IgG1 Ratio of serum IgG2a/IgG1

Before infection PBS 0.08960.1 0.09660.01 0.92660.04

Only Vector 0.09560. 0 0.10160.01 0.94060.05

36gp63 DNA 0.18360.01 0.12360.01 1.53160.22

36gp63 DNA + CpG 0.20560. 17 0.14460.01 1.34060.14

26gp63 DNA + CpG/rgp63 + CpG 0.360. 01a 0.18060.02 1.76560.28

36 rgp63 + CpG 0.25260.02 0.16760.01 1.53860.27

Post-infection PBS 0.14760.02 0.13560.02 0.92260.29

Only Vector 0.12760.01 0.13760.02 0.98360.14

36gp63 DNA 0.20860.01 0.10760.01 2.04260.27

36gp63 DNA + CpG 0.26860.01 0.11860.01 2.36560.18

26gp63 DNA + CpG/rgp63 + CpG 0.34360.02 0.11160.0 3.17660.24c

36 rgp63 + CpG 0.57560.02b 0.25860.01b 2.24460.16

Ten days after final immunization and 3 months after challenge infection, blood serum samples were collected and assayed for IgG2a, IgG1, and IgG2a:IgG1 by ELISA.
The results are shown as the mean absorbance values 6 S.E. of five individual mice per group, representative of two independent experiments with similar results.
p values were calculated using one-way ANOVA and Tukey’s multiple comparison test.
aSignificantly higher than gp63 DNA either free or in presence of CpG (p,0.001).
bSignificantly higher than DNA-prime/Protein-boost (p,0.001).
cSignificantly higher than gp63 DNA (p,0.05).
doi:10.1371/journal.pone.0014644.t001

Table 2. Ag-specific IgG isotype responses in mice vaccinated with different vaccine regimens in long-term protected group
(twelve weeks post boost) before and after 3 months L. donovani challenge infection.

Time points
Vaccination groups (Long-term
protection) Antibody titer (O.D at 450 nm)

Serum IgG2a Serum IgG1 Ratio of serum IgG2a/IgG1

Before infection PBS 0.08460.01 0.09660.01 0.87760.06

OV 0.09760.0 0.10560.0 0.76060.17

36gp63 DNA 0.14760.01 0.12360.01 1.19360.07

36gp63 DNA + CpG 0.17760.01 0.13960.01 1.28260.01

26gp63 DNA + CpG/rgp63 + CpG 0.30960.018b 0.20260.01a 1.53460.08

36 rgp63 + CpG 0.22160.01 0.18660.0 1.18460.04

Post-infection PBS 0.11960.0 0.16560.01 0.65460.14

OV 0.12860.0 0.17560.0 0.73160.03

36gp63 DNA 0.30460.01 0.10360.01 3.06160.32

36gp63 DNA + CpG 0.45660.05 0.12860.02 3.71060.44

26gp63 DNA + CpG/rgp63 + CpG 0.54860.03 0.13360.02 4.56260.74

36 rgp63 + CpG 0.93560.04c 0.33360.05c 3.01160.34

Twelve weeks after final immunization and 3 months after challenge infection, blood serum samples were collected and assayed for IgG2a, IgG1, and IgG2a:IgG1 by
ELISA. The results are shown as the mean absorbance values 6 S.E. of five individual mice per group, representative of two independent experiments with similar
results. p values were calculated using one-way ANOVA and Tukey’s multiple comparison test.
aSignificantly higher than gp63 DNA either free or in presence of CpG (p,0.001).
bSignificantly higher than gp63 DNA either alone or in association with CpG, and rgp63 plus CpG (p,0.001).
cSignificantly higher than DNA-prime/Protein-boost (p,0.001).
doi:10.1371/journal.pone.0014644.t002
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with CpG. Although protein based vaccination induced substantial

IgG2a responses after challenge infection, the IgG2a/IgG1 ratio

before and after infection in mice vaccinated with rgp63 plus CpG

and DNA-prime/Protein boost were 1.1860.04 and 3.0160.34

and 1.53460.085 and 4.56260.74 respectively, in long-term

experiments (Table 2).

Delayed type hypersensitivity and splenocyte
proliferation

To verify the generation of cellular immune responses in DNA/

DNA, DNA/Protein and Protein/Protein based vaccination

against experimental VL, we used gp63 vaccine in its various

forms in association with a TLR9 agonist, CpG-ODN.

DTH, an index of cell mediated immunity in vivo, and an Ag-

specific in vitro T cell proliferation assay revealed the status of

cellular responses generated in vaccinated animals. We were

therefore interested to see the DTH and proliferative responses

elicited by vaccinated and challenged animals. BALB/c mice

immunized heterologously showed significantly higher DTH

responses compared to mice vaccinated with gp63 DNA alone

or rgp63 mixed with CpG (p,0.05) before infection in both short-

as well as long-term experiments (Figure 2A and B). Moreover,

Ag-specific proliferative responses elicited by HPB vaccination

regimen was significantly (p,0.001) higher in comparison to mice

vaccinated with only gp63 DNA and protein plus CpG vaccinated

group in both types of protection study (Figure 2C and D). The

specificity of the responses after gp63 vaccination was tested using

gp63-non related protein such as Cysteine Protease A (CPA) of L.

donovani. Inoculation of test footpad of BALB/c mice or in vitro

splenocytes pulsing with recombinant CPA (rCPA) confirmed that

the responses generated herein were specific to gp63 and not to

other gp63 non-related protein, rCPA (data not shown).

Challenge with L. donovani induced enhanced DTH responses

and rgp63-specific T cell proliferation in all vaccinated mice.

Among the different vaccinated groups, mice receiving heterolo-

gous immunization exhibited the highest degree of both DTH and

proliferative response of splenocytes compared to mice vaccinated

with gp63 DNA alone or rgp63 in association with CpG in short-

term protection (STP) study (Figure 2E and G).

In the long-term, the proliferative responses of splenocytes from

heterologously vaccinated mice increased from 96006578.8 cpm

to 115466610.8 cpm after challenge infection suggesting that

DNA-prime/Protein-boost regimen induced long-term cellular

responses compared to all vaccinated mice (p,0.001) (Figure 2D

and H). Therefore, vaccination with DNA-Prime/Protein-boost

showed highest Ag-specific DTH and proliferative responses in

comparison to either DNA/DNA or Protein/Protein vaccination

before and after L. donovani challenge infection.

Cytokine responses
It is well established that the cytokine milieu at the initiation of

infection is critical in determining disease outcome [36-37]. So to

understand the interplay between the disease healing inflamma-

tory cytokines IFN-c, and IL-12 and disease associated cytokines

IL-10 and IL-4, we sought to investigate Ag-specific in vitro

production of cytokines before and after challenge infection in

both STP and LTP studies.

Mice immunized with different forms of gp63 vaccines induced

IFN-c before infection (Figure 3A and B). Addition of CpG to

gp63DNA resulted in enhancement of IFN-c production from

(96.669.516) pg/ml to (155.8610.92) pg/ml in STP study

(Figure 3A). Therefore, addition of CpG to gp63 DNA skewed

the response towards Th1 type. Furthermore, HPB regimen

secreted significantly higher levels of IFN-c (27567.8 pg/ml) in

comparison to mice receiving rgp63 in association with CpG or

gp63 DNA either alone or in combination with CpG. These

responses were almost maintained after twelve weeks post-

vaccination (Figure 3B). The IFN-c responses in splenocytes

measured after L. donovani challenge also demonstrated that there

was a higher IFN-c for DNA-prime/Protein-boost vaccination

than in others (Figure 3C and D). Therefore, the in vitro

restimulation with rgp63 at twelve weeks after booster vaccination

demonstrated that there was induction of IFN-c responses in HPB

regimen more significantly compared to other vaccinated

strategies. We then analyzed, the contribution of CD4+ and

CD8+ T cells to the rgp63-specific production of IFN-c in vitro. As

shown in figure (3E and F) cytokine synthesis induced by rgp63 in

DNA based vaccine was mainly inhibited by mAb to CD8+ T cells

and partially inhibited by anti-CD4+ mAb. In contrast, production

of IFN-c mainly inhibited by anti-CD4+ Ab and partially by anti-

CD8+ Abs in mice vaccinated with rgp63 along with CpG.

However, in DNA-prime/Protein-boost based vaccination, con-

tribution of both these cell types was involved.

Similar pattern was observed also in IL-12 production

(Figure 4A-D). Highest IL-12 production was observed in mice

vaccinated with DNA-prime/Protein-boost group, which was

significantly higher in mice vaccinated with either gp63 alone

(p,0.001), or in combination with CpG (p,0.05), or rgp63 in

association with CpG (p,0.001) in both short and long-term

studies before challenge infection (Figure 4A and B). After

challenge infection, the level of IL-12 was enhanced further in

all vaccinated groups of mice in both STP and LTP experiments

(Figure 4C and D) and the level of IL-12 production in HPB

regimen was significantly higher than all the other vaccinated

groups. Moreover, HPB vaccination increased IL-12 levels by 1.34

fold and 1.58 fold in both short-and long-term protected group

after Leishmania challenge.

However, before and after infection, the levels of IL-4, an

established Th2 cytokine, was significantly higher in mice

vaccinated heterologously compared to mice receiving gp63

DNA alone (p,0.001), or in association with CpG (p,0.01) and

rgp63 plus CpG (p,0.001) (Figure 4E and F). Conversely, level of

expression of Th1 suppressive cytokine, IL-10 was unaffected in

vaccinated mice compared to controls (Figure 4I and J).

At 3 months post-infection, both STP and LTP studies revealed

that mice vaccinated with HPB vaccination could significantly

down regulate IL-4 in comparison to controls (p,0.01) (Figure 4G

and H). In case of challenge infection, HPB regimen showed

almost 2.35 fold and 2.28 fold reductions in IL-4 in STP and LTP

studies respectively compared to control PBS. Similarly, mice

prophylactically immunized with DNA-prime/Protein-boost re-

sulted in 2.56 fold and 3.5 fold decreased IL-10 secretion

compared to control after L. donovani infection in both short as

well as long-term studies respectively. Furthermore, down

regulation of IL-10 production from splenocytes of HPB regimen

was significantly lower than group of mice receiving rgp63 plus

CpG or gp63 DNA alone, in the long-term (p,0.05) (Figure 4L).

Hence the results demonstrate generation of early mixed Th1/

Th2 responses before infection, followed by strong Th1 biased

response in mice receiving DNA-prime/Protein-boost vaccine

after L. donovani challenge. Therefore, the vaccination strategies

employed with either DNA/DNA or Protein/Protein in presence

or absence of CpG have resulted weaker cellular responses than

DNA-prime/Protein-boost before and after challenge infection.

Measurement of NO
NO is the critical killing effector molecule against leishmaniasis

produced by IFN-c stimulated and inducible NO synthase-
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induced classical macrophages. To evaluate the killing effector

functions of prophylactic DNA/DNA, DNA-prime/Protein-boost,

Protein/Protein based approach in vaccinated and challenged

mice, NO was determined from splenocyte culture supernatant.

Spleen cells from PBS, only vector, gp63 DNA, gp63 DNA mixed

with CpG, HPB regimen, or rgp63 mixed with CpG-immunized

mice before and after infection in both short as well as long-term

protected groups were stimulated with rgp63 and supernatants

were tested for NO assay (Figure 5). We found that HPB regimen

showed considerably highest (18.5 and 17.4 mM) nitrite production

in short and long-term studies, before challenge infection. The

response was significantly higher than mice vaccinated with either

gp63 DNA alone (p,0.001), or gp63 DNA mixed with CpG

(p,0.05), and rgp63 associated with CpG (p,0.001) (Figure 5B) in

the long-term study. Moreover, after challenge infection, the HPB

regimen showed 22.6 and 25 mM nitrite production in both short

and long-term studies respectively. HPB regimen, therefore

showed highest magnitude of NO production which was

significantly higher than other vaccinated groups of mice

(p,0.001) (Figure 5C and D) and maintained till twelve weeks

post-vaccinated mice receiving L. donovani challenge infection.

Determination of splenic and liver parasite load following
challenge infection with L. donovani

Because HPB regimen showed impressive humoral and cellular

immune responses in comparison to other vaccinated groups, we

were interested to check the prophylactic efficacies of DNA/DNA,

DNA-prime/Protein-boost and Protein/Protein vaccines on the

clearance of splenic and hepatic parasite burden following

challenge infection. Fig. 6 illustrates the outcome of challenge

infection in BALB/c mice challenged either after ten days and

twelve weeks after last boosting and progression of infection was

monitored at 3 months. The degree of protection was quantified in

liver and spleen through serial dilution assay, which is more

reliable for monitoring low parasite loads as well as viable

parasites. Mice vaccinated with different vaccine formulations with

gp63 DNA showed comparable levels (almost 105–6 fold reductions

compared to PBS control, p,0.001) of protection against the

development of parasite burden in the liver of STP study

(Figure 6A). However, only 103 fold reduction (compared to

PBS, p,0.001) in hepatic parasite load was achieved in mice

vaccinated with rgp63 and CpG. Surprisingly, the parasite

clearance in the spleen was efficiently achieved by all the

vaccinated mice in STP study (Figure 6B). Mice vaccinated with

different gp63 DNA vaccine regimens showed comparable levels

(1011 fold reductions in parasite load compared to PBS, p,0.001)

of parasite clearance in spleen. However, almost 107-fold

reduction in parasite load was also obtained in mice vaccinated

with rgp63 mixed CpG, compared to control saline (p,0.001).

To evaluate the durability of the immunity induced by DNA/

DNA, DNA-prime/Protein-boost and Protein/Protein vaccines,

the length of protection was determined by examining the

responses to challenge infection at twelve weeks after booster

vaccination, sacrificed 3 months post-infection, and the parasite

load was again determined through serial dilution. Our data

demonstrate that, mice vaccinated heterologously showed signif-

icantly higher reduction in hepatic parasite load (almost 107 fold

compared to control PBS, p,0.001) in comparison to either only

gp63 DNA (p,0.001), or DNA mixed with CpG (p,0.01) and

rgp63 mixed with CpG (p,0.001) (Figure 6C). Similar responses

were observed in clearing parasites in spleen. HPB regimen

showed highest reduction in parasite load (almost 1010 fold

reduction compared to PBS, p,0.001) in comparison to gp63

DNA either alone or in association with CpG (p,0.001) or rgp63

mixed with CpG (p,0.001) (Figure 6D). Interestingly, mice

vaccinated heterologously, showed a hepatic parasite burden of

7.9 log1060.31 in short-term and 6.75 log1060.06 in long-term

and splenic parasite burden of 6.26 log1062.00 in short-term and

5.42 log1060.158 in LTP studies. Therefore, in terms of organ

parasite burdens, the immunity conferred by priming twice with

gp63 DNA mixed with CpG, followed by single boosting with

rgp63 mixed with CpG was more effective and its potency and

durability was maintained till twelve weeks.

Since HPB regimen showed durable immune responses against

L. donovani infection, we were interested to check the vaccine

efficacy of different gp63-based vaccination against CL. Mice

immunized with heterologously or rgp63 based vaccination

induced significantly smaller lesion size compared to PBS

(p,0.001, p,0.01) in STP (Figure 7A). Furthermore, in the LTP

study, all mice receiving gp63-based vaccination showed reduced

lesion size compared to PBS (p,0.001) (Figure 7B). Most

interestingly, vaccination with DNA-prime/Protein-boost showed

significantly lesser lesion sizes in comparison to the gp63 DNA

(p,0.05) or rgp63 plus CpG (p,0.01). Hence, the HPB approach

using L. donovani gp63 also validates its protective role against L.

major infection in BALB/c mice.

Discussion

In this study, we evaluate the comparative vaccine potential of

DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein

based vaccination using gp63 with a toll-like receptor ligand

(TLR-9) agonist CpG-ODN in eliciting short- as well as long-

lasting immunity against infections with L. donovani in genetically

susceptible BALB/c mice. The results reported here suggest that

the control of infection was effectively achieved by DNA-prime/

Protein-boost based vaccination in a sustained manner. However,

the immunity conferred by DNA/DNA or Protein/Protein

vaccination was less effective particularly during long-lasting

study, while Protein/Protein-based vaccination induced partial

protection during short-term experiments. Since the goal of any

vaccine is to generate a sustain immune response over a long

period of time, we explored the effectivity of DNA-prime/Protein-

boost immunization with an immunomodulator, CpG-ODN over

DNA/DNA and Protein/Protein vaccination in LTP against VL

using gp63 as candidate vaccine.

Previous studies using gp63 DNA have been shown strong Th1

biased responses with varying levels of protection in mice against

Figure 2. DTH and splenocyte proliferation in mice vaccinated with gp63 with different vaccination approaches before and after 3
months challenge infection. Ten days, short-term protection (STP), and twelve weeks, long-term protection (LTP), after final boosting (post-
vaccination) (A–D), and 3 months after challenge infection (post-infection) (E–H) rgp63-specific DTH and splenocyte proliferation was measured. DTH
response was determined by measuring the difference in the footpad swelling at 24 h following inoculation of the test footpad with 25 ml of rgp63
(200 mg/ml) from that of the control (PBS-injected) footpad. Spleens were collected and splenocytes were re-stimulated in vitro for 96 h with 5 mg/ml
of rgp63 and pulsed with 1 mCi of [3H]-Thymidine for 18 h. Ag-specific splenocyte proliferation was determined by Thymidine incorporation and
expressed as counts per minute. Figures (A, B, E, F) represent DTH and (C, D, G, H) splenocyte proliferation in STP and LTP studies. The results are
shown as the mean values 6 S.E. of five individual mice per group, representative of two independent experiments with similar results. OV- only
vector. * p,0.05, ** p,0.01, *** p,0.001 as assessed by one-way ANOVA and Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0014644.g002
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the cutaneous form of the leishmaniasis [10,38–41]. Moreover,

with regard to L. donovani infection, genetic immunization with

gp63 either in DNA form or through HPB approach with rgp63

induced Th1 biased response, while protein boosting did not

significantly affect the efficacy of vaccines in terms of hepatic and

splenic parasite load [42]. Therefore, to evaluate the potency,

efficacy and durability, a comparative study using either genetic or

heterologous or protein-based vaccination with gp63 is required

against VL. Since successful vaccination in VL was associated with

an initial mixed Th1/Th2 response after immunization and with

challenge infection the response polarized towards Th1 with

further boosting of IFN-c and down regulation of IL-4 [32], we

Figure 3. IFN-c responses in BALB/c mice vaccinated with different vaccine approaches before and after 3 months challenge
infection. Levels of IFN-c ten days, short-term protection (STP), and twelve weeks, long-term protection (LTP) after final boosting (post-vaccination)
(A, B), and 3 months after challenge infection (post-infection) (C, D). Splenocytes were isolated from vaccinated mice, stimulated with rgp63 (5 mg/ml)
and were cultured for 96 h. The supernatants were collected, and assayed for IFN-c through ELISA. Figures (E, F) represent in vitro blocking
experiments either with anti-CD4+ or anti-CD8+ or both mAbs before (post-vaccination) and after L. donovani infection (post-infection). The results are
shown as the mean absorbance values 6 S.E. of five individual mice per group, representative of two independent experiments with similar results.
OV- only vector. * p,0.05, ** p,0.01, *** p,0.001 as assessed by one-way ANOVA and Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0014644.g003
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demonstrate, DNA-prime/Protein-boost vaccination strategy sig-

nificantly induced mixed Th1/Th2 responses after immunization,

while L. donovani challenge infection induced significantly strong

Th1 biased response compared to other vaccination strategies.

The difference we observed in our work with the published report

[42] could be due to the use of CpG-ODN in our formulations.

The results we obtained from our study is the first report, so far as

we are aware, of using different vaccination strategies with gp63

from L. donovani in short as well as long-lasting protection against

experimental VL.

A primary goal of vaccination is to induce memory responses

that will provide long-lived protection against severe disease by

Figure 4. IL-12, IL-4 and IL-10 responses in BALB/c mice vaccinated with different vaccine regimens before and after 3 months
challenge infection. Ten days, short-term protection (STP), and twelve weeks, long-term protection (LTP) after final boosting (post-vaccination),
and 3 months after challenge infection (post-infection) splenocytes were collected from vaccinated mice, stimulated with rgp63 (5 mg/ml) and were
cultured for 96 h. The supernatants were collected, and assayed for IL-12 (A–D), IL-4 (E–H), and IL-10 (I–L) through ELISA. The results are shown as the
mean absorbance values 6 S.E. of five individual mice per group, representative of two independent experiments with similar results. OV- only
vector. * p,0.05, ** p,0.01, *** p,0.001 as assessed by one-way ANOVA and Tukey’s multiple comparison test.
doi:10.1371/journal.pone.0014644.g004
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intracellular pathogen. Despite maintaining sustained long-lasting

immunity through DNA vaccination against cutaneous form of

leishmaniasis [9,43], the reduction in parasite load was almost 103–4

folds depending on the types of tissue examined. Moreover, our

previous study with native gp63 demonstrated that liposomal

delivery of protein Ag conferred long-term protection was in

contrast to previous studies [33,43]. However, this result was

obtained through intraperitoneal (i.p.) immunization, a route that

was not desired for human vaccination [28]. Therefore, effective

vaccine strategies are still required for elicitation of immune

responses and durability against Leishmania infection.

Effective and successful vaccinations against intracellular patho-

gens require persuasive adjuvant that can induce strong immune

response. The adjuvant like properties of CpG-ODN on protein-

based vaccination was observed particularly in maintaining long-

lasting immunity [44] which overcome the need for IL-12 in

genetically susceptible BALB/c mice infected with L. major. In

addition, although, unmethylated CpG motifs within the plasmid

DNA vector have also been shown to contribute to the immunoge-

nicity of DNA vaccines [45,46], cloning additional CpG motifs or

adding CpG-ODN to the DNA vaccine rendered substantial immune

responses [47,48]. Therefore, using CpG-ODN was thought to be

effective regarding long-lasting protection against VL.

The nature of immune responses in vaccinated mice was

determined by the level of IgG2a and IgG1 antibody isotypes in

sera that associated with Th1 and Th2 response, respectively. We

observed mice immunized with HPB regimen showed early mixed

Th1/Th2 response that could lead to successful vaccination after

challenge. Induction of the anti-Leishmania IgG2a, and unaltered

IgG1 after infection in DNA vaccinated group, suggested

polarized Th1 responses. By contrast, conventional protein based

vaccine elicited enhanced Leishmania specific IgG2a and IgG1

antibody levels, particularly when combined with CpG ODN after

infection. Furthermore, L. donovani infection in HPB regimen

induced higher IgG2a/IgG1 ratio suggesting its strong ability

towards protective Th1 biased response.

Figure 5. Ag-specific NO levels in vaccinated mice before and after 3 months challenge infection. Ten days, short-term protection (STP),
and twelve weeks, long-term protection (LTP) after final boosting (post-vaccination), and 3 months after challenge infection (post-infection),
splenocytes from different vaccinated mice were isolated and stimulated with rgp63 (5 mg/ml) for 96 h and the level of NO was determined in
supernatants by Griess reagent. Figures (A, B) and (C, D) represent levels of NO before (post-vaccination) and after 3 months of L. donovani infection
(post-infection) respectively. The results are shown as the mean absorbance values 6 S.E. of five individual mice per group, representative of two
independent experiments with similar results. OV- only vector. * p,0.05, ** p,0.01, *** p,0.001 as assessed by one-way ANOVA and Tukey’s multiple
comparison test.
doi:10.1371/journal.pone.0014644.g005
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Because the cell mediated immune response is severely affected

during active VL due to T cell anergy specific to Leishmania Ags

[49,50], successful vaccination of humans and animals is often

related to Ag-induced DTH responses in vivo and T cell

proliferation in vitro [51]. We observed that vaccination heterol-

ogously resulted in an enhanced DTH and splenocyte proliferation

after infection, and the responses were efficiently maintained at

long-term. The ability to induce cell-mediated immunity by all

DNA vaccinated animals in presence or absence of CpG was

considerably higher than mice receiving protein Ag in association

with CpG. This enhanced cellular immune response obtained in

DNA/DNA or DNA-prime/Protein-boost vaccination only be-

cause of stability exhibited by DNA-based vaccines [52].

It is fairly well established that IFN-c and IL-12, the signature

cytokines of Th1 responses, are decreased during active VL.

Moreover, protective immunity against L. donovani, is dependent

on an IL-12 driven Th1 response and IFN-c production [53,54]

which results in the induction of parasite killing by macrophages

via the production of reactive nitrogen and oxygen intermediates

[55,56]. However, cured VL patients displayed both Th1 and Th2

type clones producing IFN-c, and IL-4 [57], control of L. donovani

in susceptible BALB/c mice was associated with mixed Th1/Th2

responses [58,59]. By contrast, there are reports of early mixed

Th1/Th2 responses before infection and polarized Th1 responses

after challenge infection leading protection against murine VL

[32,60]. Therefore, the existence of such a distinct Th1/Th2

polarization in VL is unclear. Hence, we analyze the cytokine

profile before and after challenge infection in all vaccinated mice.

IFN-c production was elevated in gp63 DNA plus CpG vaccinated

animals, while the responses was significantly enhanced after ten

days and twelve weeks post-immunization in HPB regimen, before

L. donovani challenge. Furthermore, co injection of CpG with either

gp63 DNA or with rgp63 has a clear adjuvant effect in inducing

IFN-c in comparison to only gp63 DNA and rgp63 (data not

Figure 6. Evaluation of protection against L. donovani challenge in mice vaccinated with different vaccine regimens. Quantification of
single viable cell was carried out by limiting dilution assay performed 3 months after infection on cells isolated from liver (A, C) and spleen (B, D) in
ten days, short-term protection (STP) (A, B) and twelve weeks, long-term protection (LTP) (C, D) studies. The cells were cultured in duplicate in
complete Schneider’s Drosophila medium containing 10% FCS for 1 month at 22uC in serial five-fold dilutions. The reciprocal of the highest dilution
that was positive for parasite growth was considered to be the concentration of parasites per mg of tissue. Results were expressed as log of total
organ parasite burden. Data represent the mean 6 S.E of five individual mice per group of one experiment. OV- only vector. ** p,0.01, *** p,0.001
as assessed by one-way ANOVA and Tukey’s multiple comparison test. *** p,0.001 in comparison to controls unless stated.
doi:10.1371/journal.pone.0014644.g006
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shown). However, almost comparable level of IFN-c was observed

in mice receiving gp63 DNA alone and rgp63 plus CpG-ODN.

Although, challenge with viable parasites enhanced IFN-c
production in all vaccinated mice except DNA-prime/Protein-

boost regimen, the significant level of IFN-c was still maintained in

HPB regimen. Moreover, to analyze the interplay between CD4+

and CD8+ T cells in mediating IFN-c production, in vitro blocking

with either anti CD4+ Ab, or anti CD8+ Ab, or both was

performed. In case of gp63 DNA vaccination, IFN-c response was

mainly mediated by CD8+ T cells, but CD4+ T cells also

contribute to this response. On the other hand, in case of rgp63

plus CpG vaccination, IFN-c was released mainly from CD4+ T

cells, and partially from CD8+ T cells.

The mechanism of protective action of CpG-ODN against VL

is correlated with the production of Th1 cytokine particularly, IL-

12. Moreover, CpG-ODN 1826 is known to activate Langerhans

cells, which in turn produce IL-12. Indeed endogenous IL-12 is

required for clearance of parasites, the level of IL-12 was studied in

all vaccinated mice. The levels was gradually increased in mice

receiving either gp63 DNA alone, or in association with CpG, or

in heterologously prime boost vaccination using CpG as adjuvant

before and after challenge infection in both STP and LTP studies.

Although, DNA-prime/Protein-boost showed significantly higher

IL-12 (p40) responses, which was enhanced after L. donovani

infection, lower IL-12 (p40) responses was obtained in mice

receiving rgp63 plus CpG before and after challenge infection.

Higher production of IFN-c, and IL-12 produced by HPB

regimen ultimately reflected towards highest nitrite production

from cultured splenocytes.

Intriguingly, expression of an established Th2 cytokine like IL-4

was down-regulated after challenge infection in groups of mice

receiving gp63 DNA mixed with CpG either homologously or

heterologously. Since HPB regimen showed higher IL-4 after

vaccination, and substantially lower IL-4 after challenge infection,

early mixed Th1/Th2 responses exhibited by this groups of mice

was therefore skewed in Th1 biased response after L. donovani

infection. In addition, since the fact that IL-10 has been shown to

block the Th1 activation and consequently a cytotoxic response by

down regulating IL-12 and IFN-c production, the disease

associated macrophage deactivating cytokine was down-regulated

significantly at twelve weeks post vaccination in mice vaccinated

with HPB regimen.

To understand the disease outcome underlying these results,

we therefore analyzed the parasite load in liver and spleen after

L. donovani challenge infection. Even in the susceptible BALB/c

mice, the gp63 DNA vaccination demonstrated potency and

durability against experimental VL. However, data obtained

through LDA suggest that DNA-prime/Protein-boost in

presence of CpG led to almost 107 fold and 1010 fold

reduction in hepatic and splenic parasite burden in LTP study.

This extent of protection, obtained in this study has till now

not been achieved in long-lasting protection through HPB

approach in susceptible BALB/c model against VL. DNA-

prime/Protein-boost vaccination showed durable protection,

which correlates with enhanced cellular and humoral responses

before and after L. donovani challenge. More surprisingly, the

course of L. major infection as measured by lesion development

in the footpad suggested that mice vaccinated with DNA-

prime/Protein-boost approach showed minor progress in lesion

size, which also validates the protective role of this vaccine

against murine CL.

Reasons for the enhanced efficacy of DNA vaccination over

protein plus adjuvant may include low levels of persistent Ag, or

presence of CpG motifs in their backbone [33]. Moreover, in this

study, the enhanced efficacy shown by HPB regimen over DNA

plus CpG is possibly due to the ability of the initial priming with

DNA to prime T cells to generate elevated secondary responses or

to produce high-affinity Ag-specific T cells whose numbers are

increased following boosting with protein Ag.

In summary, our study demonstrated that DNA-prime/Protein-

boost vaccination is effective in making durable vaccine against

Leishmania infection in susceptible BALB/c mice. To our

knowledge, this is the first detailed comparative study on

protective efficacy and durability of DNA/DNA, DNA-prime/

Protein-boost, Protein/Protein based vaccination against murine

VL.

Figure 7. Course of L. major infection in gp63 vaccinated BALB/c mice. Ten days, short-term protection (STP) study (A), and twelve weeks,
long-term protection (LTP) study (B), after last immunization, mice were challenged with 26106 L. major through s.c. route in the hind footpad. Lesion
development was monitored by measurement of footpad thickness for 10 weeks. Each point represents the average increase in footpad thickness 6
S.E of four individual mice per group. The experiment has been performed once. OV- only vector. **p,0.01, ***p,0.001 compared to controls (A).
*p,0.05 and **p,0.01 significantly differs from mice vaccinated with gp63 DNA, rgp63 plus CpG respectively (B).
doi:10.1371/journal.pone.0014644.g007
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