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The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities oper-
ating at very high powers ranging from tens of kW to MW for next generations. The high powers
may result in several nonlinear effects which would affect the performance of the detector. In this
paper, we investigate the effects of radiation pressure, which tend to displace the mirrors from their
resonant position resulting in the detuning of the cavity. We observe a remarkable effect, namely,
that the freely hanging mirrors gain energy continuously and swing with increasing amplitude. It
is found that the ‘time delay’, that is, the time taken for the field to adjust to its instantaneous
equilibrium value, when the mirrors are in motion, is responsible for this effect. This effect is likely
to be important in the optimal operation of the full-scale interferometers such as VIRGO and LIGO.

04.80.Nn Gravitational wave detectors and experiments, 42.65.Sf Dynamics of nonlinear optical
systems, 42.60.Da Resonators, cavities, amplifiers, arrays, and rings

I. INTRODUCTION

The general theory of relativity predicts the existence of gravitational waves. Since gravity couples very weakly
to matter, highly sensitive detectors are required to detect gravitational waves. Over the next decade several large-
scale interferometric gravitational wave detectors will come on-line. These include the LIGO, composed of two
interferometric detectors situated in the United States each with baselines of 4 km, VIRGO, an Italian/French project
located near Pisa with a baseline of 3 km, GEO600, a British/German interferometer under construction near Hannover
with a baseline of 600 m, TAMA in Japan, a medium-scale laser interferometer with a baseline of 300 m and with
funding approval AIGO500, the proposed 500 m project sponsored by ACIGA [1–5]. The large scale interferometers
will use Fabry-Perot cavities and the ground based detectors will have arm lengths of few kilometers. There are several
noise sources which plague the detector. Amongst them, the photon shot noise is dominant at high frequencies. It
is reduced by increasing the amount of power of the laser source, as the noise is inversely proportional to the square
root of the power. Therefore the cavities envisaged will operate with very high powers in their arms, tens of kiloWatts
for initial detectors and perhaps powers as high as megaWatts in planned advanced detectors. The high power stored
in the cavities can generate a number of nonlinear effects which would adversely affect the operation of the optical
cavity. Here, we look into one such effect, namely, the dynamics of mirrors under the radiation pressure force. In
earlier literature, we and others had investigated the thermo-elastic deformation of the mirrors due to the absorption
of the power in the coatings and performed a longitudinal analysis of the cavity [6–10]. Following these investigations,
we studied the effects of radiation pressure in the cavity, in the regime when the displacement of the mirror is small
compared with the line-width of the cavity, the cavity is servoed at resonance with a realistic servo control and the
variation in the radiation pressure force is linearly dependent on the displacement [11]. The radiation pressure effects
have also been investigated in earlier literature [12–16]. Here, however, since we now have a reasonably good idea
about the instrumental parameters to be used in the large scale detectors, we expect that our analysis here will be
important to the experimentalists. We assume that the mirrors are hanging ‘freely’ (there is no active servo control)
and the radiation pressure exerts force on them which displaces them from resonance. It is very important for people
involved in the experiments being built to have a quantitative idea of the magnitude of these effects. For instance,
it would be necessary to take into account these effects and modify the servo transfer functions to be used for the
control of the experiments.

The main result of this paper is to establish that the freely hanging mirrors continuously gain energy and swing with
ever increasing amplitude when subjected to radiation pressure force arising from the light field. This result seems
to be in opposition with the results of Meystre et al., who found in [12] a mirror confinement due to the radiation
pressure. The reason for this difference of behaviour is the ‘time delay’ effect which is also examined in detail in this
paper. The time delay is large for the long (kilometric) cavities, primarily studied here, while it can be neglected for
short cavities such as the one studied by Meystre et al. [12] and those used in most of labs. Closed form expressions
have been given which facilitate in understanding the physics of the phenomenon.
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The paper is organized as follows:
In section II, we set up the equation of motion of the free mirrors. We examine the motion of the mirrors with
the two forces (i) the radiation pressure force, (ii) the force of gravity. In section III, we numerically integrate the
equations of motion using the so called ‘Phase Space Method’. We present the results for the particular case, when
the mirrors are in the resonance positions and the laser is switched on. We observe that the amplitude of the motion
of the mirrors increases with time and energy is pumped into the system. For very large times, when the amplitude
of the system is also very large, so that the mirrors cross several of the Fabry-Perot resonances in one cycle of the
pendulum, the motion approximates to that of an anti-damped harmonic oscillator. We give also, for comparison,
the numerical results obtained for a short cavity : no anti-damping is exhibited in this case, in agreement with earlier
results [12]. In section IV, we obtain analytically, under the quasi-static approximation, the phase space trajectories
of the motion of the individual mirrors as well as the motion in the differential mode and the common mode (the
centre of mass mode). The analytical results match with the numerical ones remarkably. In section V, we give a
quantitative description of the phenomenon under the assumption that the velocity of the mirror does not change
very much on the time scale of the storage time of the cavity. We find that the gain in energy is due to a differential
radiation pressure force arising from the asymmetry, according as the mirrors are approaching each other or moving
away from each other. We obtain approximate analytical expressions for the differential force, the time ‘delay’ and
then proceed to compute the gain in energy per cycle when the mirrors encounter a single resonance or cross several
resonances. For large amplitudes, when the mirrors cross several resonances, the system behaves like an anti-damped
harmonic oscillator. We can then associate an effective negative Q-factor for the system. We show that the Q-factor
depends on the input power, the finesse of the cavity and the round trip time of the cavity. Finally in section VI, we
study the behaviour of the system when it is initially in equilibrium and goes out of lock. This may happen when the
servo loop is suddenly opened.

II. OPTICAL AND MECHANICAL EQUATIONS

We consider only ‘free’ mirrors meaning that no servo control loop is used. The only forces acting on the mirrors
are the radiation pressure force and gravity which manifests itself as the restoring force of the pendulum. We consider
a single cavity with mirrors M1 and M2 which are suspended as shown in fig.1. The input beam A enters the cavity
from mirror M1 and bounces back and forth between the two mirrors. After several round trips, whose number is of
the order of the finesse of the cavity, the field builds up inside the cavity. The magnitude of the field depends on the
finesse of the cavity, the input power and the detuning of the cavity. The field or the power produces the radiation
pressure force which pushes on the mirrors, driving them apart, thus changing the distance between the two. This
in turn changes the power inside the cavity. For instance, if the mirrors were hanging in a position of resonance, the
radiation pressure force drives the cavity out of resonance, reducing the radiation pressure force. The mirrors start
swinging with radiation pressure force adjusting to the continuously varying length of the cavity. It is found that the
radiation pressure force does not adjust instantaneously to the new length but lags behind the expected static force
given by the Fabry-Perot curve (the Airy function) by a time-lag comparable to the storage time of the cavity. The
time-lag has been called ‘time delay’ in earlier literature [14].

The slowly varying amplitude of the field inside the cavity at time t, denoted by B(t) satisfies the following equation,

B(t) = t1A exp[ikx1(t)] +RB(t− τ) exp[ikL(t)], (2.1)

where, xi(t), ri and ti, i = 1, 2 are the positions, reflectivities and transmitivitties of the mirrors M1 and M2
respectively; R = r1r2, k = 2π/λ, where λ is the wavelength of the laser light, τ is the round trip time and

L(t) = 2x2(t− τ/2) − x1(t) − x1(t− τ). (2.2)

In case of the VIRGO cavity, the arm length L0 is 3 km, the round trip time τ = 2L0/c ∼ 2 × 10−5 seconds, where
c is the speed of light. This equation provides an iterative relation between the field amplitude at time t to the field
amplitude at time t− τ and the positions of the mirrors. We investigate the following two situations:

1. The mirrors are hanging in the positions of resonance and the laser is switched on at the time t = t0.

2. The mirrors are hanging in an equilibrium state with the radiation pressure force balancing the restoring force
of the suspension.
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Situation 1 represents a possible experiment. When the servo-control is not operating, the mirrors will be freely in
motion. Then, when the laser is switched on, the radiation pressure will affect the motion of the mirrors. However,
here, we mainly deal with the case (as given in 1), when the mirrors are initially at rest and in the resonance position.
However, many of our analytical formulae, for example, that of ‘time-delay’ apply to more general situations.
Situation 2 describes the case when the interferometer is already in operation. Now if the servo-control loop is
suddenly opened, the system will tend to become unstable. This case is also investigated.

The equations of motion for the mirrors correspond to forced harmonic oscillator with the forcing term arising
from the radiation pressure force. We first compute the radiation pressure forces on each mirror. For mirror M1, the
radiation pressure force comprises of two terms, electric field due the input laser beam, A and the intra-cavity field
B as shown in fig.1. The radiation pressure force on M1 is,

F1(t) = −2

c

[

R2P (t− τ) − r21P0

]

, (2.3)

where, P (t) = |B(t)|2, P0 = |A|2 and c is the speed of light. r2i is the fraction of average number of photons reflected
by i th mirror for i = 1, 2 respectively.
For M2, the radiation pressure force is given by

F2

(

t− τ

2

)

=
2r22
c
P (t− τ). (2.4)

The equations of motion for the mirrors with the masses, natural frequencies and damping constants, mi, ωi, τi;
i = 1, 2, respectively, are

mi

[

ẍi +
2

τi
ẋi + ω2

i (xi − xi0)
]

= Fi(t), (2.5)

where xi0 is the initial position of the mirror such that the separation between the mirrors before switching on the laser
is L0 = x20 − x10. The full system of equations to be evolved in time are the equations from (1) to (5) (non-linearly
coupled equations). In section III, we first carry out the task numerically and in later sections, after we have gained
sufficient physical insight into the problem, we shall present the semi-analytical results.

III. THE NUMERICAL SOLUTION

For the numerical calculation, we consider the VIRGO parameters for the suspension and the optical cavity. We
assume m1 = m2 = m ≃ 28 kg., ω1 = ω2 = ω ≃ 3.75 rad./sec. which corresponds to a resonant frequency of about
0.6 Hz. The Q factor for the suspension is typically of the order of 106. The optical parameters are τ ≃ 2× 10−5 sec.,
the wavelength of the carrier wave λ ≃ 1.064µm, r1 ≃ 0.94, r2 ≃ 1. The wave number is k = 2π/λ and R ≃ 0.94. We
examine the behaviour of the system with the input power varying between 1 kW to 30 kW. Initial detectors will be
operated at input powers ∼ 1 kW and advanced detectors at powers of few hundred kW or even upto a MW. Note
that these are the input powers for the main cavities after power recycling has been implemented.

With the above values for the parameters, we find that the instabilities set in, on the time-scales of few seconds to
few hundred seconds. Since the Q-factor of the pendulum suspension is so large, the damping in the oscillations can
be neglected for the numerical integrations carried over the time intervals ≪ Q

ω ∼ 106 seconds. Most of our numerical
integrations range from few seconds to at most few thousands of seconds. Neglecting damping, the equations of
motion for the mirrors become,

ẍi + ω2(xi − xi0) =
Fi(t)

m
= fi(t), i = 1, 2. (3.1)

The equations of motion of the mirrors are non-linear differential equations and cannot be solved by simple methods.
We integrate the equations by the so called ‘Phase Space method’ described below:
Let ∆ be the time-step of integration. The natural time step we assume is ∆ = τ . We assume that the forcing
term is a constant during each time step. This assumption is not unrealistic because the round trip time interval
for the VIRGO cavity is of the order of 10−5 seconds; note that this approximation will hold a fortiori for more
common (much shorter) cavities. The equations simplify enormously under this assumption. Thus we can integrate
the equations exactly within this time interval.
The evolution of the equations goes as follows:
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xn+1 = xn cosω∆ + pn sinω∆ +
fn(1 − cosω∆)

ω2
, (3.2)

pn+1 = −xn sinω∆ + pn cosω∆ +
fn sinω∆

ω2
, (3.3)

where we have dropped the indices 1,2 for simplicity and p = ẋ/ω. Here, x represents the displacement from the
mean position x0. The index n represents the value of the variable at the time n∆, i.e. for example, xn = x(n∆).
The optical component has the following iterative evolution:

f1n = −2[R2Pn−1 − r21P0]

mc
, (3.4)

f2n =
2r22Pn−1

mc
, (3.5)

Pn = |Bn|2, (3.6)

Bn = t1A exp(ikx1n) +RBn−1 exp(ikLn), (3.7)

Ln = 2x2n − x1n − x1,n−1. (3.8)

This scheme solves the system of equations. Since it is the length of the cavity that actually matters for this problem,
we define the variable,

ψ(t) = k[x2(t) − x1(t)] − kL0, (3.9)

and present the results in phase space plots of ψ̇/ω vs ψ. ψ(t) is called the differential mode.
We first consider the case when the mirrors are hanging in the resonance position and the laser is switched on. As

the power builds up, the radiation pressure acts on the mirrors, driving them apart resulting in the detuning of the
cavity. This reduces the radiation pressure force and the mirrors swing back. The motion is oscillatory and as we
note, the oscillations increase in amplitude. We employ two values of input power namely, 1 kW (initial VIRGO) and
30 kW corresponding to advanced detectors. The results are presented by the phase space trajectories of the mirrors.
We consider four variables for the purpose, x1, x2, ψ and φ. φ, defined later in the text in eq. (24), section IV - B, is
called the common mode. For the range of powers considered 1 kW to 30 kW, the phase space curves obtained from
numerical simulations, for few tens of seconds are qualitatively the same.
We make the following general observations about the features:

1. We observe from figs.4 and 5 that the radius of the phase space curve increases with every cycle which indicates
that the mirrors continuously gain energy from the input laser beam implying that the system is nonconservative.
We also observe that the gain per cycle is not constant but some sort of a periodic function of the radius of the
phase space diagram. We shall consider this phenomenon in detail in section V.

2. The (static) radiation pressure force peaks when the cavity is in resonance and drops down to zero when it is
out of resonance, (see fig.3). The full width at half maximum (FWHM) of the radiation pressure force F (ψ) is
about 0.06 rad, corresponding to the FWHM of the cavity resonance curve for a finesse of 50. Hence, for the
initial stretch of the phase space trajectory, the mirrors experience the radiation pressure force whereas during
the rest of the time, they only experience the restoring force (and the force due to the input power for M1). The
phase-space trajectory is circular during the restoring force regime and is deformed away from the circularity
when the mirrors encounter the appreciable amount of radiation pressure near resonance (see fig.4).

3. Since the laser is beamed in the positive x-direction, there is an asymmetry about the origin. This shifts the
centre of mass trajectory to the positive side of the x axis (see fig.4). The period of oscillation of the common
mode is twice that of the period of the differential mode of the system (see fig.2).
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4. If we let the laser beam pump in energy for large amounts of time, the amplitude also becomes large and the
mirrors sweep across several resonances. The phase space trajectory then tends to become more and more
circular and the motion approximates to that of a simple harmonic motion. This feature can be observed in all
the four modes. The circularity of the trajectory implies that the motion is almost ‘free’. The radiation pressure
force has little effect because the mirrors sweep too quickly across the resonances for it to affect their motion.
However, as we shall see that the steady gain in energy still persists. Figure 5 depicts this phenomenon.

5. The amount of energy imparted to mirror 2 by the laser beam after getting reflected, is more than to mirror 1.
Thus M2 swings with larger amplitude as compared to M1 (see fig.4) (the radiation force is larger on M2).

6. Let’s turn now to the dynamics of a short cavity. The fig.6 shows the space of phase trajectory for the differential
mode ψ, for a short cavity of length L0 = 30 cm (instead of 3 km for the other examples) and with the same
optical and mechanical parameters and initial conditions as in fig.5 obtained with the 3 km long cavity. The
round-trip time is here τ ≃ 2 × 10−9 s, and the simulation lasts for 500 s (corresponding to a huge number of
round trips in the cavity). At the contrary of the kilometric cavity, see fig.5, no energy gain is found. This
is in accord with the results of Meystre et al., who have previously developped a theory of radiation-pressure
driven cavities [12]. The physical reason for this difference of behaviour between a short (common) cavity and
a kilometric one is precisely due to the difference of length, as explained in the following sections. Time delay
effects are thus of utmost importance for very long cavities, while they can be neglected for usual ones (and so
have been neglected in Meystre’s theory [12]).

IV. PHASE SPACE TRAJECTORIES FOR THE FIRST CYCLE

In this section, we obtain approximate closed form expressions for the equations of the phase space trajectories for
about a period of one cycle. For the VIRGO case, this turns out to be between one or two seconds. This analysis
could be useful in the context of the initial locking of the cavity.

A. The differential mode ψ

The equations of motion of the individual mirrors, equations (3) to (5) allow us to write the equation of motion of
the system of mirrors in the differential mode as,

ψ̈ + ω2ψ =
k

m
[F2(t) − F1(t)]. (4.1)

In the quasi-static approximation,

P (t− τ) ≃ P (t) =
Pmax

1 + (2F
π )2 sin2 ψ

, (4.2)

where F = π
√
R/(1 −R) is the finesse of the cavity and

Pmax =
t21P0

(1 −R)2
. (4.3)

Thus the equation for ψ is,

ψ̈

ω2
+ (ψ + ψ0) =

F0

1 + (2F
π )2 sin2 ψ

, (4.4)

where

F0 =
2k(r22 +R2)

mω2c
Pmax, (4.5)

and

ψ0 =
2kP0r

2
1

mω2c
. (4.6)

5



For the VIRGO cavity, we have the following numerical values for the quantities:
ψ0 ≃ 0.88P0/10kW , F ≃ 50 and F0 ≃ 62.6P0/10kW .
For F ≫ 1, the term on the right hand side of equation (18) is non-zero only when ψ ≪ 1. With the approximation
sinψ ∼ ψ, we can easily integrate equation (18) to get the phase space trajectory of the mirrors,

ψ̇2

ω2
+ (ψ + ψ0)

2 =
F0π

F tan−1(
2F
π
ψ) + ψ2

0 . (4.7)

For low powers like 1 kW, the approximation sinψ ∼ ψ works remarkably well and agrees with the numerically
obtained phase space trajectory. In order to compare the analytical and numerical results, we compare the maximum
value of ψ, namely ψmax, of the trajectories for various input powers in fig.7.

1. When ψ is small that is near resonance, the equation of the trajectory reduces to

ψ̇2

ω2
= 2F0ψ. (4.8)

Thus the trajectory is parabolic in shape and passes through the origin.

2. When ψ ∼ 1, the trajectory is a circle as expected since there is hardly any radiation pressure force acting on
the mirrors. The equation of the trajectory in this regime is

ψ̇2

ω2
+ (ψ + ψ0)

2 =
F0π

2

2F + ψ2
0 . (4.9)

When the input power is very large ∼ 50 kW, the trajectory does not maintain this simple shape. For example,
when P0 = 50 kW, the trajectory is as shown in fig.8.

This is because the high powers make the mirrors cross several resonances in the first cycle itself and consequently
the trajectory has more complex behaviour. We do not pursue this case here.

B. The common mode φ

In this sub-section, we study the motion of the center of mass of the system of two mirrors. We define the center
of mass coordinate of the two mirrors as,

φ = k(x1 − x10) + k(x2 − x20). (4.10)

The equation of motion of the system in the center of mass coordinate is,

φ̈+ ω2φ =
k

m
[F1(t) + F2(t)], (4.11)

where for F1(t) and F2(t) are given by equations (3) and (4). The equation of motion takes the form,

φ̈

ω2
+ (φ− ψ0) =

Fc

1 + (2F
π )2 sin2 ψ

, (4.12)

where

Fc =
2k(r22 −R2)t21P0

mcω2(1 −R)2
. (4.13)

For VIRGO parameters, Fc ≃ 4.0 P0

10kW . The above equation is a second order differential equation and is coupled
nontrivially to the ψ mode. The strategy we adopt is to study the motion of the center of mass in different regimes;
(1) near the resonance and (2) away from the resonance. The full trajectory is obtained by matching the solution in
the region of the overlap.
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1. For 0 ≤ ψ ≤ 0.5; sinψ ∼ ψ, equation (26) becomes

φ̈

ω2
+ (φ− ψ0) =

Fc

1 + (2Fψ
π )2

. (4.14)

Further for ψ ≤ 3 × 10−3, (2Fψ
π )2 ≪ 1; we neglect (2Fψ

π )2 as compared to 1 and obtain,

φ̇2

ω2
+ φ2 = 2(Fc + ψ0)φ. (4.15)

For the VIRGO cavity and input power 1 kW, Fc ∼ 0.4. Neglecting the quadratic term in φ as compared to the
linear term, we see that the motion of the center of mass describes a parabola for low values of ψ and φ,

φ̇2

ω2
≃ 0.97φ. (4.16)

We compare the slopes of the phase space diagrams in the differential mode as well as the common mode. The
phase space curve is more steeper in the common mode as compared to the differential mode.

2. Away from resonance, ψ ≥ 0.5, the power stored inside the cavity is almost zero. The equation of motion of the
center of mass is given by,

φ̈+ φ = ψ0. (4.17)

The solution for the initial conditions φ = φ0, φ̇ = φ̇0 is,

φ̇2

ω2
+ (φ− ψ0)

2 =
φ̇2

0

ω2
+ (φ0 − ψ0)

2. (4.18)

This solution must be matched to the solution in case 1. Suppose we match the solution at φ0 = 0.5, from equation
(29) we have φ̇/ω ∼ 0.7. This gives the approximate solution. In general, the solution in this region is,

φ̇2

ω2
+ (φ− ψ0)

2 = 2(Fc + ψ0)φ0 + (φ0 − ψ0)
2 − φ2

0. (4.19)

The equations (29) and (33) describe the full solution for this mode.
The phase space trajectory for the individual mirrors can be obtained from the motion of the mirrors in the

differential and the common modes. The trajectories of the x1 and x2 modes are shown in figures 2 and 4.

V. ENERGY CONSIDERATIONS AND ANTI-DAMPING

In the previous section, we examined the motion of the mirrors under the radiation pressure force. We noted that
each time when the mirrors cross a resonance they experience an impulsive force. In this section, we analyze in detail
as to how the system gains energy as each resonance is encountered.

A. Quasi-static approximation

We start with the quasi-static approximation in which the system is conservative, thus there is no net gain in energy.
We then phenomenologically introduce the ‘time delay’, τlag which now leads to gain in energy. We thus obtain τlag
in terms of the cavity parameters and this gives us an equation for an anti-damped harmonic oscillator. The energy
gain can be obtained as shown in the following sections. Finally, for large times, the gain can be expressed through a
negative Q of a harmonic oscillator. In the quasi-static approximation, we assume that the mirrors are moving ‘slowly’
that is the intra-cavity power has time to adjust itself to the slowly changing positions of mirrors, i.e. τψ̇ ≪ 1 − R.
Thus neglecting τ from the equation of motion we obtain,
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ψ̈

ω2
+ (ψ + ψ0) = Fs(ψ), (5.1)

where ψ0 as given in the previous section gives the constant displacement due to the constant input power P0 from
the laser beam and Fs(ψ) is the radiation pressure force in the static case is given by,

Fs(ψ) =
F0

1 + (2F
π )2 sin2 ψ

, (5.2)

where F0 is given in equation (19). The dimensionless energy of the system is an integral of motion and is obtained
as

E =
1

2

ψ̇2

ω2
+ Vsus(ψ) + V0(ψ) + Vrad(ψ), (5.3)

where the potentials are given by,

Vsus(ψ) =
1

2
ψ2, (5.4)

V0(ψ) = ψ0ψ, (5.5)

Vrad(ψ) = −
∫ ψ

0

Fs(ψ)dψ. (5.6)

The system is conservative in this approximation. These results have been obtained in the earlier literature [14].
However, we note from the results of numerical simulations that the system indeed gains energy with every cycle of

oscillation. Moreover, this gain occurs when the radiation pressure force is appreciable i.e. when the system is near
resonance. Most importantly, we observe from the numerical simulations that radiation pressure force lags behind its
quasi-static value by a ‘time-lag’ which we denote by τlag. We find that in the case of VIRGO, τlag varies from about
16τ to 30τ as one climbs up the resonance curve from half its maximum to the maximum. τlag is of the order of the
storage time of the cavity. With this in mind we write the force F (t) ∼ Fs(t− τlag) and obtain the following equation
of motion,

ψ̈

ω2
+ (ψ + ψ0) = Fs(ψ(t− τlag)). (5.7)

Taylor expanding the forcing term to the first order we obtain,

ψ̈

ω2
+ τlag

dFs
dψ

ψ̇ + (ψ + ψ0) = Fs(ψ), (5.8)

as the equation of motion for the system. The ψ̇ term in equation (41) is responsible to the gain/loss of energy of the
system. This solely depends on the sign of dFs

dψ since τlag is always positive. If we start the system from resonance

at ψ = 0, ψ starts increasing slowly and in the region, dFs

dψ < 0 and the system experiences more force than what

it would have been in the quasi-static case. This excess force is manifested in an excess amount of energy ∆E. In
general, the energy gained/lost over a certain amount of time is given by,

∆E = −
∫ ψ2

ψ1

τlag(ψ)
dFs
dψ

ψ̇dψ = −
∫ t2

t1

τlag
dFs
dψ

ψ̇2dt. (5.9)

It is clear from equation (42) that when dFs

dψ < 0, the energy gain ∆E > 0 and vice-versa. But since the radiation

pressure force always gives a kick in the positive -ψ direction,the |ψ̇| is always larger when dFs

dψ < 0. In other words,

the amount of energy gained by the system is more than the amount of energy lost. Hence, there is always a net gain
in energy when the system crosses a resonance. We need to compute this extra force ∆F which gives rise to the gain
in the energy to the first order in τlag. We obtain,

∆F = −dFs
dψ

ψ̇τlag. (5.10)
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We note that ∆F depends on the phase velocity and dFs

dψ . Since dFs

dψ ≃ 0 when the system is away from resonance,

∆F comes into play only in the region of resonance. Another way of describing the fundamental asymmetry is to say
that for the moving mirror, the wavelength of the laser light is modified by the Doppler effect. When the mirrors are
approaching each other, the apparent frequency of the light for the cavity is increased, or equivalently, the line-width
of the cavity seen from the laboratory frame is narrower and vice versa when the mirrors move away from one another,
the line-width is seen to be broader. The consequence is that the braking force (when the mirrors move against the
light) acts for a shorter time than the accelerating force, when the mirrors are moving away from each other. Over
one cycle the energy difference is positive and there is a continuous increase of mechanical energy which comes from
the laser.

B. The computation of the time-delay

In this section, we obtain a closed form expression for the ‘time-delay’, τlag under the approximation that the relative
velocity of the mirrors does not change much during the storage time of the cavity. This is observed in the numerical
simulations and hence the approximation may be justified. τlag is the most important quantity for computing the
rate of gain in energy. The intra-cavity radiation field at n-th time instant Bn is related to the intra-cavity field at
n+ 1-th time instant via an iterative relation,

Bn+1 = t1A+R exp(2iψn)Bn, (5.11)

where, Bn = B(nτ), ψn = ψ(nτ). We compute the field Bn from initial time t0, which we take to be zero. We take
the time step for the iteration to be the round trip time τ . In order to compute the intra-cavity field, it is necessary to
know the temporal behaviour of ψ. For the static case, when the mirrors are stationary, we get the equilibrium field
Bs. When the mirrors are moving, the approximation now comes into play, namely, we assume that ψ̇ is constant
over the storage time of the cavity.
The Taylor expansion of ψk to the first order around t = 0 is,

ψk = ψ0 + kτψ̇0, (5.12)

where ψ0 = ψ(t = 0). Iterating equation (44) n times starting from t = 0 when B = B0, we obtain,

Bn = t1A

n−1
∑

m=0

Rme
2i

∑

n−1

k=n−m
ψk +Rne2i

∑

n−1

k=0
ψkB0. (5.13)

For large n, the last term in equation (46) tends to zero and the electric field amplitude at the n-th iteration is given
by,

Bn = t1A
n−1
∑

m=0

Rme
2i

∑

n−1

k=n−m
ψk . (5.14)

• If the relative separation between the mirrors is constant in time, ψk = ψ0, we retrieve the equilibrium field Bs:

Bs = t1A
∞
∑

m=0

Rme2imψ0 =
t1A

1 −Re2iψ0

. (5.15)

• Turning now to the case in hand, when ψk varies linearly with time, the sum in the exponential for large n is
approximately given by

n−1
∑

k=n−m

ψk ∼ mψn − 1

2
m2τψ̇0. (5.16)

We combine equations (47) and (49) to obtain,

Bn = t1A

n−1
∑

m=0

Rme2imψne−im
2τψ̇0 . (5.17)
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If ψ̇ is small then the exponent can be linearized. Then it is possible to express the field as the sum of the static
term Bs and the remaining part ∆B which corresponds to the time lag.
We write

Bn = Bs + ∆B, (5.18)

where

∆B = −iτt1Aψ̇0

n−1
∑

m=0

Rme2imψnm2. (5.19)

Summing the arithmetico-geometric series [17] yields,

∆B = −2it1Aτ
ψ̇R2e−4iψ

(1 −Re−2iψ)3
. (5.20)

The corresponding power ∆P is given by

∆P = 2Re(Bn∆B
∗

n) ∼
16t21|A|2τR2ψψ̇(1 −R)

[(1 −R)2 + 4Rψ2]3
. (5.21)

Refering to equation (19), we get the expression for the dimensionless extra force,

∆F =
2k(r22 +R2)

mω2c
∆P. (5.22)

The above expression of power is for values of ψ near resonance when ψ ≪ 1. When ψ ∼ nπ, the same expression
can be replaced by the ψ − nπ under similar approximations. The effective ‘time delay’ τlag is now obtained
from (43), (54) and (55).

τlag =
2τR

(1 −R)(1 + (2F
π )2ψ2)

. (5.23)

We note from the equation (56) that the effective time lag is maximum at the resonance and starts decreasing as
one goes away from the resonance value. For VIRGO parameters, we compute the value of the τlag. At FWHM, i.e.
ψ ∼ 0.03, τlag ∼ 16τ , going up to τlag ∼ 30τ as one approaches resonance.

C. Energy gain near the resonance at ψ = 0

In this section, we examine the motion of the mirrors for small amplitudes. Initially before the laser is switched on,
the cavity is at resonance i.e. the two mirrors are separated by an integral multiple of π in phase (kL0

π is an integer).
The system starts from ψ = 0 and the motion is allowed to evolve with time. We restrict the amplitude to |ψ| ≤ π
and study the system in this regime. Our goal is to compute the net gain in energy, ∆Ecycle during one cycle of
oscillation. We have,

∆Ecycle = 2

∫ ψ1

0

∆F (ψ)dψ, (5.24)

where

∆F (ψ) =
16τR2F0ψψ̇

(1 −R)3(1 + (2Fψ
π )2)3

. (5.25)

We note that dFs

dψ ≤ 0 in this regime. We set an arbitrary cut-off ψ1 (when ∆F ≪ 1) as the system moves away from

the resonance. The factor of two is because the force is encountered twice during the cycle.
The ψ̇ is obtained from the energy balance equation,
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1

2

ψ̇2

ω2
=

∫ ψ

0

Fs(ψ)dψ ∼ π

2F F0 tan−1(
2Fψ
π

). (5.26)

Thus from (57) and (58) we get,

∆Ecycle = 8ωτ

√

RF
π
F

3/2
0 I(φ1), (5.27)

where,

I(φ1) =

∫ φ1

0

φ(tan−1 φ)1/2

(1 + φ2)3
dφ, (5.28)

and φ1 = 2Fψ1/π. The cut-off φ1 should be away from the resonance and we find for VIRGO, φ1 ∼ 5 is an acceptable
value.

The numerical and the analytical results are compared in fig.9 by plotting the gain in energy per cycle for various
input powers.

D. Energy gain for large amplitudes

As the mirrors gain energy, they swing with ever increasing amplitude and sweep over several resonance peaks of the
Fabry-Perot cavity. The system gains energy at every resonance peak and thus the energy gained per cycle is the sum
of the energy gained at each resonance encountered. The peaks are encountered at ψ = nπ, with nmax ≥ n ≥ nmin,
nmin < 0 and nmax > 0. The total number of resonances encountered by the mirrors is nmax + |nmin| + 1. Also it
is observed that nmax ≥ |nmin| due to the built-in asymmetry arising due the laser power pumped in the positive
x-direction (see fig.3).
Let ∆En be the energy gain at the n-th resonance, then the total energy gained per cycle ∆Ecycle is given by,

∆Ecycle =

nmax
∑

nmin

∆En, (5.29)

where

∆En = ∆En+ + ∆En−, (5.30)

and ∆En−, ∆En+ is the energy lost or gained respectively and given by the following expressions,

∆En+ =

∫ nπ+ψ1

nπ

∆Fdψ > 0, (5.31)

∆En− =

∫ nπ

nπ−ψ1

∆Fdψ < 0. (5.32)

Combining equations (57,58,62 to 65) we get the energy gain at nπ as,

∆En ≃ 16τR2F0

(1 −R)3
(ψ̇n+ − ψ̇n−)

∫ ψ1

0

ψ

(1 + (2Fψ
π )2)3

dψ, (5.33)

where ψ̇n− and ψ̇n+ are the relative phase velocities of the mirrors for ψ ≤ nπ and ψ ≥ nπ respectively. The energy

gained at different resonance positions of the mirrors is different because the ψ̇ is different at different resonances, ψ̇
is maximum when |n| is small and becomes small when n approaches nmin or nmax. Thus the net energy gain per
cycle is

∆Ecycle ≃
τR2F0

(1 −R)3
( π

F
)2

nmax
∑

nmin

(ψ̇n+ − ψ̇n−). (5.34)
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The next task is to compute the (ψ̇n+ − ψ̇n−), the increase in phase space velocity while crossing the resonance
position as a function of n. For large values of n, the radiation pressure effect reduces remarkably as is observed in
fig.3. Hence we take the static force equation to compute the increase in the phase space velocities. We integrate
equation (41) neglecting the anti-damping term obtaining the change in kinetic energy as,

1

2ω2
(ψ̇2
n+ − ψ̇2

n−) = F0

∫ ∞

−∞

1

1 + (2F
π )2ψ2

dψ − 2ψ1ψ0 − 2nπψ1. (5.35)

Equation (68) reduces to

(ψ̇n+ − ψ̇n−)

ω
=

π2F0

F
− 4ψ1(ψ0 + nπ)

2ψ̇(nπ)/ω
, (5.36)

where we have approximated ψ̇n+ + ψ̇n− ≃ 2ψ̇(nπ).

To compute ψ̇(nπ)/ω analytically, we consider the dimensionless instantaneous energy as given by equation (36),

E =
1

2

ψ̇2

ω2
+

1

2
(ψ2 + 2ψψ0) −

2k(r22 +R2)t21P0

mω2c
J(ψ), (5.37)

where J(ψ) =
∫ ψ

0
dψ

(1−R)2+4R sin2 ψ
. We can approximate the integral for large motions as J(ψ) ∼ nπ

1−R2 ∼ ψ
1−R2 for

n crossings of the resonances. Assuming r2 = 1 and r1 = R, we have,

ψ̇2

ω2
+ (ψ − ψc)

2 = (2E + ψ2
c ), (5.38)

where ψc = 2kP0

mω2c ∼ P0

10kW (for VIRGO parameters). The phase space trajectory is a circle centred around ψc with
radius

ρ =
√

2E + ψ2
c . (5.39)

Equation (71) gives ψ̇(nπ)
ω as

ψ̇(nπ)

ω
=

√

ρ2 − (nπ − ψc)2. (5.40)

We rewrite the gain in energy per cycle as,

∆Ecycle =
τR2F0ω

(1 −R)3
( π

F
)2
S(nmax, nmin), (5.41)

where nmax is the greatest integer not greater then (ψc + ρ)/π and nmin is the smallest integer not smaller then
(ψc − ρ)/π. We have,

S(nmax, nmin) =

nmax
∑

n=nmin

g(nπ), (5.42)

where

g(nπ) =
π2F0

2F − 2ψ1(ψ0 + nπ)
√

ρ2 − (nπ − ψc)2
. (5.43)

For large motion of the mirrors, since the mirrors cross many resonances, we may replace the sum by an integral over
n. Changing over to the variable M = nπ − ψc, in which the system appears more symmetric about the origin, we
have,

S =

∫ Mmax

Mmin

α− βM

(ρ2 −M2)1/2
dM (5.44)
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where α = πF0

2F − 2ψ1

π (ψ0 + ψc) and β = 2ψ1

π . Mmax and Mmin correspond to nmax and nmin respectively.
We note that ρ satisfies the following inequalities,

Mmax ≤ ρ ≤Mmax + 1, |Mmin| ≤ ρ ≤ |Mmin| + 1. (5.45)

We observe that when n is large, the difference between |Mmin| and Mmax is small, of the order of 1 or 2 times π.
We denote the difference, by δM where,

δM = Mmax − |Mmin| = Mmax +Mmin. (5.46)

The integral in equation (77) splits into three parts S = S1 − S2 − S3, where

S1 = 2α sin−1Mmax/ρ, (5.47)

S2 ≃ δM
2α

(ρ2 −M2
max)

1/2
, (5.48)

S3 ≃ β
MmaxδM

(ρ2 −M2
max)

1/2
. (5.49)

The dominant term is S1 which gives the general behaviour and shape of the curve shown in fig.10. While S2 produces
a small kink in the curve, the effect of S3 can essentially be ignored. In case of the VIRGO cavity and P0 = 30 kW
and ρ ≃ 20, S1 ≃ 16.7, S2 ≃ 1.75 and S3 ≃ 0.26. For the initial VIRGO detector, P0 = 1 kW, and ρ ≃ 4.0, S1 ≃ 0.56
while S2, S3 ≃ 0.

Considering only S1, the energy gain per cycle is approximately given by,

∆Ecycle =
2∆Emax

π
sin−1 Mmax

ρ
, Mmax ≤ ρ ≤Mmax + 1, (5.50)

where,

∆Emax =
τR2F0ωπ

3

(1 −R)3F2

(πF0

2F − 2ψ1

π
(ψ0 + ψc)

)

. (5.51)

We observe the following features in the profile of ∆Ecycle:

• At the resonance position , ρ = Mmax the energy gain is maximum and equal to ∆Emax. For the VIRGO cavity
specifications and input power of 30 kW, ∆Emax ≃ 3.8. When P0 = 1 kW, ∆Emax ≃ 4.2 × 10−2.

• Equation (83) shows that the energy gain per cycle is a decreasing function of ρ. The energy gain decreases till
the next resonance is crossed, where it suddenly increases to ∆Emax. As the amplitude increases, ρ increases
from Mmax to Mmax + 1, the mirrors sweep across the resonances a little faster which deprives them from
gaining the full energy ∆Emax. ∆Ecycle therefore reduces from ∆Emax to ∆Emin, where

∆Emin =
2∆Emax

π
sin−1 Mmax

Mmax + 1
. (5.52)

• The energy profile in this range of ρ i.e.Mmax to Mmax + 1 can be approximately given by,

(∆Emax − ∆Ecycle)
2 =

8(∆Emax)
2

π2Mmax
(ρ−Mmax). (5.53)

We note that the minimum value is,

∆Emin ∼ ∆Emax

(

1 −
( 8

π2Mmax

)1/2)

, (5.54)

and it tends to the maximum value ∆Emax as Mmax becomes very large.

• In fig.10, it is seen that there is a kink after ∆Emin is reached . The kink occurs because Mmin reduces by 1
when the mirrors cross yet another resonance on the negative side. This is accounted for by the second term.

Since the E ∼ ρ2, the rate of increase of ρ per cycle, denoted by ∆ρ is given by ∆ρ = ∆E
ρ .
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E. The negative Q-factor

In the previous section, we have seen that for large values of ρ, the amount of energy gained by the system of two
mirrors per cycle is a constant and tends to ∆Emax. The system is an anti-damped harmonic oscillator which gains
on an average, constant amount of energy per cycle. We may therefore associate a negative quality factor −Q, where
Q > 0, with the system which describes the anti-damping. In this section, we endeavor to study the behaviour of Q.
The equation of motion of an anti-damped harmonic oscillator is given by,

χ̈

ω2
− χ̇

ωQ
+ χ = 0, (5.55)

where Q is constant. The solution for χ is of the form

χ ∼ χ0e
ωt/2Qe±iωt. (5.56)

where χ = ψ − ψc. The amplitude is ρ ∼ χ0e
ωt/2Q when ρ is sufficiently large so that the phase space trajectory is

approximately circular and can be compared to a simple harmonic oscillator. Since a constant amount of energy is
gained per cycle, the Q will be a function of time. However, we can still describe the system by an average Q taken
over a cycle, which we denote by < Q >cycle, since the change in Q during one cycle is small. Moreover, we assume

1
ω<Q>cycle

d<Q>cycle

dt ≪ 1 i.e. the fractional variation of < Q >cycle over a period of a cycle can be ignored. Thus we

obtain a W.K.B. solution for ρ(t) as,

ρ(t) = ρ(t0) exp
[1

2

∫ t

t0

ωdt

< Q >cycle

]

, (5.57)

where t0 is some fixed but arbitrary initial time instant and ρ(t0) is the radius of the circular phase-space trajectory
at t0. We have also assumed that < Q >cycle≫ 1. From equations (72) and (90) the energy of the harmonic oscillator
is given by,

E(t) − E(t0) =
1

2
ρ2(t0)

[

exp
(

∫ t

t0

ωdt

< Q >cycle

)

− 1
]

. (5.58)

Since the energy gain is a constant and during a cycle equal to ∆Emax, we can equate 2π
ω
dE
dt to ∆Emax to obtain,

E(t) − E(t0) =
ω∆Emax

2π
(t− t0). (5.59)

The time evolution of ρ is obtained, which yields,

ρ(t) = ρ(t0)
[

1 +
∆Emax
πρ2

0

ω(t− t0)
]1/2

. (5.60)

Equating the logarithmic derivatives of (90) and (93) we obtain,

< Q >cycle (t) =< Q >cycle (t0) + ω(t− t0), (5.61)

where < Q >cycle (t0) = πρ2(t0)
∆Emax

. We observe that both the energy and the < Q >cycle increase linearly with time

while the amplitude ρ increases as t1/2. < Q >cycle (t) depends through ∆Emax on the input power, finesse and the
round trip time.

For P0 = 30 kW of input power, the trajectory more or less obtains a circular shape when ρ(t0) ∼ 15. For the
VIRGO parameters,

∆Emax ∼ 0.42(
P0

10kW
)2 ∼ 3.79. (5.62)

Thus < Q >cycle (t0) ∼ 186 and so

< Q >cycle (t) ∼ 186 + ω(t− t0). (5.63)
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Further, if we also consider the effect of the damping of the suspension then the limit cycle will be approached
when < Q >cycle∼ Qsus ∼ 106 for VIRGO. < Q >cycle will attain this value after ωt ∼ 106 which corresponds to
little more than 3 days. The corresponding amplitude is given by,

ρ = ρ(t0)
[

1 +
ω(t− t0)

< Q >cycle (t0)

]1/2 ∼ 1100. (5.64)

This simple analysis will have to be modified when the limit cycle is almost reached, that is when, < Q >cycle∼ Qsus.
Here, however our goal was to estimate the time it takes to reach this stage. The above analysis is then adequate for
the purpose. However, when the servo operates or otherwise such a situation is unlikely to arise because other effects
such as mirror tilting etc. will be important long before and then the dynamics will be completely different.

VI. THE EQUILIBRIUM CASE

Lastly, we examine the case when the mirrors are in equilibrium under the radiation pressure force and the restoring
force. We have to determine whether the equilibrium is stable or unstable. To this end, we perturb the equation (41)
about a given equilibrium point. Writing ψ = ψeq + δψ and linearizing, we get,

δψ̈ − 2

τeq
δψ̇ + Ω2δψ = 0, (6.1)

where,

τeq = −
( π

2F
)3 (1 + (

2Fψeq

π )2)3

F0ψeqτ
√
R

, (6.2)

and

Ω2
eq = 2

(2F
π

)2 ψeqF0

(1 + (
2Fψeq

π )2)2
. (6.3)

If ψeq ≤ 0, Ω2
eq ≤ 0, the sign of τeq does not matter and the instability grows exponentially. If on the other hand

ψeq > 0, then although Ω2
eq > 0, τeq > 0 and this leads to gradually growing oscillations until the pendulum tips over

the maximum. We plot the phase space trajectory for the input power of 1 kW in fig.11. We conclude from this that
the cavity is always unstable when radiation pressure forces act. The time-delay plays a crucial role in making the
system unstable. The negative Q-factor for the motion of the mirrors near the equilibrium position, is given by,

Q = −1

2
Ωeqτeq . (6.4)

For an input power of 30 kW, with VIRGO cavity parameters, the equilibrium position of the mirrors near the
resonance at zero is ψeq ≃ 0.25. The corresponding values of the other quantities are Ωeq ≃ 4.75 and τeq ≃ 104

seconds. The negative Q-factor, Q ≃ −2.3×104. Whereas for initial VIRGO, P0 ≃ 1 kW, ψeq ≃ 0.16 thus Ωeq ≃ 1.67,
τeq ≃ 3.1 × 104 seconds, the negative Q-factor, Q ≃ −2.6 × 104.

VII. CONCLUSION

We have analysed the effect of radiation pressure on the freely hanging mirrors (no servo loop) suspended in the
laser interferometric optical cavities. After numerically evolving the full set of equations of motion with respect to
time, we find that the amplitude of the mirror oscillations continuously increases as time progresses. We introduce
the ‘time delay’, that is the time taken for field to adjust to the motion of the mirrors, in a phenomenological way
to explain the observed gain. We conclude that the gain in energy is due to the differential radiation pressure force
arising from the asymmetry depending upon the motion of the mirrors. From another viewpoint, we can also explain
the gain in energy qualitatively by the Doppler effect. With respect to the mirror, the frequency of the incoming laser
beam is higher as compared to that of the outgoing laser beam due to the Doppler effect. The deficit of the energy of
the laser beam after getting reflected from the mirror can be looked upon as the energy gained by the mirrors. The
values of the energy gain per cycle are computed analytically under the reasonable assumption that the mirrors are
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not accelerated within the time scale of the storage time of the cavity. For VIRGO parameters, the analytical values
agree remarkably with the numerical values. The interesting point to note is that the motion of the mirrors approaches
that of an anti-damped harmonic oscillator with a constant gain in energy as time progresses which implies that the
mirrors move too quickly to get affected by the radiation pressure force. The negative Q-factor of the anti-damped
oscillator depends on the input power, the finesse and the round trip time of the cavity and increases linearly as
a function of time. The analysis will have to be modified when the negative Q-factor becomes of the order of the
damping Q-factor of the suspension fibre, if such a case can arise.

In this paper, we have shown that the radiation pressure force makes the freely hanging mirror unstable for all

values of the input power and irrespective of the initial conditions.

The above analysis is relevant in the event, when the interferometer is in operation and if the servo loop is suddenly
opened. Then the motion of the hanging mirrors can be deduced from the above analysis. This analysis will be helpful
in designing a servo-control which can prevent this instability. In a previous work [11], the servo-control was included
in the linear regime of the Fabry-Perot curve assuming the transfer function for the servo given by Caron et al. [18].
Their work sets the stage for analysing the system in the non-linear regime as well, but it is then needed to know how
servo-control operates in the full regime.
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FIG. 1. Schematic diagram of the cavity and the intra-cavity fields.
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FIG. 2. Motion of the mirrors for the modes kx1, kx2, ψ and φ as a function of time for input power of 1 kW.
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FIG. 3. Radiation pressure force profiles for the modes kx1, kx2, ψ and φ in dimensionless units for input power of 1 kW
for one cycle. The conversion factor for converting the dimensionless force into Newtons is mω2/k.
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FIG. 5. Phase space diagram for ψ for the input power of 30 kW and integration time of 500 seconds.
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FIG. 6. Phase space diagram for ψ for the input power of 30 kW, integration time of 500 seconds and for a short cavity
(L0 = 30 cm). Unlike the long cavity, studied here, there is no energy gain : the phase-space trajectory remains remarkably
stable.
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FIG. 7. Comparison of the values of ψmax obtained analytically (smooth curve) and numerically (open circles) for input
powers of 1 kW, 5 kW, 10 kW and 30 kW.
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FIG. 8. Phase space diagram for the ψ mode for the input power of 50 kW and integration time of 3 seconds.
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FIG. 9. The gain in energy per cycle obtained analytically (smooth curve) and numerically (open circles) for input powers of
1 kW, 5 kW, 10 kW and 30 kW. To convert the dimensionless energy gain in Joules we multiply by the factor of mω2/k2

∼ 11.2
pico-Joules.
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FIG. 10. The dimensionless energy gain per cycle ∆Ecycle as a function of the amplitude of the ψ mode for the input power
of 30 kW. The plot is analytical.
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FIG. 11. The phase space diagram for the equilibrium case for the ψ mode. The input power is 1 kW and the integration
time is 4 seconds.
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