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Characteristics of trace gases (O3, CO, CO,, CH,; and N,O) and aerosols (particle size of 2.5 micron)
were studied over the Arabian Sea, equatorial Indian Ocean and southwest part of the Bay of Bengal
during the monsoon transition period (October—November, 2004). Flow of pollutants is expected
from south and southeast Asia during the monsoonal transition period due to the patterns of wind
flow which are different from the monsoon period. This is the first detailed report on aerosols
and trace gases during the sampled period as the earlier Bay of Bengal Experiment (BOBMEX),
Arabian Sea Monsoon Experiment (ARMEX) and Indian Ocean Experiments (INDOEX) were
during monsoon seasons. The significant observations during the transition period include: (i) low
ozone concentration of the order of 5ppbv around the equator, (ii) high concentrations of CO,,

CH, and N,O and (iii) variations in PM2.5 of 5-20 pug/m”.

1. Introduction

Emissions of trace gases and aerosols are increasing
due to the fast industrialization in Asia, partic-
ularly in China and India. Studies on charac-
teristics of atmospheric tropospheric ozone, CO,
CO,, CH,; and N,O, and aerosols over the Indian
Ocean subcontinent are rather sparse. The ear-
lier measurements of trace gases and aerosols over
the Indian Ocean have been carried out mostly
during summer (Arabian Sea Monsoon Experi-
ment, ARMEX (Sanjeeva Rao 2005), Bay of Bengal
Monsoon Experiment, BOBMEX (Bhat et al
2001)) and winter monsoons (Indian Ocean Exper-
iment: INDOEX). Observations during INDOEX
(Ramanathan et al 2001) show the presence of a
large haze layer over the Indian Ocean. Compo-
sition of this haze indicates that the continental
outflow and long range transport are the major
reasons for the pollutants to spread out over a large

area of the Indian Ocean (Lelieveld et al 2001). No
such detailed results are available during the mon-
soon transition period over the Arabian Sea and
equatorial Indian Ocean. During monsoon peri-
ods, the wind is mainly meridional and the zonal
wind is weaker over the equatorial Indian Ocean.
October and November (withdrawal of monsoon
period) are the months of transition when winds
over the north Indian Ocean change from south-
westerly to northerly and northeasterly bringing
aerosols from south and southeast Asia to the equa-
torial and north Indian Ocean (Kunhikrishnan et al
2004).

Ozone acts as a major tropospheric greenhouse
gas as well as a precursor of highly reactive hydroxy
radical (OH) that drives much of photochem-
istry in this atmospheric layer (Thompson 1992).
The concentration of tropospheric ozone is mainly
determined by its in situ photochemical pro-
duction, downward transport from stratosphere,
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quasi-isentropic advection and surface destruction.
Halocarbons also play a major role in the destruc-
tion of ozone over the ocean. The diurnal cycle of
ozone over the ocean is largely governed by advec-
tion and destruction where photochemical produc-
tion is less (de Laat and Lelieveld 2000). Carbon
monoxide (CO) is an important trace gas as it can
produce or destroy ozone depending on the con-
centrations of NO-NO, (Crutzen 1999). Because
of the long lifetime of CO in the boundary layer, it
is used as a good tracer of long range atmospheric
transport (Dickerson et al 2002).

The measurements on surface ozone and CO over
the Indian Ocean are very few, including those
carried out under the Soviet American Gases and
Aerosols Campaign (SAGA-IT) and INDOEX cam-
paign (Duli Chand et al 2001; Naja et al 1999; Lal
et al 1998; Rhoads et al 1997). Recent measure-
ments of atmospheric CH4 over the Indian Ocean
include Rhoads et al (1997), as a part of the World
Ocean Circulation Experiment (WOCE), and Naja
et al (1999) and Gupta et al (1999) as a part of the
INDOEX.

Airborne particles, in particular of the size of
2.5 micron, have the potential to increase both light
scattering and light absorption in the atmosphere
depending on their nature. Aerosols of this size can
traverse long distances (Lelieveld et al 2001), and
are therefore, treated as tracers of biomass burning.
Moreover, these aerosols also have a large impact
on health.

The present study is aimed at understanding the
distribution and processes regulating trace gases
and aerosols during the monsoon transition period.
We present here the results obtained in campaign
mode observations during the period, October 11
to November 16, 2004 onboard ORV Sagar Kanya.
To identify the possible flow of pollutants, back
trajectory analyses were done using the HYSPLIT4
model.

2. Data and instrument details

A UV-based analyzer (Model TECO-49C, Thermo
Environmental Inc, Franklin, Massachusetts, USA)
was used for measuring surface ozone. The
precision of ozone measurement is 1 ppbv with a
detection limit of 1ppbv with a response time of
10 seconds for the entire period of observation. Cal-
ibration of the system is done regularly with the
help of a built-in ozone generator. The analyzers
incorporate corrections due to changes in temper-
ature, pressure in the absorption cell and drift in
the intensity of UV lamp. The data presented here
are according to local solar time.

Measurements of CO were made using non-
dispersive infrared (NDIR) gas filter correlation
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analyzer (Model TECO-48CTL, Thermo Environ-
mental Inc, Franklin, Massachusetts, USA). The
analyzer operates on the principle of infrared
absorption at 4.67 ym vibration-rotation band of
CO. The lowest detection limit of the analyzer was
20 ppbv. The analyzer was inter-compared with
API CO analyzer (Model API300) and calibrated
with NIST traceable standard CO gas of 1ppm
(M/s Praxair, USA) after cruise. The zero check
is done every two hours using in-built zero air
scrubber. The instrumental (TECO-48CTL) peri-
odic zero drift is corrected before processing the
data.

Collection of other trace gases (CHy, N,O,
CO;) was done by grab sampling, i.e., flushing
the air through glass samplers. The glass sam-
plers were flushed initially for ten minutes. After
thorough flushing with ambient air, the air sam-
ple was collected above atmospheric pressure (to
avoid contamination due to leakage) at the bow
of the ship, when it is speeding ahead, and the
sampler was locked. While collecting the sam-
ples, several precautions have been taken to avoid
contamination. These samples were analyzed for
CH,, CO,; and N,O in the laboratory at NPL,
New Delhi, by gas chromatograph (Model Sigma-
2000 of Perkin-Elmer, USA) with FID and ECD
detectors. A methanizer was used to reduce CO,
to CH, before detection. The NIST traceable stan-
dard gases (CH, of 5.63 ppm, CO, of 500 ppm and
N,O of 1.05 ppm; M/s Matheson Tri-Gas formerly
Matheson Gas Products USA) were used for cali-
bration. Nevertheless, some international compar-
ison of these measurements and calibration would
help to sort out observational biases, if any. A total
of 43 air samples were collected along the cruise
path.

The data on meteorological parameters (tem-
perature, relative humidity, wind speed and wind
direction) were obtained as a part of the buoy
deployment program of NOAA/PMEL Tropical
Atmospheric Ocean (TAO) Project. The details on
types of sensors used and their accuracies are listed
in table 1 (Freitag et al 2001; Lake et al 2003).

Samples of aerosols (fine particle size 2.5 pum)
were collected on Whatman GF/A filters using
a Fine Particle Sampler (Envirotech Pvt. Ltd.,
Delhi, APM-411). The suspended particulate mat-
ter (SPM) was collected by passing ambient air
at a flow rate of 1.0-1.3m®/hour. The difference
between the weight of filter paper before and
after the sampling yielded the concentration of
PM2.5. The sampling was done for a period of
24 hours.

To identify the regions of biomass burning,
we have used the CO data from MOPITT
instrument and also processed the fire data
offered by MODIS (Moderate Resolution Imaging
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Table 1. Details of the instruments used for the study. It provides the sensor type, manufacturer, resolution, accuracy and
range of the observation.

Measurement  Sensor type Manufacturer: model Resolution Range Accuracy Comments
Ozone TECO-49 Thermo Electron 1ppbv 0-1ppm  1ppbv
UV-based Corporation, USA
Carbon TECO-48CTL Thermo Electron 10 ppbv 0-10 ppm 20 ppbv
monoxide IR based Corporation, USA
Air Pt-100 RTD Rotronic Instrument 0.01°C 0-40°C +0.2°C Lake et al 2003
temperature  (resistance Corp: MP-100
recorder)
Relative Capacitance Rotronic Instrument 0.4% RH real +2.7% RH Lake et al 2003
humidity Corp: MP-100 time 0.02% RH
delay mode
Wind Propeller R.M.Young 05103 0.2m/s +0.3m/s  Freitag et al 2001
direction
Wind speed Vane R.M.Young 05103 1.4° 0-355 +5-7.8° Freitag et al 2001
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Figure 1. Cruise track and air mass trajectories during this study. The thick line represents the position of ORV Sagar

Kanya. Thin lines are 10-day back trajectories obtained using HYSPLIT-4 model starting each day at 12:00 hours Local

Solar Time at the ship’s position.

Spectroradiometer). MOPITT measures the up-
welling infrared radiance at wavelengths 4.7 um
and 2.3 um onboard NASA EOS Terra satellite at a
height of 705 km (Drummond et al 1996). We have
used CO mixing ratio at 850 hPa. The methodol-
ogy of CO retrievals from radiance measurements
has been discussed elsewhere in detail (Deter et al
2003).

Each of these fire maps shows the loca-
tions of the fires detected by MODIS onboard
the Terra and Aqua satellites over a 10-day

period (Giglio et al 2003). The data of MODIS
are based on the measurement of 36 spectral
bands between 0.405 and 14.385 um. These cli-
matological data are available from March 2000
(http://rapidfire.sci.gsfc.nasa.gov/firemaps/).

3. Ship tracks and meteorology

Figure 1 shows cruise tracks of ORV Sagar Kanya
(SK 212) with air mass backward trajectories over
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Figure 2. Plot of NCEP/NCAR reanalysis of horizontal

wind fields at 2.5 x 2.5 degree resolution averaged over the
entire cruise period (October 11 to November 17, 2004) over
the region 40°N to 40°S and 40°E to 130°E. The arrow
shown below indicates wind speed of 10m/s.

the Indian Ocean. Ten days air mass back trajec-
tories were calculated with the HYSPLIT (HYbrid
Single-Particle Lagrangian Integrated Trajectory)
model (Draxler and Rolph 2003) using FNL as
meteorological input data. Meteorological data
used were collected onboard Sagar Kanya.

Figure 2 presents NCEP/NCAR reanalysis of
wind fields at a resolution of 2.5 x 2.5 degree aver-
aged over the entire cruise period (October 11 to
November 17, 2004) over the region. Based on the
wind flow pattern, the entire cruise period may be
divided into three regimes of air parcel movement.
During the onward journey, i.e., over the Ara-
bian Sea, wind at surface was mostly northeasterly
and upper wind westerly, therefore, air mass origi-
nated from the Arabian Sea until ship reached the
equator. Once the ship started moving along the
equator, the wind was either easterly or southeast-
erly and hence the air masses originated from south
Asia and the Australian subcontinent. On the
return journey, flow is north and northeasterly and
trajectory calculation shows that air masses orig-
inated from the south and southeast Asia. Along
the coastal region air mass was mostly from the
Indian subcontinent. The measured wind onboard
ORV Sagar Kanya indicates that the zonal wind
(u) had dominated over the meridional wind (v) up
to the equator (figure 3). This is consistent with
the NCEP/NCAR reanalysis and general features
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of the monsoon transition period. Along the equa-
tor, both the meridional wind and zonal wind are
very low as observed in the NCEP reanalysis. It
may also be pointed that most of the cruise period
experienced rainfall.

4. Results and discussion

4.1 Variation of ozone and its relationship
with carbon monoxide

The daily averaged concentrations of ozone, carbon
monoxide and relative humidity measured along
the cruise path is shown in figure 4. It may be
seen that near the coast the ozone concentra-
tion was around 16 ppbv and decreased sharply to
7ppbv and increased to 10 ppbv on October 16,
2004 and then the concentration varied around
10 ppbv. From November 13 ozone concentration
showed an increase up to 20 ppbv. Ozone concen-
tration at Bukit Koto (0.2°S,100.31°E), an east
Asian station, shows concentration of the order
of 10-20 ppbv. Our result is consistent with the
observation of Stehr et al (2002), whereas, Naja
et al (1999) and Duli Chand et al (2001) reported
ozone concentration as high as 50-100 ppbv near
the coast during INDOEX. Johnson et al (1990)
and Duli Chand et al (2001) have also found very
low ozone of 4ppbv near the equator. In addi-
tion, Naja et al (1999) observed a latitudinal gra-
dient of 1.5ppbv/lat., which is not found in the
present study. Results obtained during INDOEX
(Lal et al 1998; Stehr et al 2002; Lelieveld et al
2001; Rhoads et al 1997) suggested that the region
over the northern Indian Ocean is heavily polluted
with aerosols and volatile organic carbon (VOC).
The low value of ozone could be due to the presence
of low NO, concentration over the Indian Ocean
(Lal et al 1998). The role of prevailing dynamics
appears important for sustaining the gradients in
trace constituents.

During the onward journey the concentration
of CO was 220 ppbv which decreased to 100 ppbv
near the equator and then remained between 100
and 150 ppbv. However, on the return journey, CO
reached up to 280 ppbv near the coast (figure 4).
Naja et al (1999) have observed CO concentra-
tions to be between 200 and 350 ppbv in the region
from equator to 15°N. Duli Chand et al (2001)
observed a similar feature during the final phase
of the INDOEX. Stehr et al (2002) have found the
CO concentration up to a maximum of 200 ppbv
in the Arabian Sea and 150 ppbv in the Bay of
Bengal. Changes in relative humidity (figure 4)
suggest that continental outflow from the Indian
subcontinent resulted in the high values of CO near
the coastal region. During the observational period,
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Figure 3. Variations in meteorological parameters observed during cruise period. (a) wind speed (solid triangle) and wind
direction (solid circle), (b) relative humidity (%) (cross) and air temperature (open circle) and (c) zonal wind (U) (crossed
square) and meridional wind (V) (star).
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Figure 4. Variations in ozone (solid circle), CO (star) and relative humidity (solid triangle) observed during the cruise.
Onward journey of the ship from October 11, 2004 to October 24, 2004, along the equator from October 24, 2004 to
November 5, 2004 and return leg from November 5, 2004 to November 17, 2004.
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Global fire maps averaged over 10 days obtained from processed MODIS data. Fire maps are created at MODIS

Rapid Response System at NASA/GSFC. Each of these fire maps shows the locations of fires detected by MODIS onboard
the Terra and Aqua satellites. Each coloured dot indicates a location where MODIS detected at least one fire during the
compositing period. Colour ranges from red where the fire count is low to yellow where the number of fires is large. The
compositing periods are identified by their start and end dates (julian day).

moderate biomass burning events occurred in south
and southeast Asia as shown by MODIS data (fig-
ure 5). MOPITT data at 850 hPa also shows the
presence of high CO concentration (< 250 ppbv)
over the same region (figure 6). Backward trajec-
tories show that air masses have mainly originated
from south and southeast Asia regions (figure 1).
Convection and lightning are very active over
Indonesia during the monsoon transition periods,
especially during September (Kita et al 2003). Nev-
ertheless there is a large interannual variability
with enhanced biomass burning during dry El-Nino
periods (e.g., September—October, 1997). Dicker-
son et al (2002) have also related high concen-
tration of CO observed over the Indian Ocean to
continental outflow from India (emission of CO,
67 Tg/yr) and southeast Asia (emission of CO,
87 Tg/yr).

Figure 7 depicts the diurnal cycle of ozone,
CO and relative humidity averaged over the
observational period. Although ozone does not

show much diurnal variation (8-12 ppbv CO shows
significant changes (120-160 ppbv)), it is to be
noted that the time of maximum may not be true
as it has been averaged over the region from 92°E
to 72°E. Ozone and relative humidity are strongly
negatively correlated with CO, particularly during
daytime. CO normally acts as a precursor of ozone
but about 70% of OH is expected to react with
CO (Wanye 1991). Parrish et al (1998) observed a
positive correlation between ozone and CO while
Derwent et al (1994) found a negative correlation.
Since CO has a lifetime of the order of a month,
diurnal variation of CO could be modulated by

its long range transport from south and southeast
Asia.

4.2 Relationship between PM2.5
and meteorological parameters

Figure 8 shows the variations in aerosol parti-
cle size of 2.5 um, relative humidity, wind speeds
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Figure 7. The diurnal cycle of ozone (solid circle), CO (star) and relative humidity (%) (solid square) averaged over the
entire cruise period.

observed along the cruise path. The wind speed  concentration reached 37 ,ug/m3 when wind speed
is positively correlated to aerosol particle size of a9 quite high. Large amounts of sea spray because
2.5 um. The variation of these particles was within high wind (7.4m/s) might have been collected
5-20 ;Lg/m3 except near the equator, where its on the filter paper. Moreover, the highest value
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Figure 8. Daily variations of aerosol particle (PM2.5) (solid circle), relative humdity (%) (solid triangle) and wind speed

(solid square) size measured along the cruise path. The periods of onward journey along the equator and return leg are the

same as detailed in figure 4.

of PM2.5 on October 26-27 could be attributed
to long range transport, as air mass back trajec-
tory shows that it had originated from the area
of biomass burning (figure 1). During the return
leg, even near the coast, the concentration of
PM2.5 dropped to 10ug/m3. It is surprising to
note that relative humidity too has come down
from 80% to 60%. Relative humidity did not show
any variation during the onward journey and along
the equator. Chemical composition of these sam-
ples may offer better explanation of variation of
aerosol concentration. Krishnamurthi et al (1998)
had also observed fine particle concentration of the
order of 15.8 ;Lg/m3 in the regional plume, which
might have been advected to the Indian Ocean
during the northeast monsoon. Choudhary et al
(2001) have shown that the PM2.5 at Kashidoo
Climate Observatory (KCO) varied in the range
15-30 ,ug/m?’ during winter monsoon time. They
have also shown that the sulfate and carbonaceous
aerosols are the largest contributors to these fine
particles. Ramachandran (2005) has reported back-
ground PM2.5 mass concentration of the order 36
and 25ug/m3 over the Arabian Sea and tropical
Indian Ocean using the data collected in the north-
east winter monsoon seasons of 1996 and 2000,
respectively.

4.3 Variation of GHGs

The distributions of CHy, CO,, N,O at surface
along the cruise path are shown in figure 9.

Table 2 also gives a comparison between the results
obtained in the present and the earlier studies. On
an average, the results obtained during the present
cruise are higher than earlier reported. The role of
contamination in the air samples during the sam-
pling is ruled out as higher values in CHy, CO,,
N,O are not observed simultaneously.

The observed concentration of methane is higher
than that earlier reported in the northern hemi-
sphere (1.8 ppmv) (Muhle et al 2002). The aver-
age concentration of methane ranged from 1.69
to 2.7ppmv. This value is higher than the
observed concentration during INDOEX (Naja
et al 1999; Duli Chand et al 2001; Gupta et al
1999 and Muhle et al 2002). However, Lal et al
(2006) found high concentrations of CH, in the
Bay of Bengal to the order of 2.1 ppmv during
the early spring of 2001. Near the coast, CHy
was observed to be ~ 2.0 ppmv, which increased
to 2.86 ppmv at the equator with a latitudi-
nal gradient —0.06 ppmv/lat. Naja et al (1999)
observed that the average gradient of methane
concentrations is around 0.0006 ppmv/lat dur-
ing the pre-INDOEX cruise of 1997 and 1998,
whereas, the average gradient during 1999 was
found to be 0.0003 ppmv/lat. (Duli Chand et al
2001). Although, ocean is normally considered
to be a minor source of global tropospheric
CH,, extensive measurements made by several
scientists in the Arabian Sea and coastal India
(Lal et al 1996; Patra et al 1998; Bange et al
1998; Jayakumar et al 2001) revealed strong
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(open square) observed during the cruise. The periods of onward journey along the equator and return leg are the same as

detailed in figure 4.

spatial, seasonal and interannual variability of
CH,.

The concentrations of CO, along the cruise
were found to be in the range 362477 ppmv,
which is also higher than observed values during
INDOEX (Gupta et al 1999; Muhle et al 2002).
High variation of CO, concentration of the order
of 100 ppmv within short time scale is normally
unexpected, but, no observations are available to
compare this result. It may be noted that such vari-
ation has only been reported by Mukhopadhyay
et al (2002), where, they showed CO, concentration
of 324.3 to 528.7ppmv in the Sunderban area,
NE coast of Bay of Bengal. CO, concentration
reached minimum value 365 ppmv at the equa-
tor with a latitudinal gradient of 1ppmv/lat.
but increased again to 477 ppmv. The positive
latitudinal gradient observed during onward and
return journeys is consistent with the results
obtained during pre-INDOEX and final phase of
INDOEX by Muhle et al (2002) and Gupta et al
(1999).

JGOFS studies concluded that the Arabian Sea
serves as a source of CO, for the atmosphere at
almost all places and during all seasons with large
variability, whereas, the observations in the Bay of
Bengal and the Andaman Sea show that it is a weak
sink (~ 20 Tg C y ') for atmospheric CO, (Kumar
et al 1996; Sarma et al 2000; Naqvi et al 2005).
The 10-day backward trajectories over the Arabian
Sea (figure 1) show that the origin of air parcel
is oceanic, whereas, the air mass originated from
south and southeast Asia, area of biomass burning
during the equator and return leg (figures 5 and
6). At this moment, it is difficult to say definitely,
with the present limited atmospheric observations
that this high CO, concentrations over Arabian
Sea are of oceanic origin because of its large life-
time. Sarma et al (2000) have argued that bacteria
found in seawater are more abundant during inter-
monsoon period that are not entirely supported
by primary production and hence the resultant
higher bacterial respiration may raise pCO, levels
in the ocean. The Sea Surface Temperature (SST)
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is found to vary from 28° to 32°C (figure 9) and is
mostly higher than the air temperature, which var-

§ § ied within 24-28°C. The higher temperature gradi-
Q a2 % ent might have facilitated release of CO, and N,O
& . 282+« to the atmosphere.
é § E % 3 % g The concentration of N,O near the coast, as
$ 12 3828 depicted in figure 9, was 312 ppbv but reached a
2 =g 2 g o maximum of 432 ppbv at the equator with a lat-
S ;‘f Eﬂ & Zc?g itudinal gradient of 2ppbv/lat. N,O concentra-
3 E tion then has decreased sharply to 312 ppbv again
S 2 after the ship entered southern hemisphere. N,O
:ﬁ o B _ concentration does not change substantially along
g S - ﬁ \:ig the equator and in the return leg. Surprisingly,
SIS N S the maximum concentration of NyO matches with
S %7‘;}0 i position of maximum concentration of CO,. Gupta
g § g cag RS et al (1999) have not observed any latitudinal gra-
== | 35| &R _n dient in their study during the three pre-INDOEX
58 oy G ﬁ I cruises. With the present data it is difficult to sug-
Z\g §m S|l - gest that this high concentration of nitrous oxide
C;Jg g S :"? © T is due to upwelling of oceanic water. JGOFS Ara-
g S é = bian Sea data .show that sea—.to—air ﬂux.es of NQQ
32 5 g . over the Arabian Sea are higher particularly in
S5 BlHTs the south Indian coastal region with strong tem-
52 =8 - poral variability (Lal and Patra 1998; Naqvi et al
S § o« 1998; Patra et al 1999). Total estimates of N,O
30 - fluxes from the Arabian Sea to the atmosphere
E S Bl a ranges between 0.16 and 1.5Tg N,O y~'. Nagqvi
,E;S &l S H et al (2000) suggested that anomalous concen-
S = o2 7 tration of N,O in the Arabian Sea could be
%é 25 ® driven by anthropogenic origin. However, from
:t E/E ~| 5 the present study, we cannot conclude that high
%g %g 2 = 2 concentration of atmospheric N,O is of oceanic
3 [ o —~ 1077
é § %E % j \%g origin.
SE | wg |08 w© .
SES 55|00 F «® 5. Summary and conclusion
=8 =<7 _ D
3 i 218 2 3 'go Characteristics of atmospheric surface ozone, CO,
] & 3 oH o© 3 g CH,4, N,O, CO, and aerosol (fine particles) were
% § = 2 - 12 B studied over the Bay of Bengal, the Arabian Sea
S % - = = & and the equatorial Indian Ocean during the mon-
(m: ”§ § soon transition period, i.e., October—November,
?g B s > 2004.
s & 3 o1 g 2 The following features were found during the
§C§ o S QRS g campaign:
~ al w0
§§ o~ z| B 3 e The wind flow patterns during monsoon tran-
§ g2 § = = g sition period are different from that of mon-
f\i RIS g soons as found from NCEP/NACR reanalysis
§£ ;F@ \% H g SR g and onboard measured meteorological parame-
2 RS g;g S e % ters. The 10-day backward trajectories suggest
§§ 2|0 = 2 that origin of air parcel found over the Ara-
¢ N g bian Sea is mostly over the ocean, whereas those
O 2| = x| E above the equator and during the return journey
~ S SRS S| g are from south or southeast Asia.
23 | A 13 e Surface ozone concentration is maximum near
= 2 T SR8 2| £ : .
S SIS 55 A coastal region and minimum near equator. No

substantial meridional changes are observed in
ozone concentrations.
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e Carbon monoxide concentration shows similar
feature with maximum value near the coast
and lowest value near the equator. The observed
trend is consistent with the earlier reported
results. The role of long range transport from
south Asia and southeast Asia, which are regions
of biomass burning as seen in MOPITT and
MODIS data, is examined.

e The study region is important in terms of sea-to-
air exchange of biogenic gases. No atmospheric
observation of CH,, CO,; and N,O is avail-
able during monsoon transition period; there-
fore, comparative study is not possible at this
stage. Large variations of CH,, CO, and N,O
concentration over short time scale are however
unexpected.

e During onward journey from 15°N to equator,
CH,; and N,O show prominent negative gradi-
ents, and CO, shows positive gradient, whereas,
on the return leg CH; and CO, show posi-
tive latitudinal gradients, but N,O concentra-
tion does not show such trend. Since the Ara-
bian Sea is normally known as a region of
biogenic gases emitter, the enhanced concentra-
tion of atmospheric CH, and N,O over Arabian
Sea might be due to emission from ocean. The
enhanced values over the Bay of Bengal and the
equator appear to be linked to biomass burning
over east Asia and south east Asia.

e The mass concentration of PM2.5 varied within
520 ,ug/mg except near the equator, where the

value reached 37 ug/mg. Relative humidity and
wind speed are strongly correlated with high
concentration of PM2.5. Chemical analysis of
these samples may give more insight into reasons
that caused high concentrations.
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