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Abstract: Gravity waves propagating over free surface flows with shallow depth are well known 

phenomenon. The theory of gravity wave can be derived from the theory of sinusoidal wave based 

on the Laplace’s equation and the theory on cnoidal wave based on the Korteweg-de Vries equation 

that also admits of the existence of solitary waves. These theories were developed from the 

consideration of an irrotational flow in an ideal fluid. However, in case of a real Newtonian fluid, 

the bed resistance and the rapid motion of fluid generate turbulence (eddies) in the medium. The 

effects of turbulence are taken into account herein by using the continuity equations for the surface 

elevation η and the depth-averaged flow velocity U developed earlier by Bose and Dey. These 

equations are based on the Reynolds averaged Navier-Stokes (RANS) equations for the turbulent 

flow in open channels. It is shown that the wave profile can be approximated by a form a cosk ξ̂ /(1 

– b cosk ξ̂ ), where a, b are the constant amplitudes; k is the wave number; ξ̂  is the dimensionless 

horizontal distance given by (x – ct)/h; x is the horizontal distance, c is the wave velocity; t is the 

time; and h is the undisturbed flow depth. Such a profile has the characteristic that the peaks are 

narrower but higher compared to wider but shallower troughs. The effects of the stream flow on 

wave propagations are also considered. It is found that if the waves travel in the direction of the 

stream flow, there is a lengthening effect on the peaks and troughs; whereas if the waves travel 

against the direction of stream flow, they become shorter. 
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Introduction  

The propagation of inviscid gravity waves over free surface flows of finite depth is a classical topic 

of interest in hydrodynamics (Lamb 1932; Stoker 1957). In such a theory, it was shown that a 

sinusoidal wave of length 2π/k travels with a velocity c in the horizontal direction, where 

2 tanh khc gh gh
kh

= ≤                          (1) 

where g is the acceleration due to gravity; h is the undisturbed flow depth of water; k is the wave 

number. It may be noted that for long waves, such as tides, c2 = gh and for short waves, c2 < gh. The 

governing field equation in the above theory is the Laplace’s equation ∇2φ = 0 for the velocity 

potential φ.  

In shallow water depth, when the ratios of wave amplitude to flow depth, a/h, and flow depth to 

characteristic length scale, h/l, are small, from the governing Laplace’s equation using the boundary 

conditions at the free surface and the bed, it can be shown that the wave elevation satisfies the 

nondimensional Korteweg-de Vries (KdV) equation  

3
1 1 1 1

1 3

ˆ ˆ ˆ ˆ3 1ˆ 0ˆ ˆ ˆ ˆ2 6t x x x
η η η ηη∂ ∂ ∂ ∂

+ + + ⋅ =
∂ ∂ ∂ ∂

                     (2) 

where 1̂η  = η1/a; η1 is the elevation of wave with respect to undisturbed free surface; a is the wave 

amplitude; x̂  = x/l; x is the horizontal distance; l is the characteristic length scale (say a wave length 

of 2π/k); t̂  = (gh)0.5t/l; and t is the time. In Eq. (2), the 1̂η , x̂  and t̂  are the nondimensional 

variables. The solution of the above equation is known to be given by the elliptic function cn; and 

the wave is called a cnoidal wave. The wave is characterized by the sharper crests and the flatter 

troughs than in a sinusoidal wave. As a particular case, it is also known that a single crest of sech2 

form can propagate on water and is known as solitary waves. 

In potential and cnoidal wave theories, the viscosity of fluid and the turbulence generated from 

the bed friction and other disturbances during the initial motion are not taken into account. Mader 

(2004) in modeling water waves introduced viscosity and used the Navier-Stokes equations. 

However, the turbulence based theory appears to be lacking in literature dealing with water waves. 

In free surface flows, steady and unsteady turbulent flow profiles were extensively reported in 

http://en.wikipedia.org/wiki/Crest_(physics)
http://en.wikipedia.org/wiki/Trough_(physics)
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literature related to hydraulic engineering (Chow 1959; Henderson 1966; Chaudhry 1994). Based on 

the integration of the continuity and the momentum equations, unsteady flows were studied by 

Strelkoff (1969), Yen (1973) and Basco (1987). Reynolds averaged Navier-Stokes equations 

(RANS) were used by Dey and Lambert (2005) to study accelerated and decelerated flows down the 

bed slopes. Subsequently, Bose and Dey (2007) systematically investigated the two-dimensional, 

curvilinear free surface flows by using RANS equations. Introducing reasonable assumptions on 

turbulence, they obtained explicit equations for the depth-averaged flow velocity and the surface 

elevation, which satisfied the generalized form of Saint Venant type of equation for unsteady free 

surface flows. Later, the equations were generalized to develop theories for dune and antidune 

propagation (Bose and Dey 2009), hydraulic jump for flows down a slope (Bose et al. 2012), 

formation of sand ripples (Bose and Dey 2012) and surge travelling on an adverse bed slope (Bose 

and Dey 2013). 

In this paper, the basic equations given by Bose and Dey (2007) are used to develop a theory of 

the surface gravity waves on a layer of water over a horizontal bed, in which the turbulence that is 

generated in the flow is taken into account through the RANS equations. Having used the governing 

equations from Bose and Dey (2013), a third-order nonlinear ordinary differential equation is 

derived for the elevation of a propagating wave. Neglecting the bed friction term that is 

subsequently shown to be insignificantly small, the third-order equation was integrated, once a 

nonlinear second-order ordinary differential equation is obtained. The latter equation is 

approximately integrated for the elevation in the form of nondimensional elevation of wave with 

respect to undisturbed free surface η̂  = a cosk ξ̂ /(1 – b cosk ξ̂ ), where ξ̂  = ξ/h and ξ = x – ct. 

Evidently the wave form is periodic, but exhibits the property of a cnoidal wave, that is the sharper 

crests and the flatter troughs. The effects of flowing water in and against the travelling wave 

direction are also examined.  

 

Basic Equations for Gravity Waves in Turbulent Flow 

Figure 1 schematically depicts the propagation of a two-dimensional gravity wave in a straight 

horizontal channel having a flow depth h, in which it is assumed that the bed friction and other 

possible disturbances generate turbulence in the medium. The x-axis is taken along the bed and the 

y-axis vertically upwards. The free surface elevation η above the bed level is supposed to propagate 

http://en.wikipedia.org/wiki/Crest_(physics)
http://en.wikipedia.org/wiki/Trough_(physics)
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in the positive direction of the x-axis with a velocity such that η is a function of x – ct. Accounting 

for the generated turbulence, Bose and Dey (2007, 2013) gave a pair of equations for η and the 

depth averaged forward velocity U obtained by systematically treating the RANS equations of 

motion in two-dimensions, under an appropriate flow and a turbulence closure assumption. The 

continuity equation is  

( ) 0U
t x
η η∂ ∂
+ =

∂ ∂
                          (3) 

and the momentum equation in x-direction is 

2 2 2 2 2
2 2 3

2 1/3

2 7 0
5 22 7
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η η η ηη η η η η
η η
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+ + ⋅ − ⋅ − ⋅ ⋅ + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

  (4) 

In Eq. (4), the constant fractional coefficients 2/5, 7/22 and 1/7 appear due to an assumption of the 

1/7th power law of the forward velocity distribution with the vertical distance y from the bed. The 

last term on the left hand side of Eq. (4) represents the bed resistance, assumed to be given by the 

Manning’s equation, where m is the Manning’s roughness coefficient. 

 

Equations for Propagating Waves 

For propagating waves in x-direction with velocity c, the free surface elevation η and the depth-

averaged forward velocity U are both functions of a single variable ξ (= x – ct, say). Thus,   

( )η η ξ=  , ( )U U ξ=                            (5) 

Since the operators are ∂/∂x = d/dξ and ∂/∂t = –cd/dξ, Eq. (3) yields on integration  

( )c U qη − =                              (6) 

where q is a discharge per unit width due to the passage of the wave over a stream flowing with a 

velocity U. Equation (6) suggests that  

qU c
η

= −



, 2

qU η
η

′ ′= 



, 2
3 ( 2 )qU ηη η

η
′′ ′′ ′= −

  



                  (7) 

where primes denote differentiation with respect to the single variable ξ. Using Eqs. (5) and (7) into 

Eq. (4), yields 
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        (8) 

The right hand side of Eq. (8) is due to bed resistance that can be estimated by Φ 2U , where Φ = 

gm2/h1/3, termed channel characteristic parameter whose typically value can be approximated as 

2.5×10-4. In addition, the flow velocity U  may be either zero or almost a small fraction of the wave 

propagation velocity c. Hence, the term under consideration can be neglected for moderate lengths 

of propagation; and the equation can be integrated as 

2 2
2 2 2 2

2 2 2

53 75 5 5( ) ( ) 0
44 44 4 2

q q q g qh h
c c c c c h

η η η η η η
η

 
′′ ′− ⋅ + − ⋅ + ⋅ − − ⋅ − = 

 
     



         (9)  

In Eq. (9) it is observed that in particular η  = h is a solution that represents streaming flow without 

any surface wave propagation. Equation (7) can be made nondimensional by setting  

ˆ(1 )hη η= + , ˆhξ ξ=                           (10) 

Using two transformations Eq. (10) in Eq. (9), one obtains the nondimensional equation for 

surface wave propagation under turbulent flow condition as  

2 2 2 2
2

ˆ53 53 75 5 5ˆ ˆ ˆ ˆ ˆ ˆ2 1 ( 2) 0
ˆ44 44 44 4 2 1

ghFr Fr Fr Fr Fr
c

ηη η η η η η
η

     ′′ ′+ − + − + − + ⋅ + − =     +    
   (11) 

where Fr = q/ch, that is the flow Froude number; and primes denote the differentiation with respect 

to ξ̂ . In Eq. (11), there also appears a parameter gh/c2, which is the reciprocal of the square root of 

the Froude number of the propagating wave. 

 

Approximate Solution of Eq. (11) 

Equation (11) can be treated numerically for the suitable values of Froude numbers Fr and c/(gh)0.5. 

However, approximate closed form solutions for these parameters can be obtained first by treating 

the equation approximately dropping the second and the fourth terms on the left hand side of Eq. 

(11). Such approximation procedure is intended from the fact that the nondimensional elevation η̂  

and the slope η̂′  may not be large, but eventually their contributions are taken into account 
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numerically. Dropping temporarily the two terms and writing η̂′′  = d(0.5 2η̂′ )/dη̂ , Eq. (11) can be 

integrated as  

2
2

2 2

ˆ ˆ5 ( 2)ˆ ˆ
53 532 ˆ ˆ2 1
44 44

gh C d
c Fr Fr Fr

η ηη η
η η

 
 +′  = − ⋅ +

    + − + − +        

∫             (12) 

where C is an integrating constant. The indefinite integral can be evaluated exactly and one obtains 

2 2 2
2

5 53 53 53ˆ ˆ ˆ ˆln 2 1
2 88 44 44

gh C Fr Fr Fr
c

η η η η
     ′ = − ⋅ + + + − + − +     

    
 

2352 11 352 53ˆ   1 arctan 1
281 40 281 88

Fr Fr Frη
    − + + −    

    
               (13) 

Note that in the last term of Eq. (13), the simplified fraction 11/40 is written replacing the 

unwielding fraction 56339/205216, when the replaced fraction is correct up to the three decimal 

places. 

To progress further, approximate factorization of the quantity within the square brackets of Eq. 

(13) is attempted by locating the real zeros of the function for particular values of Fr. The following 

three cases are considered in defining q in Eq. (6):  

(a) Wave propagating on a still water surface: U  = 0 and Fr (= q/ch) = 1; 

(b) Wave propagating on flowing water surface in the forward direction: U  = c/5 and Fr = 4/5;  

(c) Wave propagating on flowing water surface in the backward direction: U  = –c/5 and Fr = 

6/5.  

In this way fixing the values of Fr, the real zeros of the function within the square brackets of Eq. 

(13) with C = 0 are sought. It is however found that there are three such zeros. The constant C is 

then adjusted so that one of the zeros (corresponding to η̂′  = 0) yields the height of a crest. If it is 

assumed that the nondimensional height of the crest is η̂  = 0.2, then C is evaluated accordingly. 

The values of C obtained in three cases are thus (a) C = 0.39773; (b) C = 1.39199; and (c) C = 

0.37513. In matching the values of the function of Eq. (13) with factored expressions corresponding 

to the three real zeros, it is recognized that the factor corresponding to the farthest zero from η̂  = 0 
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must be repeated twice so that the polynomial approximation is a quortic, rather than a cubic. Using 

the least square fitting with the computed data of the function, the polynomial approximations of the 

two functions within the square brackets of Eq. (13) are  

Case (a): 0.03882 (η̂  + 4.8826)2 (η̂  + 0.18785) (η̂  – 0.2) 

Case (b): 0.03251 (η̂  + 5.63605)2 (η̂  + 0.17611) (η̂  – 0.2) 

Case (c): 0.04062 (η̂  + 4.42727)2 (η̂  + 0.19879) (η̂  – 0.2) 

The approximations in the above cases are compared with the computed functions in Figs. 2 – 4. 

It is noted in Cases (a) – (c) that since 2η̂′  is proportional to these expressions, the crest height is η̂′  

= 0.2 and the trough depths are slightly lesser in magnitude being 0.18785, 0.17611 and 0.19879 in 

the respective three cases.  

In Case (a), that is Fr = 1, replacing the function in the square brackets, polynomial 

approximation for Case (a) yields the following approximation:  

2 2
2

5ˆ ˆ ˆ ˆ0.03882( 4.8826) ( 0.18785)(0.2 )
2

gh
c

η η η η′ = ⋅ × + + −              (14) 

Then, by integration, it is 

0.5 0.5

1ˆ ˆ3.20998
ˆ ˆ ˆ( ) ( 4.8826)[( 0.18785)(0.2 )]

c d C
gh

ξ η
η η η

′= ± +
+ + −∫         (15) 

where C′ is a constant of integration. Setting η̂  + 4.8826 = 1/z, the indefinite integral can be 

evaluated as 

0.20488ˆ 0.65713arccos
0.00799

z Cξ −  ′= ± + 
 

                   (16) 

So that in terms of η̂ , one can express it as 

0.5

0.5

( ) ˆ0.19042cos 1.52177
ˆ

( ) ˆ1 0.039cos 1.52177

gh C
c

gh C
c

ξ
η

ξ

 ′− 
 = −
 ′+ − 
 

                  (17) 

If we suppose that a wave crest η̂  = 0.2 lies at ξ = 0, then cosC′ ≈ −1 or C′ ≈ π. Hence, for Case 

(a) and similarly for Cases (b) and (c), one gets  
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0.5

0.5

( ) ˆ0.19042cos 1.52177
ˆ
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gh
c

gh
c

ξ
η

ξ

 
 
 =
 

−  
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                  (18a) 

0.5

0.5

( ) ˆ0.19492cos 1.60927
ˆ

( ) ˆ1 0.03458cos 1.60927

gh
c
gh

c

ξ
η

ξ

 
 
 =
 

−  
 

                  (18b) 

0.5

0.5

( ) ˆ0.1972cos 1.4096
ˆ

( ) ˆ1 0.04454cos 1.4096

gh
c
gh

c

ξ
η

ξ

 
 
 =
 

−  
 

                   (18c) 

Equations (18a) – (18c) are of the form 

ˆcos( )ˆ ˆ1 cos( )
a k

b k
ξη
ξ

=
−

, a, b > 0                     (19) 

Equation (19) is a periodic wave like function with wave length 2π/k. The profile of the wave has 

the crests with a maximum height of a/(1 – b) at ξ = 2nπ/k, n = 0, ±1, ±2, ⋅⋅⋅ and the troughs with a 

maximum depth of a/(1 + b) at ξ = (2n + 1)π/k, n = 0, ±1, ±2, ⋅⋅⋅. Thus, the wave crests have greater 

height than the trough depths, resulting in the sharper crests and the flatter troughs, as is 

characterized by cnoidal wave.   

Equations (18a) – (18c) are plotted in Figs. 2(a – c) – 4(a – c), respectively, for the suitable 

values of gh/c2. For Case (a), gh/c2 is taken as 2, 3 and 5; for Case (b), it is taken as 1, 2 and 3; and 

for Case (c), the chosen values are 2.2, 3 and 5. The lowest value of gh/c2 is chosen so that the 

computed value of the profile η̂  from the full Eq. (9) possesses periodicity. This means that for 

Case (a) c/(gh)0.5 ≥ 1/20.5 = 0.70711; for Case (b) c/(gh)0.5 ≥ 1; and for Case (c) c/(gh)0.5 > 1/2.20.5 = 

0.6742. 

 

Modification in k, a, and b for Full Wave Equation 

In Figs. 2(a – c) – 4(a – c), the full equation of wave propagation given by Eq. (11) is also 

numerically computed for the initial conditions: ξ = 0, η̂  = 0.2 (crest height) and η̂′  = 0. For this 

http://en.wikipedia.org/wiki/Crest_(physics)
http://en.wikipedia.org/wiki/Trough_(physics)
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purpose, the second-order differential equation is first converted into a pair of first-order differential 

equations by introducing the phase variables 1̂η  = η̂  and 2η̂  = η̂′  and using a subroutine RK4 for 

the pair of equations with a step length h = 0.1 (Bose 2010, page 255). The computed curves 

resemble the profiles given by Eqs. (18a) – (18c) save for some departures in wave length and the 

amplitudes. In order to match the computed data with profiles of the form obtained from Eq. (19), 

the wave number k is first estimated by equating the seven successive zeros of a computed profile 

with that of the theoretical curve obtained from Eq. (19), namely, (2n + 1)π/2k, n = 0, 1, 2, ⋅⋅⋅, 6. 

The equations yield seven estimates of k. After the estimation of k, the amplitudes a and b are 

estimated by writing Eq. (19) as  

ˆ ˆˆ ˆcos( ) cos( )a k b kξ η ξ η+ =                       (20) 

Using the computed values of η̂  for a number of values of ξ with a spacing of 0.1, the values of 

a and b are estimated by least square fitting. The results of estimation are furnished in Table. 1. The 

modified forms of Eq. (19) for the parameters k, a and b show excellent agreement with the 

computed curves for η̂  in Figs. 2(a – c) – 4(a – c). In the above theoretical development of gravity 

wave propagation, the right hand side of Eq. (8) was neglected. Its magnitude under the 

nondimensional transformation of Eq. (10) leading to Eq. (11), termed error, is 

2

1/3

5 1error 1
ˆ ˆ2 1 (1 )

Fr
η η

 
= Φ − + + 

                   (21) 

where Φ = gm2/h3/2, that is the characteristic parameter, whose typical value is taken as 2.5×10–3. 

The maximum errors of the terms for varying η̂  in the different cases are given in the last column 

of the Table 1. These data show the smallness of the errors in the approximation of Eq. (8). 

Comparison of Figs. 2(a – c) – 4(a – c) shows that as gh/c2 increases, the wave length decreases. 

For waves with a flow [Figs. 2(a – c) and 3(a – c)], the crests and troughs become wider if the 

waves propagate in the direction of the flow. On the other hand, if the waves propagate opposite to 

the direction of flow, the crests and troughs become narrower due to the opposing by the flow. 

 

Conclusions 

A theory of propagation of surface gravity waves in a channel with a flow is developed here, taking 

into account the turbulence generated in the flow. The theory is based on the continuity and the 
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momentum equations given by Bose and Dey (2007, 2012) derived from the RANS equations. For 

waves propagating with a constant velocity and neglecting the contribution of the small bed 

resistance to the flow, the equation for the surface elevation can be integrated once to yield a 

second-order nonlinear ordinary differential equation whose approximate analytical solution is of 

the form given by Eq. (19). The profile of a wave has taller and narrower crests compared to 

shallower and wider troughs. In a channel with a flow, if the surface wave propagates in the 

direction of flow, the crests and troughs get wider. On the other hand, if the waves propagate 

opposite to the direction of flow, the crests and troughs get narrower. 
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Notation  

The following symbols are used in this paper:  

a, b =  constant amplitudes;  

c   =  wave velocity; 

Fr  =  flow Froude number;  

g   =  acceleration due to gravity;  

h   =  undisturbed flow depth; 

k   =  wave number;  

l   =  characteristic length scale;  

m  =  Manning’s roughness coefficient;  

q   =  discharge per unit width;  

t   =  time;  

t̂   =  (gh)0.5t/l; 

U  =  depth-averaged forward velocity;  
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x   =  horizontal distance;  

x̂   =  x/l; 

y   =  vertical distance;  

Φ  =  channel characteristic parameter;  

φ   =  velocity potential; 

η  =  elevation of free surface wave from bed;  

η̂   =  nondimensional elevation of wave with respect to undisturbed free surface; 

η1  =  elevation of wave with respect to undisturbed free surface;  

1̂η   =  η/a;  

ξ   =  x – ct; and 

ξ̂   =  dimensionless horizontal distance, ξ/h. 
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Table 1. Computed Results 

Fr gh/c2 k a b Maximum error in Eq. (21) 

Case (a) 

 1 
2 1.70394 0.16464 0.17851 1.71×10–2 
3 2.46442 0.16068 0.18315 1.63×10–2 
5 3.42747 0.15382 0.26498 1.63×10–2 

Case (b) 

 4/5 
1 1.06625 0.17554 0.08959 6.53×10–2 
2 2.18597 0.15372 0.27402 6.53×10–2 
3 2.83324 0.14927 0.29426 6.53×10–2 

Case (c) 

6/5 
2.2 1.18311 0.1972 0.04455 1.43×10–2 
3 1.9141 0.16898 0.14535 1.08×10–2 
5 2.927 0.16118 0.21191 9.82×10–2 
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Fig. 1. Definition sketch of a progressive wave in an open channel flow 
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Fig. 2. Nondimensional progressive wave profiles: (a) gh/c2 = 2, (b) gh/c2 = 3 and (b) gh/c2 = 5 
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Fig. 3. Nondimensional progressive wave profiles: (a) gh/c2 = 1, (b) gh/c2 = 2 and (b) gh/c2 = 3 
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Fig. 4. Nondimensional progressive wave profiles: (a) gh/c2 = 2.2, (b) gh/c2 = 3 and (b) gh/c2 = 5 
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