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Mathematics and the physicist’s conception

at,

of naturew

N. Mukunda

The many roles of mathematics in the continual evolution of the physicist’s picture of nature
are recalled. Examples and situations from classical and modern physics, mathematical formulation
versus physical mterpretation, wid mathematics as the language of nature are considered.

Some years ago, at an earhier annual meeting ot the
Indian Academy of Sciences, I had presented an invited
lecture on the theme “The Mathematical Style of Modern
Physics™. Two main ideas were explored: the growth
of the ideas of symmetry and invartance in physical
science, and the ubiquitous use of unobservable quantities
in an essential way in modern physical theories. In the
present article, intended to be both retrospective and
introspective, historical examples and episodes trom the
growth of physics will be recalled to highlight some
facets of the way mathematics enters in the development
of the physicist’s picture of nature. In the process it
will be seen that there are implications for the nature
and origins of mathematics itself.

It seems evident that the origins of mathematics can
be traced to human and social needs, commerce, land
survey and s0 on. That it is useful in describing natural
phenomena was also realized very early, for example
by Pythagoras in connection with music. As is well
known, the empirical Egyptian knowledge of geometry
was raised by the Greeks to a very high position, a
self-contained logical system which came to be regarded
as a product of pure reason. One of the things they
studied in great detail was the geometry of the conic
sections. But they found the circle so perfect a figure
that all heavenly bodies were declared to tollow circular

paths. One of the greatest events in the history of

science was Kepler's discovery that the planetary orbits
are ellipses and not circles, given the level of accuracy
of observations at that time. However this was still a
descriptive stage. The real transition from description
to explanation, prediction and understanding — the start
of modern science — came with Galileo and Newton, and
with it also the appreciation of the crucial role of
mathematics. Here is a famous passage from Galileo’s
‘Il Saggratore’ in 1623 about the ‘book of nature’™:

*Based on invited evening lecture ot the 64h Annual Meeting of
Indian Academy of Sciences, 30 October 1998, Mahaima Gandhi
University, Kotiayam, India.

N. Mukunda is with the Centre for Theoretical Studies and Departimem
of Physics, Indian Institute of Science, Bangalore 560 012, lndia and
Jawaharlal Nehro Centre for Advanced Scientific Research, Jakkur,
Bangalore 560 064, Indin.

634

‘Philosophy is written in this very sreat book which
always lies open before our eyes ... but one cannot
understand it unless one first learns to understand the
language and recognize the characters in which it is
written. It is written in mathematical language ...
without these means it 1S humanly impossible to under-
stand a word of it ... .

Already at this stage one is tempted to say —to the
extent that the laws of nature are part of objective
reality, mathematical structure is also an objective com-
ponent of nature, of reality. That there exist laws at
all, that nature 18 lawful, i1s of course a deep mystery.
The full meaning of this statement —its depth — will sink
into you only if you are precocious, or nearing retirement!

For a long time after Galileo and Newton, for almost
two centuries, mathematics and physics progressed hand
in hand. They reinforced one another, and often the
same individuals contributed to both. There are many
familiar examples of this: the development of calculus
to describe motion; the growth of partial differential
equations to handle continuum mechanics and later electro-
magnetism; the birth of Fourier series in solving problems
of heat conduction; and so on, But then the paths began
to sometimes diverge a little—and independent
developments in mathematics were tound to have pro-
found uses in physics somewhat later. Here are just a
few outstanding examples. The theory of groups —one
of the most beautiful developments in mathematics In
the 19th century — has seen its deepest applications in
the physics of the 20th century, particularly in the
framework of quantum theory. Another major advance
within 19th century mathematics was the discovery that
Euclidean geometry was just one of rnany geometries,
not an inevitable product of pure reason, that non-
Euclidean geometries could be consistently set up. This
culminated in the development of Riemannian geometry
around 1850. While Riemann himself had remarkable
ideas in physics, it was in the 1910s that Albert Einstein
made splendid use of Riemannian geometry in formu-
lating his general theory of relativity. In the case of
quantum mechanics, the theory of infinite dimensional
vector spaces or Hilbert space was developed inde-
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pendently within mathematics, and then put to use by
physicists, though in this case the gap in time was quite
short. One must also say that the uses of mathematics
in relativity and in quantum mechanics have greatly
stimulated further advances in mathematics itself: this
is so even to this day. All this being so, yet one has
to acknowledge that mathematics is more self-contained,
depending on inner coherence and consistency, and 1In
that sense does not depend on physics; while physics,
for which mathematical tools are essential, has ultimately
to deal with experiment and nature. Here i1s a recent
statement of C. N. Yang recognizing the differences in
the wellsprings of creativity in the two domains’:

‘It would be wrong, however, to think that the disci-
plines of mathematics and physics overlap very much;
they do not. And they have their separate aims and
tastes. They have distinctly different value judgements,
and they have different traditions. At the fundamental
conceptual level they amazingly share some concepts,
but even there, the life force of each discipline runs
along its own veins.’ |

Against this general background, I would now like
to recall a few instances from the development of

physics, which highlight 1mportant . facets of the rela-:

tionship to mathematics. However it 1s important to
understand and continually remind oneself that the physi-
cist’s picture of nature is always evolving and never
final; as experimental techniques improve, new pheno-
mena become accessible and they affect, modify and
become part of the overall picture. So the necessary
mathematical’ language also constantly evolves. .

Perhaps the single most important point to be made
is that in physics the interpretation of a mathematical
formulation and mathematical equations is an essential
component of complete understanding, as tmportant as
the mathematical component. And there have been
numerous instances, some of which 1 will recount pres-
ently, where the mathematical part has been discovered
first, new equations have been found, and this has then
been followed by a prolonged struggle to see exactly
what 1t all means! This situation has been well described
by Bertrand Russell:

‘It may be said generally that, in the mathematical
treatment of nature, we can be far more certain that
our formulae are approximately correct than we can be
as to the correctness of this or that interpretation of
them,’ ; |

It is like catching a tiger by its tail, or better still,
riding a tiger! You cannot let go or get off, and yet
you do not know where you are being taken!

When Newton proposed his Law of Universal Gravi-
tation 1n the Principia in 1687, it was a law of action
at a distance — any two masses in the universe, howsoever
far apart, would instantancously exert inverse square
law forces upon each other. The prevailing idea at that
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time, especially on the Continent, was that natural
influences could only be by material contact, not across
Intervening empty space. Yet, taken together with his
laws of motion, his law of gravitation worked beautifully,
and explained all of Kepler’s Laws and much more.
But was nature really so? Here is Newton himself
writing to Richard Bentley on this question in 1692-93,
a few years after the Principia®:

“That one body may act upon another at a distance
through a vacuum, without the mediation of anything
else, by and through which their action and force may
be conveyed from one to another, is to me so great an
absurdity, that I believe no man, who has in philosophical
matters a competent faculty of thinking, can ever fall
into.’

- Twenty years later, in 1713 in the second edition of
the Principia, he said*:

‘I have not been able to discover the cause of those
properties of gravity from phenomena, and I frame no
hypotheses; ... And to us it is enough that gravity does
really exist, and act according to the laws which we
have explained, and abundantly serves to account for
all the motions of the celestial bodies, and of our sea.’

One can see that while Newton trusted his mathematical
law, he was not willing to physically interpret it literally
as an action at a distance! But over the next century
or so, the successes of Newtonian dynamics were so
great that people got used to this idea and it was
extended also to electricity and magnetism. In the case
of gravity, the return to the action by contact point of
view took a long time. First the field concept had to
be developed by Faraday and Maxwell for electromag-
netism, and then after special relativity, Einstein went
on to the general theory which s the classical field
theory of gravitation. |

The next example has to do with Maxwell’s equations
for electromagnetic fields, formulated around 1865. When
he wrote to Faraday about this, the latter is supposed
to have replied that while he could not grasp all the
mathematics, he was glad that his physical ideas had
survived the process of being expressed in equations!
But this ‘mathematization’ by Maxwell was essen-
tial — he found an inconsistency in the equations, dis-
covered the displacement current, then went on to predict
electromagnetic waves. All this is a triumphant story.
Remember also that both special relativity and quantum
theory were first ‘seen’ through the ‘window’ of elec-
tromagnetism, and later understood to have much wider
applicability., But as for their physical interpretation = for
a long time Maxwell was ambivalent and tried to invent
mechanical ‘gears and wheels” models for electrie and
magnetic fields; and the ether concept was also adopted
because of the prevailing attitude that all understanding
in physics had to be on mechanistic lines. It ook
long time for this point of view to be overcome, for
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the ether to be given up and for electric and magnetic
fields to be regarded as primary constituents of nature,
not made up of anything else. The most eloquent
expression of this is from a 1907 review of special
relativity by Einstein™:

‘... electromagnetic forces appear here not as states
of some substance, but rather as independently existing
things that are similar to pnnderable matter and share
with it the feature of inertia.’

This story does not end here! By l905-—thdnl\¢. to
Planck's work and his own light quantum idea - Einstein
was convinced that the classical Maxwell theory had to
be changed, and he foresaw and said in effect: °I have
shown that the Maxwell field on its own “must be
quantized” '. And indeed that is what happened when
in 1927, Paul Dirac showed how to apply the principles
of the then new quantum mechanics to the Maxwell
field. Here we have electric and magnetic fields which
are not numbers any more but operators, new life
breathed into old symbols. The equations were the same
as before, but the interpretation had changed com-
pletely -~ from a mechanistic interpretation to primitive
classical fields to quantum field operators — in the period
from 1865 to 1927. One is reminded here of Hertz's
statement about Maxwell's equations:

‘One cannot escape the feeling that these mathematical
formulae have an independent existence and an intelli-
gence of their own, that they are wiser than we are,
wiser even than their discoverers, that we get more out
of them than was originally put into them.’

My next example concerns the Lorentz transformation
equations of special relativity, which as you know are
closely connected to Maxwell's equations. As early as
1887 Waldemar Voigt, and soon after Lorentz, showed
that in going to a moving reference frame it was
mathematically convenient to introduce a new time vari-
able ¢ distinct from the physical time t (ref. 6). Then
in 1904 Lorentz himself, and later Poincaré, found the
complete set of transformation equations for space and
time such that the Maxwell equations maintained their
forms. But they left it at that mathematical level. And
it was the genius of Einstein that tound the correct
physical interpretation, the new kinematics of space and
time, the relativity of simultaneity and of length meas-
urements. all of which were in fact contained in Lorentz’s

equations! Only then was their significance for all of

physics, going beyond electromagnetism, clearly recog-
nized and stated’:

‘The principle of relativity is a principle that narrows
the possibilities; it is not a model, just as the second
law of thermodynamics is not a model.’

The fourth episode in my list is a stunning one -1t
is the case of the Dirac equation which was evidently
discovered by him in 1928 while staring at a fireplace
in St. John’s College in Cambridge and trying to combine
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quantum mechanics and special relativity®! Earlier Pauli
had shown how to incorporate spin in nonrelativistic
quantum mechanics; Dirac’s approach however was radi-
cally different and led to one of the most beautiful
equations in physics. As Michael Atiyah said recently’:

‘The differential operator introduced by Dirac in his
study of the quantum theory of the electron has turned
out to be of fundamental importance both for physics
and for mathematics.’

This equation introduced spinors into physics in a
basic way, and from it came tumbling out as conse-
quences the spin and anomalous magnetic moment of
the electron and the fine structure of hydrogen. But it
also had negative energy solutions which seemed
unphysical and made the interpretation very difficuit.
For a while Dirac suggested that somehow these solutions
could be reinterpreted -as protons, partly he says as a
lack of courage and reluctance to increase the number
of elementary particles from three to four. Soon,
following arguments advanced by Oppenheimer and by
Weyl, it became clear that this Interpretation was
untenable, and then in 1931 Dirac introduced the concept
of positrons and the general idea of antimatter. Soon
after, positrons were experimentally found, and this
became another success of the Dirac equation. Today
we know that really the only consistent interpretation
of this equation is in terms of a quantum field.

Time now for an interlude. All these examples show
how difficult and nontrivial the problem of physical
interpretation of mathematical structure can be, how far
from being self-evident or straightforward. Within mathe-
matics the most important things are structures, opera-
tions, relationships and consistency —the symbols one
operates with need not have any meanings at all. (It is
like saying in biology that the key things are structure
and function.) The advantage of course is that the same
mathematical tools can be used in widely different
contexts — look at the use of Fourier’s theory in wave
propagation, communication, signal processing and even
the quantum mechanics of position and momentum. But
the situation in physics is much more demanding —in
each given context we must invest symbols with some
meanings, even if provisional, and check against nature.

- Physics needs mathematical consistency and experi-

mental verification, and is incomplete without rules of
interpretation,. even if this is an ongoing task. In all
the examples I have given, the mathematical structures
come through unscathed or intact, while the physical
meanings pass through ‘phase transitions’ in time. This
means then that at each stage our understanding was
partial and evolving. But now one must realize also
that on a longer time scale the equations of physics
themselves are transitory, as each has a domain of
validity and has then to be superceded by something
more comprehensive. At the risk of possibly upsetting
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mathematicians, let me quote Dirac on this problem of
interpretation'":

‘The situation of a formalism becoming established
before one is clear about its interpretation should not
be considered as surprising, but as a natural consequence
of the drastic alterations which the development of
physics has required in some of the basic physical
concepts. This makes it an easier matter to discover the
mathematical formalism needed for a fundamental physi-
cal theory than its interpretation, the number of
fundamental ideas in pure mathematics being not very
great, while with the interpretation most unexpected
things may turn up.’

Now to the most profound example of the problem
of interpretation, namely quantum mechanics. As is well
known, the basic mathematical structures and equations
were worked out in a brief period during 1925-27. In
contrast to classical mechanics, here physical variables
of a system are represented by noncommuting operators,
while the states are represented by complex wave func-
tions ¥ obeying the Schrédinger equation. This is the
replacement for the old Newtonian equations of motion.
Out of all this come quantized energy levels, scattering
cross-sections and a host of other properties which are
all experimentally checked in physics and chemistry. In
a practical sense quantum mechanics 1S enormously
successful; we can say most parts of it are relatively
well interpreted and linked to experiment. But as to
quantum mechanics as a whole, the wave function itself
and its objective status, there have been diverging views
and even now after more than seventy years the debates
continue. At first Schrodinger wanted to interpret his
wave function ¥ as a physically existing objectively
real field like the electromagnetic field; in this way he
thought one could have a pure continuum theory with
no point particles at all. But pretty soon, after intense
discussions with Bohr and Heisenberg in 1927, he had
to give this up; and as Heisenberg says'':

‘After this time Schrodinger at least understood that
it was more difficult with the interpretation of quantum
theory than he had thought.’

Thereafter Schrédinger remained mainly a critic of
the orthodox Copenhagen interpretation, without propo-
sing any serious alternative. The Copenhagen view,
basically fashioned by Bohr and Heisenberg with their
Complementarity and Uncertainty Principles, rests ulti-
mately on Max Born’s interpretation of ¢ as a probability
amplitude — its absolute square hpl* gives physically
measurable probabilities. This is the most widely
accepted view, so in quantum mechanics one has quan-
titative probabilistic descriptions of ensembles alone, not
of individual physical systems. Sometimes pcople draw
a distinction between this ensemble interpretation, attri-
buted to Einstein, and the view - attributed to Bohr — that
the wave function actually describes the state of an
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individual system, but the lines are very faint. As early
as 1927 de Broglie attempted to interpret ¢ as a ‘guiding
wave’ or ‘pilot wave’ intluencing the paths of individual
particles; but Pauli criticized him so ferociously that de
Broglie withdrew. Many years later such ideas were
revived by David Bohm and John Bell, under the general
notion of ‘hidden variable interpretations’. Late in his
life Pauli expressed his own views; he was one of the
keenest minds ever and was bold enough to carry Boht’s
point of view to its logical conclusion. He felt that
ultimately at the level of individual quantum systems
and events there is an ‘element of irrationality’ in nature,
and we have to be satisfied with statistical casuality'>.
Add to all this Dirac’s early warning that quantum
mechanics deals with a level or substratum of nature,
of which we cannot and should not try to form any
mental pictures but just go by the mathematical equa-
tions —and you see how complex the whole situation
i1s! In recent times people have suggested ad hoc
modifications in the Schrddinger equation, like a bit
of stochasticity here or a bit of nonlinearity there.
However these attempts seem rather ad hoc, and remind
one of the phrase ‘throwing the baby out with the bath
water ...". .

At this stage it should be pointed out that the struggle
for physical interpretation is partly tied up with psy-
chological factors and human fears. Let me introduce
my examples with this remark of Dirac'":

“The research worker is only human and, if he has
great hopes, he also has great fears.’

In the case of Lorentz, he had done all the difficult
mathematical analysis and found the correct transtorma-
tion equations for space and time coordinates, but he
could not take the next decisive step to special relativity.
Dirac conjectures':

‘I think he must have been held back by fears, some
kind of inhibition. He was really afraid to venture into
entirely new ground, to question ideas which had been
accepted from time immemorial. He preferred to stay
on the solid ground of his mathematics.’

Well, at that time Lorentz was fifty two and Einstein
was half that age, and where one failed, the other

succeeded.
Next we come to Heisenberg’s discovery of matrix

.mechanics in June-July 1925. His basic idea was to

give up picturing electronic orbits in the atom, since
they were not observable. So he said we must not treat
position and momentum in the old numerical way, but
should replace them by abstract arrays. Later they were
recognized to be matrices. But then he found that these
arrays for which he invented a law or process of
multiplication would in general not commute, and he
became afraid. Again to Dirac';

‘Now when Heisenberg noticed that he was really
scared He was afraid this was a lundamental
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blemish in his theory and that probably the whole
beautiful idea would have to be given up’

However when Dirac saw Heisenberg’'s paper and the
noncommutativity, he had no fears at all -he realized
this was the key new idea and took oft trom there and
built up the whole structure of quantum mechanics!.
Three years later, though, in 1928, he fell victim to the
same syndrome. After he had found his beautiful rela-
tivistic wave equation for the electron which 1 mentioned
earlier. he calculated the hydrogen spectrum but only
to the first order of refativistic corrections and not exactly.
Many years later he explained why he stopped there':

‘... simply because T was scared .... Perhaps the
whole basis of the idea would have to be abandoned
if it should turn out that it was not right to the higher
orders and 1 just could not face that prospect.’

Soon after, C. G. Darwin (the grandson of the Darwin
of evolutionary theory) came along and solved Dirac’s
equation exactly and it agreed perfectly (at that timel)
with experiment.

So we see that in these situations two kinds of
difficulties can appear — the inhibiting etfect of prevailing
ways of thinking and prejudices; and fear that a beautiful,
new idea may fail upon detailed examination. In both
Newton's and Maxwell’s cases described earlier, 1t was
the former difficulty. As Heisenberg once said':

‘1 think the greatest effort in the developments of
theoretical physics is always necessary at those points
where one has to abandon old concepts.’

Anyway these situations are few and far between, but -

they have over-riding importance in building up our
picture of nature. It would be instructive to find parallels
to all this in chemical and life sciences as well.

At last I come to the deepest and most difficult aspect
of my topic. This has to do with epistemology or the
theory of knowledge. Probably all working physicists
(and, for that matter, other scientists too) believe In an
externally existing objective world which has properties
we can investisate, and which obeys laws we Keep
unravelling. Our understanding and pictures and theories
are about something out there independent of us. Though
science and understanding are human creations and pos-
sessions, the whole universe cannot be a play just for
our benefit— as Feynman said in The Pleasure of Finding
Things Out, it seems so out of proportion to think so.
Now where does our knowledge about the external world
come from? Surely our senses play a key role; and all
the sophisticated instruments invented and used based
on earlier understanding of science are ultimately
refinements and extensions of our senses. But 1s that
the sole source of knowledge? The extreme empiricist
view of David Hume in the middle of the 18th century
assumed so, and ended up in an impasse. Certain Key
notions basic to scientific understanding of pheno-
mena — the notions of time, space, continuity ot existence,

638

—_ i L a—— e n

cause and effect, . .. — do not come through direct sensory
experience. Faced with this problem, the philosopher
Immanuel Kant proposed that there are two components
to knowledge, what we may call internal and external;
and only when they come together and act in synchrony
do we achieve understanding and make progress. The
internal part is the a priori component of knowledge,
what we as individuals are endowed with in advance
of our experience of the external world. This includes
the notions of time, space and its geometry, ideas of
causality and determinism, and so on. The other external
part is what reaches our minds via the senses when we
encounter the world. When that happens, we filter or
process all incoming information with the help of the
a priori categories of thought which are already within
us, and which in a sense are ready and-waiting for
sensory experience to arrive. Such a beautiful pic-
ture — we can only understand the world in terms of the
a priori notions built into wus, there is no other way.
But this leads to the question —how does the a priori
component of knowledge get built up, where does it
come from, and how is it that it is able to handle
sensory experience so well?

A convincing answer to this question has been offered
only in this century. It is due to Konrad Lorenz, has
been beautifully elaborated by Max Delbruck, and 1is
based on the theory of evolution'. In brief the idea is
this: in the course of evolution governed by natural
selection, living oreanisms retain and develop those
capacities that respond best to and help cope with the
most important features of the external world. This 13
the environment in which they have to survive. This 1s
a very slow ‘learning process’ by the species, not by
the individual. On the other hand, each individual member
of the species is born, so to say, with these capabilities
‘ready made’. And the actual acquisition ot knowledge
is completed, to a great degree, in early infancy by
using these inborn capacities. What seems a priori, given
in advance of experience, to the individual member of
the species within one life time is actually a posteriori,
the result of experience, from the point of view of the
species as a whole! In this way our intuitive concepts
of space, geometry, time, causality, the capacity for
making mental pictures of natural phenomena —they are
all related to features of that part of the world directly
relevant for- biological survival, namely the world of
phenomena roughly at our own scales of length, time,
mass and motion. But when we move away from this
range of phenomena-the world of middle dimen-
sions — and explore the microscopic scale at one end or
the macroscopic scale at the other—no wonder at all
that all so often our intuitions fail us, and we have to
rely almost entirely on mathematics for our under-
standing. Away from the biologically familiar, mathe-
matics really becomes our sixth sense and guide.
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I have hinted earlier that the very fact that phenomena
obey definite laws indicates that there is ‘a mathematical
quality Iin nature’, which however we cannot reach
through the ordinary senses. Within mathematics itself
there are those who are realists, and those who believe
mathematics is entirely a human creation'®. The realists
deeply believe that there is an objective external ‘con-
tinent of mathematics’ independent of us, which we
keep exploring as time goes on. Is our capacity for
mathematical thinking linked to this mathematical quality
inherent in nature? Has it been acquired by us as an
a prior1 category of thought because then we can recog-
nize this aspect of nature and so at least in a rudimentary
sense it is useful for biological survival? Even before
Lorenz and Delbruck, the great mathematician David
Hilbert did express such ideas relating mathematics to
the a priori. In a famous 1930 lecture he says'™:

‘I even believe that mathematical knowledge depends
ultimately on some kind of such intuitive insights. ...
Thus the most general basic thought of Kant’s theory
of knowledge retains its importance.... But the line
between that which we possess a priori and that for
which experience is necessary must be drawn differently
by us than by Kant.... Kant’s a priori theory contains
anthropomorphic dross from which it must be freed.
After we remove that, only that a priori will remain
which also is the foundation of pure mathematical
knowledge.’

So where does all this leave us? Hilbert’s ideas were
expressed well before the ideas of Lorenz and Delbruck
explaining the origins of the a priori. But if we believe
both, and put them together, we seem to reach some
definite points of view. Mathematical structure is surely
an essential component of nature, though it lies beyond
space, time and the reach of the senses. Echoing
Heisenberg'®: |

‘It nature leads us to mathematical forms of great
simplicity and beauty that no one hay previously
encountered, we cannot help thinking that they are ‘true’,
that they reveal a genuine feature of nature.’

And we have acquired over evolutionary time an a
priort capacity and sensitivity to it, a sixth sense, though
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the subsequent enlargement of mathematical ideas makes
1t a world of its own. A very great deal of the physicist’s
picture of nature can only be expressed in mathematical
language. Mathematics and physics keep coming close
to each other and to touch one another, then draw apart,
only to meet each other again.
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