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In the first part we discussed Tammes’ problem and
its higher dimensional analogues. In this part we
shall see how harmonic analysis and the theory of
orthogonal polynomials can be used to settle some
of the most interesting instances of this problem.

Inner Products and Gram Matrices

Recall that the inner product (z, y) between the points z
and y of IR? is the number E;-izl z;y;. This useful notion
combines in a single formula the notion of distance and an-
gle. In fact, the distance ||z — y|| between z and y is given
by |lz — y|]® = (z — y,z — y), while the cosine of the an-
gle subtended at the origin by z and y is (z, 1)/ (|l - |lw]).
In particular, the distance between two points z and y in
a spherical code is 1/2 — 2(z, y). It follows that maximising
the minimum distance is the same as minimising the max-
imum inner product (between distinct points of the code).
For any spherical code X, we shall use I (X) to denote the
set {(z,9) 12 # 9y, z,y € X}. Thus an optimal code min-
imises the maximum of I(X) over all spherical codes X of
the same size ahd rank. Let @ denote the Gram matrix of X .
By definition, it is the n x n matrix ¢ = (z,y): z,y € X).
From standard linear algebra, one knows that @ is a corre-
lation matrix (i.e., a non negative definite matrix all whose
diagonal entries equal 1) of rank < d which determines X
uniquely (upto rotation). Thus, our problem may also be
phrased as: minimise the maximum off diagonal entry u(G)

of G as G runs over all n x n (real) correlation matrices of
rank not exceeding d.
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Optimality of the Simplex, Cross Polytope, and the
in between Sizes.

We now present some elementary proofs of these results,
involving nothing more than a bit of linear algebra. The
regular simplex X is a code of size d + 1 and rank d with
I(X) = {-1/d}. To prove its optimality and uniqueness, it
suffices to show that it is the only code ¥ with these parame-
ters such that max I(Y') < —1/d, that is, I(Y') C [-1, —1/d].
Define the polynomial function f : [-1,1] — IR by f(t) =
t + 1/d. Note that f < 0 on [-1,~1/d]. In particular,
F((y1,92)) <0 for y1,y2 € Y, y1 # y2. On the other hand,
we have 3 {f((y1,¥2)) : y,92 €V, ;m #y2} = (d+ 1)+
E{(yl,y2> Yy € Y, n 7é yZ} = Z{<y11y2) YnLY2 €
Y} =|Z{y: v € Y}||* > 0. Thus we have a non negative
sum of non positive terms, so that the terms f((y1, y2)) must
equal zero for all y1 # y2 in Y. Thus I(Y) = {-1/d}, so
that the d + 1 points in Y are equidistant and hence Y is
the regular simplex.

Next let d+ 1 < n < 2d. If Y is a spherical code with these
parameters, then we shall show that its minimum distance
is < v/2, or, equivalently, its maximum inner product is > 0.
Since the cross polytope has minimum distance = /2, any
of its subsets has minimum distance > /2, so that we shall
hereby establish the optimality of any subset of size n > d+1
of the (set of vertices of the) cross polytope.

So let Y be a spherical code of rank d and size n in the
range indicated. Suppose, if possible, that its maximum
inner product is strictly negative. That is, the off diago-
nal entries of its Gram matrix G are strictly negative. Put
A =1 — G, where I is the n x n identity matrix. Then A is
a square matrix with zero diagonal entries and strictly pos-
itive off diagonal entries. By Peron Frobenius theory, the
largest eigen value of such a matrix is simple (i.e., has geo-
metric multiplicity = 1). But G is nonnegative definite with
rank < d and so nullity > n — d. Therefore the largest eigen
value of A ( = 1) has multiplicity > n — d. So we must have
n—d<1,ie,n<d+1, contrary to our assumption.
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While this argument shows that, in particular, the cross
polytope is an optimal spherical code of size 2d and rank d,
it does not prove the uniqueness of the optimal code in this
case. To prove the uniqueness, let Y be any spherical code
with these parameters such that I(Y) C [—1, 0]. We have to
show that Y must be the cross polytope. We have already
noted that S; := Y {(y1,%2) : ¥1,92 € Y} > 0. Let us also
note that Sq := Z{((yl,y2)2 —-1/d): y1,y2 € Y} > 0. In-
deed, letting \j, 1 < j < d, denote the (possibly) non zero
eigenvalues of the Gram matrix G of Y, we find that S
equals trace(G?) — %(trace(G N2=34,(Ai—2)2 > 0. (Since
the sum of the d eigenvalues in question is trace(G) = 2d,
their average is 2.) Now let f be the polynomial function

on [~1,1] given by f(¢) = (¢+1)t. Thus f <0 on I(Y). On

the other hand, we have > {f({y1,¥2)) : y1,¥2 € Y, ;1 #
yo} = S1+ S2 > 0. Therefore f vanishes on I(Y'), so that
I(Y) C {-1,0}. Thus any two of the points in Y are either
orthogonal or they are negatives of each other. Since Y has
size 2d, it follows that Y consists of the elements of an or-
thonormal basis and their negatives. Thus Y is the set of
vertices of a cross polytope.

Gegenbauer Polynomials and Optimality of the Icosa-
hedron.

Let us say that a polynomial function g on [—1, 1] is positive
of rank d if for every spherical code Y of rank d (and what-
ever size), we have Y {g({v1,v2)) : y1,92 € Y} > 0. Clearly,
the proofs of optimality and uniqueness given above suc-
ceeded largely because of our ability to locate appropriate
positive polynomials. One natural class of positive polyno-
mials are the Gegenbauer polynomials Q, £k = 0,1,2,....
These are recursively given by the formulae

Qo(t) = 1,
Q1(t) = dt,
tQr(t) = (1—ar-1)Qr-1(t) + ar+1Qr+1(2),

for k = 1,2,.... Here agp = 0 and af = k/(d + 2k — 2) for
k=1,2,....
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Let dw denote integration with respect to the unique rota-
tion invariant Borel probability w on the sphere $4~1. Then
we have the formula

/ Q{2 1) Qk((y: 2)) dw(y) = Qr((z, 2)).

( Of course, this strange formula did not come from thin air.
Its source is harmonic analysis on the sphere. If the vector
space Harm(k) of homogeneous harmonic polynomials of de-
gree k on the sphere is equipped with the L? inner product,
then we get a functional Hilbert space whose reproducing
kernel is (z,y) — Qk({z,y)). The integral formula pops out
of this theory.) Using this formula, we find that for any
spherical code Y of rank d,

> {Qk({yny2) t y1,92 €Y} =

[Ct@uE ) v e v au(e).

This shows that the Gegenbauer polynomials are indeed pos-
itive of rank d.

With this tool in hand, we are now ready to prove that the
icosahedron is the unique optimal spherical code of size 12
and rank 3. Using the coordinates presented in the sec-
tion on the platonic solids in Part 1, one sees that for the
icosahedron X, we have I(X) = {~1,+1/v/5}. In particu-
lar, the maximum inner product of this code is 1/ V5. Let
7 be the polynomial f(t) = (¢ + 1)(t + 1/v5)%(t — 1/V/5).
Then f vanishes precisely on I(X) and it is non positive on
I(Y) for any spherical code ¥ (with the same parameters
as X) which is at least as good as X. But, in terms of the
Gegenbauer polynomials (with d = 3) f has the expansion
f= E?:o ¢;Q; where a calculation shows that ¢ = f (1)/12
and the remaining three coefficients ¢; are strictly positive
(Verify this!). Hence the sum Y {f({y1,%2)) : wy1,¥2 €
Y, y1 # yo} equals —12f(1) + 2{f ({y1,92)) : v, 92 €Y} =
~12£(1) + 144eo + 31 ¢; {Qs (w1, 92)) : v,z €Y} =
}:}Ll ¢; {Q;i({y1,¥2)) : wi,y2 € Y} > 0. ( In the second
step, we have used the fact that Qo is the constant function
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Box 1. Invariant Probability on the Sphere.

On $2, this is nothing but surface area, normalised to make total area of the unit
sphere to be one. The usual coordinate transformation from cartesian to polar
coordinates shows that, integration with respect to the invariant probability w on
59-1 is given (for any ‘nice’ function f on §%-1) by the formula

: T p2m 2m 9 d
/f dw=c-/0 .[3 /0 sin 2 sin“ A3 - - - sin ”29,1_1 f(z1, -+, zq) d81---dbg_1,

where z; = cos6;_7 - H:-i;jl sinf; for 1 < j < d and c is the constant (depending only
on d) chosen to make {1 dw equal 1. (In this formula 8; = 0 and empty products
stand for 1.)

1. The inequality in the end follows from the positivity of
the @;’s.) Therefore, as before f vanishes on I(Y) so that
I(Y) C I(X). Also, equality in the last inequality forces
YA{Q;i({y1,42)) : y1,y2 € Y} =0 for 1 < j < 4. In particu-
lar, for j = 1 we get || Sy : v € Y} = 4 5{Q1((y1,92))
y1,y2 € Y} = 0. Hence ) {y : y € Y} = 0. Taking inner
product with any fixed yo € Y, we get > {(y,%0) : y €
Y, y # yo} = —1. Thus, if @, b, c denote the number of y in
Y such that (y,yo) = —1, +1/v/5 and —1/+/5 respectively,
then a+b+c = 11 and a-(~1)+b-(1/v5) +c-(=1/V/5) = —1.
Hence ¢ = 1, b = ¢ = 5. This shows that the antipode (or
negative) of each point of Y is again in Y, and for any two
points of ¥ which are not antipodes, the inner product is

+1/+/5. It is easy to conclude from here that ¥ must be the
icosahedron.

Tight and Quasi-Tight Spherical Codes

A spherical code Y is called a (spherical) t-design (for a
non negative integer t) if for all polynomial functions f (on
the sphere) of degree < t, the average value of f over Y
equals the surface integral (with respect to w) of f over the
sphere. This notion was introduced by P Delsarte, J M
Goethals and J J Seidel in a famous paper in the sixth vol-
ume of Geometriae Dedicata (1977). The strength o of ¥ is
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defined to be the largest ¢ for which Y is a t-design. The
usefulness of spherical codes of large strength in numeri-
cal integration is pretty obvious. In their paper, Delsarte
and others characterised o as the largest integer for which
T{Q;i({y1,y2) : y,y2 €Y} =0f%r1 < j < o. They also
proved the inequality o < 26 where the degree § of Y is de-
fined to be the size of the set I(Y). A spherical code is called
tight if o = 26 and it is quasi-tight if o = 26 — 1. Generalising
the arguments presented above, it can be shown that: Any
tight or quasi-tight spherical code is optimal. Further, when
a tight or quasi-tight code of a given size and rank ezists, all
the optimal codes in that case are tight or quasi-tight. The
proof exploits the connection with spherical harmonics and
some deep properties of the Gegenbauer polynomials. The
details will appear later (hopefully) in an article.

Examples

The regular polygons of odd size are the only tight codes of
rank d = 2. E Bannai and R M Damerell proved in 1979
that all the tight codes of higher rank have degree § < 2.
The regular simplexes (one for each rank) are the only tight
codes of degree 1. Thus all the remaining tight codes must
have d > 3, § = 2. By a formula of Delsarte and others, the
size n of such a spherical code is given by n = d(d + 3)/2.
Only two such tight spherical codes are known. These are
the Schlafle polytope with parameters (n,d,§) = (27,6,2)
and the tight code with parameters (275,22,2). The latter
admits the sporadic simple group of McLaughlin as its au-
tomorphism group.

The regular polygons of even size are the only quasi-tight
spherical codes of rank two. The cross polytopes are quasi-
tight of degree 2, while the icosahedron is quasi-tight of de-
gree 3. The Eg root system and the Leech code are quasi-
tight of degree 4 and 5 respectively. There are two quasi-
tight codes with parameters (n, d, §) = (56,7, 3) & (552,23,3)
which are, in some definite sense, double covers of the Schlafle
code and the Mclaughlin code, respectively. There is one
with parameters (4600,23,4), which may be viewed as a
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‘contraction’ of the Leech code. It admits the second spo-
radic simple group of Conway as an automorphism group.
All the quasi-tight codes mentioned here are antipodal (i.e.
with each point, the antipode also occurs; note that any an-
tipodal code has odd strength, so that it could not be tight).
Bannai and Damerell proved that, with the sole exception of
the Leech code (which has § = 6), all antipodal quasi-tight
codes of rank d > 3 must have degree § < 4. The size n of a
quasi-tight antipodal code is given by n = 2(d'§f_'1‘2).

Now we pass to examples of quasi tight spherical codes
which are not antipodal. We know only one such code of
degree § > 3; it has parameters (891,22,3). There is an
infinite series of quasi-tight codes of degree 2 with param-
eters n = (¢+1)(¢® +1),d = q(q® — ¢ + 1) for any prime
power q > 3 - these are intimately related to the extremal
generalised quadrangles. Apart from these, we only have
four sporadic examples with § = 2. They have parameters
(n,d) = (16, 5), (100, 22), (162,21). The second of these ad-

' mits the sporadic simple group of Higman and Sims as au-

tomorphism group.

This completes the list of the known tight and quasi tight
spherical codes. Further details on these examples may be
found in the paper by Delsarte and others. The theorem
quoted above applies to all these examples. In fact, with
the exception of the larger members of the infinite series, all
of them yield unique optimal codes. However, the theorem
does not apply to the 600-cell (though it is uniquely opti-
mal) since its degree is 8 and the strength is ‘only’ 11.

To conclude, we should mention that the set I(X) of inner
products of a tight or quasi tight spherical code X of rank >
3 is determined by the parameters n, d and §, as follows. For
k=0,1,2,..., define the polynomial R by Ry = T%_(Q;.
Then, I(X) is the zero set of the polynomial ¥, where ¥ =
Rs if X is tight, and if X is quasi tight then

VU=1t:Rs_1+(1—1t)-Rs,
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where
Rs(1)—n

= Ro(1) - Bo—1(1)’

t

Using this formula, the reader may easily compute the min-
imum distances of the optimal spherical codes mentioned

above. i
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