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(Communicated by Ronald M. Solomon)

Abstract. Nice quartinomial equations are given for unramified coverings
of the affine line in nonzero characteristic p with PSU(2m − 1, q′) and
SU(2m − 1, q′) as Galois groups where m > 1 is any integer and q′ > 1 is
any power of p.

1. Introduction

Let m > 1 be any integer, let q′ > 1 be any power of a prime p, let q = q′2,
consider the polynomials F † = F †(Y ) = Y n

′
+ Xq′Y v + XY w + 1 and F ′∗ =

F ′∗(Y ) = Y n
′∗

+XY + 1 in indeterminates X,Y over an algebraically closed field
k of characteristic p, where n′ = 1 + q + · · · + q2m−2, v = 1 + q + · · · + qm−1,
w = 1 + q + · · · + qm−2, n′∗ = 1 + q′ + · · · + q′m−1, and consider their respective
Galois groups Gal(F †, k(X)) and Gal(F ′∗, k(X)). Both these are special cases of
the families of polynomials giving unramified coverings of the affine line in nonzero
characteristic which were written down in my 1957 paper [A01]. In my “Nice
Equations” paper [A04], as a consequence of Cameron-Kantor Theorem I [CKa] on
antiflag transitive collineation groups, I proved that Gal(F ′∗, k(X)) = the projec-
tive special linear group PSL(ν, q′); the m = 2 case of this was actually proved in
my Feit-Serre-Email paper [A03] as a consequence of the Zassenhaus-Feit-Suzuki
Theorem. In the present paper, as a consequence of Liebeck’s characterization of
classical groups by orbit sizes [Li2], I shall show that Gal(F †, k(X)) = the projective
special unitary group PSU(2m − 1, q′). Note that Liebeck’s orbit size characteri-
zation depends on the Rank 3 characterization of Liebeck [Li1] and the primitive
divisor characterization of Penttila-Praeger-Saxl [PPS], which in turn are based on
CT = the Classification Theorem of Finite Simple Groups. Also note that, in the
present paper, I only use the two-orbit case of Liebeck’s orbit size characterization
which, as Liebeck points out in the Introduction of [Li2], depends only on Liebeck’s
1987 paper [Li1] and not on the Penttila-Praeger-Saxl paper [PPS].

As a corollary of the above-mentioned theorem that the Galois group of F † is
PSU(2m− 1, q′), I shall show that the Galois group of a more general polynomial
f † is also PSU(2m− 1, q′). Moreover, by slightly changing f † and F †, I shall show

that we get polynomials φ† and φ†1 whose Galois group is the special unitary group

SU(2m−1, q′). The polynomials f †, φ† and φ†1 are also special cases of the families of
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polynomials giving unramified coverings of the affine line in nonzero characteristic
written down in [A01].

It is a pleasure to thank Martin Liebeck for having promptly produced [Li2] at
my request, and Ulrich Meierfrankenfeld for inspiring conversations.

2. Notation and outline

Let kp be a field of characteristic p > 0, let q′ > 1 be any power of p, let q = q′2,
and let m > 1 be any integer. To abbreviate frequently occurring expressions, for
every integer i ≥ −1 we put

〈i〉 = 1 + q + q2 + · · ·+ qi (convention: 〈0〉 = 1 and 〈−1〉 = 0).

We shall frequently use the geometric series identity

1 + Z + Z2 + · · ·+ Zi =
Zi+1 − 1

Z − 1

and its corollary

〈i〉 = 1 + q + q2 + · · ·+ qi =
qi+1 − 1

q − 1
.

Let

f † = f †(Y ) = Y 〈2m−2〉 + 1 +
m−1∑
i=1

(
T q
′qi−1

i Y 〈m−2+i〉 + TiY
〈m−1−i〉

)
and note that then f † is a monic polynomial of degree 〈2m − 2〉 = 1 + q + q2 +
· · · + q2m−2 in Y with coefficients in the polynomial ring kp[T1, . . . , Tm−1]. Now
the constant term of f † is 1 and the Y -exponent of every other term in f † is 1

modulo p, and hence f † − Y f †Y = 1 where f †Y is the Y -derivative of f †. Therefore
DiscY (f †) = 1 where DiscY (f †) is the Y -discriminant of f †, and hence the Galois
group Gal(f †, kp(T1, . . . , Tm−1)) is well-defined as a subgroup of the symmetric
group Sym〈2m−2〉.

For 1 ≤ e ≤ m− 1, let f †e be obtained by substituting Ti = 0 for all i > e in f †,
i.e., let

f †e = f †e (Y ) = Y 〈2m−2〉 + 1 +
e∑
i=1

(
T q
′qi−1

i Y 〈m−2+i〉 + TiY
〈m−1−i〉

)
and note that then f †e is a monic polynomial of degree 〈2m − 2〉 = 1 + q + q2 +
· · · + q2m−2 in Y with coefficients in the polynomial ring kp[T1, . . . , Te] and, as
above, DiscY (f †e ) = 1 and the Galois group Gal(f †e , kp(T1, . . . , Te)) is a subgroup of
Sym〈2m−2〉. Note that if k = kp = an algebraically closed field (of characteristic p >

0), then F † is obtained by substituting X for T1 in f †1 and hence Gal(F †, k(X)) =

Gal(f †1 , kp(T1)).

In Section 3, we factor f † as f † = ff∗ where f = f(Y ) and f∗ = f∗(Y ) are
monic polynomials of degrees (q′qm−1+1)〈m−2〉 and qm−1(q〈m−2〉−q′〈m−2〉+1)
in Y with coefficients in kp[T1, . . . , Tm−1] respectively. In Section 4, we

show that f and f∗ are irreducible in kp(T1, . . . , Tm−1)[Y ], and hence
Gal(f †, kp(T1, . . . , Tm−1))may be regarded as a subgroup of PGL(2m−1, q) having
2 orbits of sizes (q′qm−1 + 1)〈m − 2〉 and qm−1(q〈m − 2〉 − q′〈m − 2〉 + 1). Given
any e with 1 ≤ e ≤ m − 1, by putting Ti = 0 for all i > e in f and f∗ we get
f †e = fef

∗
e where fe and f∗e are monic polynomials of degrees (q′qm−1 + 1)〈m− 2〉
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and qm−1(q〈m− 2〉 − q′〈m− 2〉+ 1) in Y with coefficients in kp[T1, . . . , Te] respec-

tively. In Section 4, we also show that fe and f∗e are irreducible in kp(T1, . . . , Te)[Y ],
and hence Gal(f †e , kp(T1, . . . , Te)) may be regarded as a subgroup of PGL(2m−1, q)
having 2 orbits of sizes (q′qm−1 + 1)〈m−2〉 and qm−1(q〈m−2〉− q′〈m−2〉+ 1). In
Section 6, from this orbit description, we deduce the result that if kp is algebraically
closed, then Gal(f †, kp(T1, . . . , Tm−1)) = Gal(f †e , kp(T1, . . . , Te)) = PSU(2m−1, q′)
for 1 ≤ e ≤ m− 1.

Consider the monic polynomials

φ† = φ†(Y ) = Y q
2m−1−1 + 1 +

m−1∑
i=1

(
T q
′qi−1

i Y q
m−1+i−1 − TiY q

m−i−1
)

and

φ†e = φ†e(Y ) = Y q
2m−1−1 + 1

+
e∑
i=1

(
T q
′qi−1

i Y q
m−1+i−1 − TiY q

m−i−1
)

for 1 ≤ e ≤ m− 1

of degree q2m−1 − 1 in Y with coefficients in kp[T1, . . . , Tm−1] and kp[T1, . . . , Te]
respectively, and note that, as before, DiscY (φ†) = DiscY (φ†e) = 1. In Sec-
tion 6, as a consequence of the above result about the Galois groups of f † and
f †e , we show that if kp is algebraically closed, then Gal(φ†, kp(T1, . . . , Tm−1)) =
Gal(φ†e, kp(T1, . . . , Te)) = SU(2m− 1, q′) for 1 ≤ e ≤ m− 1.

In Section 5, we give a review of linear algebra including definitions of
PSU(2m− 1, q′) and SU(2m− 1, q′).

3. Factorization of the basic equation

We find a root hm(Y ) ∈ GF(p)[Y ] of the polynomial

Y 1+(q−q′)〈m−2〉Rq
′
+R−

(
Y 〈2m−2〉 + 1

)
by telescopically putting

hm(Y ) =
m−1∑
µ=0

Y α(m,µ) −
m−2∑
µ=0

Y α
′(m,µ),

where

α(m,µ) = (q′qm−1 + 1)〈m− 2− µ〉 for 0 ≤ µ ≤ m− 1

and

α′(m,µ) = (qm + 1)〈m− 3− µ〉+ qm−2−µ[1 + (q − q′)〈µ〉] for 0 ≤ µ ≤ m− 2,

and checking that then

1 + (q − q′)〈m− 2〉+ q′α(m, 0)

= 1 + (q − q′)〈m− 2〉+ q′(q′qm−1 + 1)〈m− 2〉
= 〈2m− 2〉
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and, for 0 ≤ µ < m− 1,

1 + (q − q′)〈m− 2〉+ q′α(m,µ+ 1)

= 1 + (q − q′)〈m− 2〉+ q′(q′qm−1 + 1)〈m− 3− µ〉
= 1 + q〈m− 2〉+ qm〈m− 3− µ〉 − q′〈m− 2〉+ q′〈m− 3− µ〉
= qm−2−µ(1 + q〈µ〉) + (qm + 1)〈m− 3− µ〉 − q′qm−2−µ〈µ〉
= (qm + 1)〈m− 3− µ〉+ qm−2−µ[1 + (q − q′)〈µ〉]
= α′(m,µ)

and, for 0 ≤ µ < m− 1,

1 + (q − q′)〈m− 2〉+ q′α′(m,µ)

= 1 + (q − q′)〈m− 2〉+ q′(qm + 1)〈m− 3− µ〉+ q′qm−2−µ[1 + (q − q′)〈µ〉]
= 〈m− 2− µ〉+ q′[−〈m− 2〉+ (qm + 1)〈m− 3− µ〉+ qm−2−µ〈µ+ 1〉]
= (q′qm−1 + 1)〈m− 2− µ〉
= α(m,µ)

and

α(m,m− 1) = 0

and hence

Y 1+(q−q′)〈m−2〉hm(Y )q
′
+ hm(Y )

=
m−1∑
µ=0

Y 1+(q−q′)〈m−2〉+q′α(m,µ) −
m−2∑
µ=0

Y 1+(q−q′)〈m−2〉+q′α′(m,µ)

+
m−1∑
µ=0

Y α(m,µ) −
m−2∑
µ=0

Y α
′(m,µ)

= Y 〈2m−2〉 + 1.

Likewise, for any integer 0 < i < m, we find a root hi(Y, Ti) ∈ GF(p)[Y, Ti] of the
polynomial

Y 1+(q−q′)〈m−2〉Rq
′
+R−

(
T q
′qi−1

i Y 〈m−2+i〉 + TiY
〈m−1−i〉

)
by telescopically putting

hi(Y, Ti) =
i−1∑
µ=0

Y α(i,µ)T q
i−1−µ

i −
i−2∑
µ=0

Y α
′(i,µ)T q

′qi−2−µ

i ,

where

α(i, µ) = qi−1−µ〈m− 1− i〉+ (q′qm−1 + 1)〈i− 2− µ〉 for 0 ≤ µ ≤ i− 1

and

α′(i, µ) = 〈m− 3− µ〉
+ qm〈i− 3− µ〉+ qm−2−µ[1 + (q − q′)〈µ〉] for 0 ≤ µ ≤ i− 2,
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and checking that then

1 + (q − q′)〈m− 2〉+ q′α(i, 0)

= 1 + (q − q′)〈m− 2〉+ q′qi−1〈m− 1− i〉+ q′(q′qm−1 + 1)〈i− 2〉
= 〈m− 2 + i〉

and, for 0 ≤ µ < i− 1,

1 + (q − q′)〈m− 2〉+ q′α(i, µ+ 1)

= 1 + (q − q′)〈m− 2〉+ q′qi−2−µ〈m− 1− i〉+ q′(q′qm−1 + 1)〈i− 3− µ〉
= 1 + q〈m− 2〉+ qm〈i− 3− µ〉 − q′〈m− 2〉+ q′qi−2−µ〈m− 1− i〉+ q′〈i− 3− µ〉
= 〈m− 3− µ〉+ qm−2−µ(1 + q〈µ〉) + qm〈i− 3− µ〉 − q′qm−2−µ〈µ〉
= 〈m− 3− µ〉+ qm〈i− 3− µ〉+ qm−2−µ[1 + (q − q′)〈µ〉]
= α′(i, µ)

and, for 0 ≤ µ < i− 1,

1 + (q − q′)〈m− 2〉+ q′α′(i, µ)

= 1 + (q − q′)〈m− 2〉+ q′〈m− 3− µ〉
+ q′qm〈i− 3− µ〉+ q′qm−2−µ[1 + (q − q′)〈µ〉]

= 〈m− 2− µ〉+ q′[−〈m− 2〉+ 〈m− 3− µ〉+ qm〈i− 3− µ〉+ qm−2−µ〈µ+ 1〉]
= qi−1−µ〈m− 1− i〉+ (q′qm−1 + 1)〈i− 2− µ〉
= α(i, µ)

and

α(i, i− 1) = 〈m− 1− i〉
and hence

Y 1+(q−q′)〈m−2〉hi(Y, Ti)
q′ + hi(Y, Ti)

=
i−1∑
µ=0

Y 1+(q−q′)〈m−2〉+q′α(i,µ)T q
′qi−1−µ

i −
i−2∑
µ=0

Y 1+(q−q′)〈m−2〉+q′α′(i,µ)T q
i−1−µ

i

+
i−1∑
µ=0

Y α(i,µ)T q
i−1−µ

i −
i−2∑
µ=0

Y α
′(i,µ)T q

′qi−2−µ

i

= T q
′qi−1

i Y 〈m−2+i〉 + TiY
〈m−1−i〉.

Summing the above equations for hi with 0 < i ≤ m we get

Y 1+(q−q′)〈m−2〉f(Y )q
′
+ f(Y ) = f †(Y ),

where we have put

f = f(Y ) =
m−1∑
µ=0

Y α(m,µ) −
m−2∑
µ=0

Y α
′(m,µ)

+
m−1∑
i=1

i−1∑
µ=0

Y α(i,µ)T q
i−1−µ

i −
m−1∑
i=1

i−2∑
µ=0

Y α
′(i,µ)T q

′qi−2−µ

i .
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By factoring the LHS of the previous equation, it follows that

f † = ff∗, where f∗ = f∗(Y ) = Y 1+(q−q′)〈m−2〉f(Y )q
′−1 + 1.

Note that the (µ = 0) term in the above first summation is Y (q′qm−1+1)〈m−2〉 and
its exponent (q′qm−1 + 1)〈m − 2〉 is strictly greater than the Y -exponent of every
other term in the above four summations, and hence f is a monic polynomial of
degree (q′qm−1 +1)〈m−2〉 in Y with coefficients in kp[T1, . . . , Tm−1], and therefore
f∗ is a monic polynomial of degree 1+(q−q′)〈m−2〉+(q′−1)(q′qm−1 +1)〈m−2〉 =
qm−1[1 + (q − q′)〈m− 2〉] in Y with coefficients in kp[T1, . . . , Tm−1]. Thus

f † = ff∗, where f and f∗ are monic polynomials

of degrees (q′qm−1 + 1)〈m− 2〉 and qm−1[1 + (q − q′)〈m− 2〉] in Y

with coefficients in kp[T1, . . . , Tm−1] respectively.

(3.0)

For 1 ≤ e ≤ m − 1, let fe = fe(Y ) and f∗e = f∗e (Y ) be obtained by putting
Ti = 0 for all i > e in f and f∗ respectively. Then by (3.0),

for 1 ≤ e ≤ m− 1 we have f †e = fef
∗
e , where fe and f∗e are

monic polynomials of degrees

(q′qm−1 + 1)〈m− 2〉and qm−1(q〈m− 2〉 − q′〈m− 2〉+ 1) in Y

with coefficients in kp[T1, . . . , Te] respectively.

(3.1)

4. Irreducibility

Now for 1 ≤ e ≤ m− 1 we have

f †e = AeT
q′

1 −BeT1 + Ce,

where 0 6= Ae = Y 〈m−1〉 ∈ kp[Y ], 0 6= Be = −Y 〈m−2〉 ∈ kp[Y ] and

Ce = Y 〈2m−2〉 + 1 +
e∑
i=2

(
T q
′qi−1

i Y 〈m−2+i〉 + TiY
〈m−1−i〉

)
∈ kp[Y, T2, . . . , Te],

and hence in particular degT1f
†
e = q′. Also clearly degT1fe = 1 and hence degT1f

∗
e =

q′ − 1.
By letting I to be the Y -adic valuation of Q = kp(Y, T2, . . . , Te), i.e., the real

discrete valuation whose valuation ring is the localization of kp[Y, T2, . . . , Te] at
the principal prime ideal generated by Y , we see that I(Ae) = 〈m − 1〉 and
I(Be) = 〈m − 2〉; hence I(Be/Ae) = 〈m − 2〉 − 〈m − 1〉 = −qm−1 and therefore
GCD(q′−1, I(Be/Ae)) = 1. Also obviouslyAe and Ce have no nonconstant common
factor in kp[Y, T2, . . . , Te]. Therefore by Lemmas (4.2) and (4.3) of [A05],

fe and f∗e are irreducible in kp(T1, . . . , Te)[Y ] for 1 ≤ e ≤ m− 1.(4.1)

By taking e = m− 1 in (4.1) we see that,

f and f∗ are irreducible in kp(T1, . . . , Tm−1)[Y ].(4.2)

Notation. Recall that < denotes subgroup, and / denotes normal subgroup. Let
the groups SL(m, q) / GL(m, q) and PSL(m, q) / PGL(m, q) and their actions on
GF(q)m and P(GF(q)m) be as on pages 78–80 of [A03]. Let

Θm : GL(m, q)→ PGL(m, q) = GL(m, q)/GF(q)∗
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be the canonical epimorphism where we identify the multiplicative group GF(q)∗

with scalar matrices which constitute the center of GL(m, q).

Now, in view of Proposition 3.1 of [A04], by (3.0), (3.1), (4.1) and (4.2) we get
the following:

Theorem (4.3). Assuming GF(q) ⊂ kp, for 1 ≤ e ≤ m− 1, in a natural manner
we may regard

Gal(φ†e, kp(T1, . . . , Te)) < GL(2m− 1, q)

and

Gal(f †e , kp(T1, . . . , Te)) < PGL(2m− 1, q),

and then

Θ2m−1(Gal(φ†e, kp(T1, . . . , Te))) = Gal(f †e , kp(T1, . . . , Te))

and Gal(f †e , kp(T1, . . . , Te)) has two orbits of sizes (q′qm−1 + 1)〈m − 2〉 and
qm−1(q〈m − 2〉 − q′〈m − 2〉 + 1). In particular, again assuming GF(q) ⊂ kp, in
a natural manner we may regard

Gal(φ†, kp(T1, . . . , Tm−1)) < GL(2m− 1, q)

and

Gal(f †, kp(T1, . . . , Tm−1)) < PGL(2m− 1, q)

and then

Θ2m−1(Gal(φ†, kp(T1, . . . , Tm−1))) = Gal(f †, kp(T1, . . . , Tm−1))

and Gal(f †, kp(T1, . . . , Tm−1)) has two orbits of sizes (q′qm−1 + 1)〈m − 2〉 and
qm−1(q〈m− 2〉 − q′〈m− 2〉+ 1).

Recall that a quasi-p group is a finite group which is generated by its p-Sylow
subgroups. Since DiscY f

†
e = 1 = DiscY φ

†
e for 1 ≤ e ≤ m− 1, by the techniques of

the proofs of Proposition 6 of [A01] and Lemma 34 of [A02] we get the following:

Theorem (4.4). If kp is algebraically closed, then, for 1 ≤ e ≤ m − 1,
Gal(f †e , kp(T1, . . . , Te)) and Gal(φ†e, kp(T1, . . . , Te)) are quasi-p groups. Hence in
particular, if kp is algebraically closed, then Gal(f †, kp(T1, . . . , Tm−1)) and
Gal(φ†, kp(T1, . . . , Tm−1)) are quasi-p groups.

5. Review of linear algebra

Dickson (page 131 of [Dic]) defines the hyperorthogonal group in GF(q) on m
indices as the group of all a = (aij) ∈ GL(m, q) which leave the m-variate form

xq
′+1

1 + · · ·+ xq
′+1
m

unchanged, i.e., for which

m∑
j=1

(
m∑
i=1

xiaij

)q′+1

=
m∑
i=1

xq
′+1
i
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or equivalently (page 133 of [Dic]) 1

m∑
j=1

aq
′+1
ij = 1 for 1 ≤ i ≤ m

and
m∑
j=1

aija
q′

lj = 0 for 1 ≤ i ≤ m and 1 ≤ l ≤ m with i 6= l.

Dickson denotes this group by Gm,p,s, where ps = q′, and calculates (page 134 of
[Dic]) its order Ωm,p,s; Dickson allows m = 1 and notes that (page 137 of [Dic])
then it is a cyclic group of order q′ + 1. In modern terminology, this group is
called the general unitary group and is denoted by GU(m, q′); see [LiK] where
on the second line of Table 2.1C on page 19, Dickson’s Ωm,p,s is given as the
order |I|. We also put SU(m, q′) = GU(m, q′) ∩ SL(m, q) and we call this the
special unitary group; Dickson denotes this (page 137 of [Dic]) by Hm,p,s. Finally,
we put PGU(m, q′) = Θm(GU(m, q′)) and PSU(m, q′) = Θm(SU(m, q′)), and we
call these the projective general unitary group and projective special unitary group
respectively; Dickson (page 138 of [Dic]) denotes PSU(m, q′) by HO(m, q) and
notes its simplicity provided (m, q′) 6= (2, 2), (2, 3), (3, 2) (note that we are always
assuming m > 1).

Note that for any H < GL(m, q) we have

SU(m, q′) < H ⇔ PSU(m, q′) < Θm(H).(5.1)

In case (m, q′) 6= (3, 2), this follows exactly as in the proof of Lemma 2.3 of [A04]
because then by (22.4) of [Asc] SU(m, q′) is generated by transvections. Now the
order of every transvection is p or 1, and the said proof is based on the fact that
the group is generated by elements of p-power order, i.e., equivalently, the fact that
it is a quasi-p group. So (5.1) holds also for (m, q′) = (3, 2); namely, SU(3, 2) is a
quasi-2 group because its transvections generate a subgroup of index 4 (see lines
13–14 on page 124 of [Tay]).

By (2.3.3), 2.10.4(ii) and 2.10.6(i) of [LiK], for any H < GL(m, q) we have

SU(m, q′) / H ⇔ SU(m, q′) < H < GU(m, q′)GF(q)∗(5.2)

and by 2.1.C of [LiK] we have

[GU(m, q′)GF(q)∗ : SU(m, q′)] 6≡ 0 (mod p).(5.3)

Since SU(m, q) is quasi-p, it is generated by the p-power elements of SU(m, q′)GF(q)∗,
and hence these two subgroups have the same normalizer in GL(m, q). Therefore
by (5.2), for any G < PGL(m, q) we have

PSU(m, q′) / G⇔ PSU(m, q′) < G < PGU(m, q′)(5.4)

and by (5.3) we get

[PGU(m, q′) : PSU(m, q′)] 6≡ 0 (mod p).(5.5)

Finally, for any H < GL(m, q) we obviously have

H < GU(m, q′)GF(q)∗ ⇔ Θm(H) < PGU(m, q′).(5.6)

1To make up for Dickson’s unusual definition of the product of matrices (pages 76 and 88 of
[Dic]), in his matrix (αij), the index i should be regarded as the column number and j the row

number.
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In view of (5.4), Theorem (a) of [Li2] may be stated thus:

Theorem (5.7) [Liebeck]. G < PGL(2m − 1, q) has two orbits of sizes
(q′qm−1 +1)〈m−2〉 and qm−1(q〈m−2〉−q′〈m−2〉+1) if and only if after a suitable
change of basis of GF(q)2m−1 we have PSU(2m− 1, q′) < G < PGU(2m− 1, q′).

Let PSU(2m − 1, q′)1 denote PSU(2m − 1, q′) as it acts on the orbit of size
(q′qm−1 + 1)〈m− 2〉, and let PSU(2m− 1, q′)2 denote PSU(2m− 1, q′) as it acts on
the orbit of size (q′qm−1 + 1)〈m− 2〉. These actions are faithful for (m, q) 6= (2, 4)
because PSU(2m−1, q′) is simple, and for (m, q) = (2, 4) because the proper normal
subgroups of PSU(3, 2) have index 2, 4 or 8 (page 124 of [Tay]), and hence

PSU(2m− 1, q′)1 ≈ PSU(2m− 1, q′) ≈ PSU(2m− 1, q′)2(5.8)

where ≈ denotes isomorphism of abstract groups.

6. Galois groups

By (4.3), (5.1), (5.6) and (5.7) we get the following:

Theorem (6.1). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m− 1, in a natural manner we
have

SU(2m− 1, q′) < Gal(φ†e, kp(T1, . . . , Te)) < GU(2m− 1, q′)GF(q)∗

and

PSU(2m− 1, q′) < Gal(f †e , kp(T1, . . . , Te)) < PGU(2m− 1, q′).

Hence in particular, if GF(q) ⊂ kp, then in a natural manner we have

SU(2m− 1, q′) < Gal(φ†, kp(T1, . . . , Te)) < GU(2m− 1, q′)GF(q)∗

and

PSU(2m− 1, q′) < Gal(f †, kp(T1, . . . , Te)) < PGU(2m− 1, q′).

By (3.0) to (3.1), (4.1), (4.2), (4.4), (5.2), (5.3), (5.4), (5.5), (5.8) and (6.1) we
get the following:

Theorem (6.2). If kp is algebraically closed, then, for 1 ≤ e ≤ m−1, in a natural
manner we have

Gal(φ†, kp(T1, . . . , Tm−1)) = Gal(φ†e, kp(T1, . . . , Te)) = SU(2m− 1, q′)

and

Gal(f †, kp(T1, . . . , Tm−1)) = Gal(f †e , kp(T1, . . . , Te)) = PSU(2m− 1, q′)

and

Gal(f, kp(T1, . . . , Tm−1)) = Gal(fe, kp(T1, . . . , Te))

= PSU(2m− 1, q′)1 ≈ PSU(2m− 1, q′)

and

Gal(f∗, kp(T1, . . . , Tm−1)) = Gal(f∗e , kp(T1, . . . , Te))

= PSU(2m− 1, q′)2 ≈ PSU(2m− 1, q′).
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