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Existence and reality in mathematics and

natural science®™

N. Mukunda

IT must appear somewhat presumptuous of me to venture
to speak on the topic mentioned in the title of thus lecture.
No less a ficure than Albert Einstein had once said:

‘Behind the tireless efforts of the investigator there
furks a stronger, more mysterious desire: it 1s existence
and reality that one wishes to comprehend. But one
shrinks from the use of such words, for one soon gets
into difficulties when one has to explain what is really
meant by “reality” and by “comprehend” In such a
oeneral statement...’.

Nevertheless, realizing full well that I am no profes-
sional in these matters, and running the risk of often
being naive, let me proceed.

From ancient times to the present there have been
many deep and learned discussions on this subject. Many
shades of reality have been discerned. Both philosophers
and scientists, particularly physicists, have contributed
to the debate. It also happens that with each major
phase of development in physics, new vistas and pers-
pectives open up, which could not have been imagined
previously. Our picture of reality changes constantly as
we learn from nature. In recent times, to mention just
a few names, thinkers like Reichenbach, Margenau and
d'Espagnat, and in their general writings Schrodinger
and Heisenberg, have expressed themselves on these
matters. In my own limited attempt I will try to say
something about physics, something about mathematics,
and then of their links. Some points will be highlighted,
and more questions raised than answered.

We can trace the origins of mathematics to human
and social needs and experiences in antiquity. Thus
numbers and arithmetic most likely grew out of trade,
barter and commerce; and geometry out of the need for
land survey, especially after the annual tloods of the
Nile. To some degree at least — and this will be elaborated
later — this capacity to create and use mathematical con-
cepts can be traced to features of the brain developed
during phylogenesis —the long period of evolution of
our species —subject to the pressures of natural selection
while interacting with nature. The ongins of the reali-
zation that mathematics is also useful in the description
of natural phenomena is also very old —one thinks of
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the integer relationships discovered by Pythagoras among
harmonics and overtones in music. In the modern sense,
the crucial role of mathematics in understanding nature
was first clearly stated by Galileo' in 1623:

‘Philosophy is written in this very great book which
always lies open before our eyes (I mean the universe),
but one cannot understand it unless one first learns to
understand the language and recognize the characters in
which it is written. It is written in mathematical lan-
suage ...; without these means it is humanly impossible
to understand a word of it....

Around this time came Kepler’s three laws of planetary
motion and Galileo’s laws for the motion of falling
bodies. We must also remember that Galilleo was the
first one to measure time intervals of the order of a
second reliably; and the person who first realized that
in describing natural phenomena it is most fruitful to
regard time as the basic independent variable, while
other quantities varied with respect to time. This link
between mathematics and natural phenomena has been

expressed in various ways with increasing eloquence

and persuasiveness over the centuries. From the present
century I would like to present a few examples; first
of course Einstein again:

‘Our experience . .. justifies us in believing that nature
is the realization of the simplest conceivable mathematical

ideas.’

Actually this seems a bit over simplified! Then i1n
his James Scott Prize Essay of 1939 Paul Dirac says
that there is no logical reason why mathematics should
be so useful in describing nature but offers this thought*:

“‘This must be ascribed to some mathematical quality,
in Nature, a quality which the casual observer of Nature
would not suspect, but which nevertheless plays an
important role in Nature’s scheme.’

In a famous 1959 lecture titled ‘The Unreasonable
Effectiveness of Mathematics in the Natural Sciences’,
Eugene Wigner says™ ‘... the enormous usefulness of
mathematics in the natural sciences is something bor-
dering on the mysterious and ... there is no rational
explanation for it’. And later after commenting on the
unbelievable accuracy with which certain predictions of
theory have been verified he continues: “This shows that
the mathematical language has more to commend it than
being the only language which we can speak; it shows
that it is, In a very real sense, the correct language.’

Lastly I turn to Richard Feynman from the next
generation®; ‘Every one of our laws is a purely mathe-
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matical statement in rather complex and abstruse mathe-
matics. ... It gets more and more abstruse and more
and more difficult as we go on.... It is impossible to
explain honestly the beauties of the laws of nature in
a way that people can feel, without their having some
deep understanding of mathematics.’

This passage emphasizes that as time passes, the kind
of mathematics used in fundamental physics gets con-
tinually more abstract and sophisticated.

It 1s illuminating to recall the ways in which mathe-
matics and physics have advanced in the past, sometimes
hand in hand, sometimes out of step. As we all know,
the differential calculus and ordinary differential equa-
tions grew out of the needs of Newtonian mechanics,
and also the problem of determining tangents to curves.
Later general function theory and partial differential
equations developed alongside continuum mechanics,
heat conduction, wave phenomena and electromagnetism.
But also during this period in the 19th century there
were some basic advances internal to mathematics itself,

whose uses in physics came much later. Here one thinks

of the discovery of noneuclidean geometries, solving a
long standing ‘crisis’ within mathematics; the whole
idea of groups born out of the problem of solving higher
order algebraic equations; and the theory of matrices
and noncommutative algebra’. Noneuclidean geometry
proved essential decades later in the relativistic theory
of gravitation. Then in the hands initially of Felix Klein
and Sophus Lie, and later of Hermann Weyl and Wigner,
group theory became the perfect language tor expressing
symmetry in nature, especially symmetries of natural
laws. This is so in both classical and quantum mechanics.
Coming to matrices, we all know the role it played in
various parts of classical physics, but more importantly
its decisive importance in quantum mechanics. Here we
should recall that when Heisenberg discovered matrix
mechanics he did not know what matrices were, but
essentially reinvented them and their law of multiplication
guided by the Ritz Combination Law of Spectroscopy!
During this century there have been instances of
independent but parallel and practically simultaneous
conceptual advances in physics and in mathematics, and
I mention a few. The theory of Hilbert spaces and linear
operators came in just around the time quantum me-
chanics was developed, and this was used by von
Neumann to put quantum mechanics into a definitive
mathematical form already around 1932. Then the gauge
idea of Weyl of 1918, through the theory of the Dirac
monopole and onto abelian and nonabelian gauge theories
in physics more or less paralleled the growth of the
mathematical theory of principal fibre bundles and
connections. In the case of the Dirac delta function,
the physicist’s use of this concept was well ahead ol the
mathematical theory of distributions; and with the Feynman
path integral too, physics seems ahead of mathematics.
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All this raises many deep questions. Because of these
developments and advances —sometimes hand in hand,
sometimes out of step, sometimes independent — we are

led to ask: Is mathematics a part of nature in some

sense, existing independently of us, or is it a human
creation? Why 1s it so useful in describing nature? Is
it merely a language for communication among human
beings or is it much more than that? Is the human mind
or brain predisposed to create and recognize mathematical
ideas? In trying to cope with some of these questions
we will soon see the importance and relevance of our
understanding of biological evolution.

But before getting into heavy stuff some light-hearted
comments are appropriate. At a conference on theoretical
physics in 1967, C. N. Yang recounted this story: Some
one asked a mathematician the reason for the great
advances 1n mathematics during this century, and the
reply was—it has finally freed itself from physics!
Similarly, Yang said, one day people will say the
tremendous advances in theoretical physics are due to
the fact that it has become free of experimental physics.

It 1s remarkable that he had anticipated so well the

trend of string theory so much in advance!

Now back to our subject. First something about the
nature of mathematics. From long times past, two
opposing views have been held — the realist or Platonic
view, and the constructivist view®. (For the sake of
completeness -one should also mention the formalist
school of thought, but for the present purposes the two
views mentioned will suffice.) In the Platonic view,
there 1s a World of Ideas, of perfect forms, and things
in the material world are only 1imperfect copies of them.
Mathematics exists at this level of ideas, perfect
embodiments of concepts; a world of ideal things which
reason can reach and which somehow controls real
objects. Ethical principles also belong —for Plato-to
this world of i1deas. From the constructivist point of
view, In contrast, mathematics exists only in human
minds; it has been created by us in response to experience
and our needs. Obviously there 1s no clear cut resolution,
and over the ages there have been distinguished mathe-
maticians of both persuasions. Among the Platonists we
count Descartes, even Newton and Leibnitz, Charles
Hermite, Cantor and Godel and many others; and promi-
nent among the constructivists are Poincaré and Brouwer.
Gauss, the Prince of mathematicians, seems to have been
a constructivist in relation to arithmetic, and an empirical
scientist with respect to geometry, Indeed, soon after the
discovery of noncuclidean geometries he declared.

‘I am profoundly convinced that the theory ot space
occupies an entirely different position with regard to
our knowledee a priori from that of artthmetic; that
perfect conviction of the necessity and therefore the
absolute truth which is characteristic of the latter 15
totally wanting in our knowledge of the former. We
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must confess, 1in all humility, that number is solely a
product of our mind. Space, on the other hand, possesses
also a reality outside our mind, the laws of which we
cannot fully prescribe a priori.’

Many expressions of the Platonic point of view can
be presented, and I give a couple. Charles Hermite, the
teacher of Poincaré, says:

‘I believe that the numbers and functions of analysis
are¢ not the arbitrary product of our spirits. I believe
that they exist outside of us with the same character
of necessity as the objects of objective reality; and we
find or discover them and study them as do the physicists,
chemists and zoologists.’

From across the channel, in England, G. H. Hardy
put it this way’:

‘I believe that mathematical reality lies outside us,
and that our function is to discover or observe it, and
that the theorems which we prove, and which we describe
grandiloquently as our ‘creations’, are simply our
notes of our observations’ ... ‘317 1s a prime num-
ber, not because we think-it is so, or because our
minds are shaped in one way rather than another, but
because it is so, because mathematical reality is built
that way.’

And many other such declarations can be found. For
the opposite view, I quote only Poincaré:

‘A reality completely independent of the spirit that
conceives it, sees it or feels it, is an impossibility. A
world so external as that, even if it existed, would be
forever inaccessible to us.’

At this point I would like to draw attention to a
recent and very stimulating book — Conversations on
Mind, Matter and Mathematics — a dialogue between the
French neurophysiologist Jean-Pierre Changeux and the
French mathematician Alain Connes, dealing with just
these issues’. Each one puts forward his position
repeatedly and forcefully, and still after a few hundred
pages of dialogue there is no reconciliation. The neuro-
physiologist says that a small number of fundamental
brain processes leads to all human languages and to
mathematics. Mathematical concepts exist materially in
the brain, and correspond to specific brain states. Facul-
ties of logic and reasoning are directly linked to the
organization of the brain, which has been so since Homo
erectus 400,000 years ago. The ability to create new
mathematical objects 1s a capacity of the brain; later it
analyses them and proves theorems. Mathematical objects
do not ‘exist somewhere in the universe’, independent
of material cerebral support. The development of mathe-
matics in stages shows a historical progression, it is a
result and part of cultural progress. Even the axiomatic
method 1s a brain faculty, and sensitivity to mathematics
is a product of the brain. Finally, he declares’. ‘I deny
the existence of a mathematical reality prior to our
experience of it. The coherence of mathematics seems
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to me a postertori, rather than a priori, the result quite
simply of its noncontradiction. ...’

How does the mathematician respond? He says with
equal passion that mathematical reality exists independent
of the human brain, distinct from how we come to
know of it and understand it. We form mental images
of it as we progress, but it is always there, independent
of us. Just as the reality of the material world is the
result of coherence and commonality of our perceptions
of it via the senses, the same holds for mathematics
too. There exists, independent of us, a raw immutable
mathematical reality, distinct from our tools to explore
it; distinct also from what we know of it at any given
time; distinct even from the mathematical regularities
which we find in natural phenomena. Mathematical
reality is outside space and time, outside physical reality;
and our sensitivity to it is distinct from sight, touch
and hearing. It is not located in the physical world. He
sums this up in these words'®: ‘It is humility, finally,
that forces me to admit that the mathematical world
exists independently of the manner in which we appre-
hend it, that it 1s not localized in space and time. The
evolution of our perception of mathematical reality causes
a new sense to develop, which gives us access to a
reality that is neither visual, nor auditory, but something
else altogether.’

You can see how strongly opposed the two points of
view are, and why there is no meeting ground. At the
end of the dialogue each remains unconvinced of the
other’s position, and they agree to disagree. You can
also appreciate the reason for the mathematician’s
position, even if it is difficult to accept at first encounter.
There 1s a psychological aspect here too — once Hermann
Weyl admitted that believing in a pre-existing mathe-
matical world helped and motivated him to pursue more
substantial problems than otherwise!

Time now for a brief detour into philosophy and
biology, and then back to physics. Towards the end of
the 18th century, the philosopher Immanuel Kant
attempted an explanation of the great successes of
Galilean~Newtonian physics along the following lines.
He said that as experience of the outside world comes
into our minds through the senses, there are certain
innate ways in which we process this information, certain
set patterns for the functioning of the brain. Thus we
‘see’ nature only through certain ‘filters’, only according
to certain pre-existing patterns, and these are called the
synthetic a priori truths. Here ‘a priori’ means ‘in
advance of experience’; and synthetic, as opposed to
analytic, means that these truths have nontrivial content.
Though the contrary could be imagined, it is one way
and not the other. Thus ‘synthetic’ means: not a con-
sequence of logic alone, not a product of pure reason.
Among the synthetic a priori Kant included the Euclidean
geometry of space, uniformly flowing time, the law of
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causality, and in later versions even the law of mass
conservation and Newton’s Third Law of Motion. For
Kant, there was no way in which these principles could
be ever violated, since they were a precondition of all
interpretation of experience. Briefly, some of the empirical
successes of Galilean—Newtonian physics were made into
inevitable features of our understanding of nature.

Soon after Kant’s time, though, things changed quite
dramatically. First there was the discovery of non-
euclidean geometry; and this is what led to Gauss’
statement quoted earlier that the theory of space is not
knowledge a priori. Later developments in physics —
special and general relativity, and quantum mecha-
nics —seemed to undermine Kant’s position further. In
particular, geometry of space and time became part of
empirical science.

During this century, on the basis of Darwinian
evolution and the etforts of Konrad Lorenz and later
Max Delbruck, there has been a reinterpretation and a
better understanding of Kant’s ideas in ways which were
not available to him in his time''. The key point is that
in their struggle for survival according to the principles
of natural selection, different species have to learn to
cope with natural phenomena taking place roughly at
their own scales of length, mass and time. This is the
‘world of middle dimensions’. These are the phenomena
directly relevant in a biological evolutionary sense; and
natural selection favours the development of those
faculties which are able to pick out the most important
physical features of this part of nature. And what is
the result of long and slow learning through evolution
for a species as a whole, lasting hundreds ot thousands
of years, seems to the individual member of the species
as a priori, as knowledge, or better as capacity for
knowledge, he is born with in advance of experience.
The key sentence of Delbruck is: “What is a priori for
the individual is a posteriori for his species.’

Naturally this new meaning given to Kantian ideas
has a corollary —as we move away from the world of
middle dimensions, into phenomena involving the very
large or the very small or the very rapid, we must be
prepared for departures from the intuitive notions which
are our biological heritage. This 1s indeed what happens
in physics away from the everyday world, and here
mathematics is the main guide to replace ordinary intuition.

Now how does mathematics fare in this situation? The
idea is that it comes from the analytic a priori component
of human knowledge. In his 1930 Konigsberg lecture titled
‘Logic and the understanding of Nature’ the mathematician
David Hilbert—who like Kant was a ‘son  of
Konigsberg' — tackled precisely this problem. e says'™:

‘I admut that even for the construction of special
theoretical subjects certain a priori insights are nece-
ssary. ... I even believe that mathematical knowledge
depends ultimately on some kind of such intuitive in-
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sight. ... Thus the most general basic thought of Kant’s
theory of knowledge retains its importance.... The a
priort is nothing more or less than ... the expression
for certain indispensable preliminary conditions of think-
ing and experiencing. But the line between that which
we possess a priori and that for which experience is
necessary must be drawn differently by us than by
Kant — Kant has greatly overestimated the role and the
extent of the a priori’. ... ‘We see now: Kant’s a priori
theory contains anthropomorphic dross from which it
must be freed. After we remove that, only that a prioni
will remain which also is the foundation of pure mathe-
matical knowledge.’

Admittedly, the insights of Lorenz and Delbruck were
unavailable to Hilbert. Nevertheless one can appreciate
that while the synthetic a priori is related to our
understanding of natural phenomena in the world of
middle dimensions, the analytic a priori is the source
of mathematical knowledge. Hilbert like Poincaré was
a constructivist. For him, mathematics was a human
creation. Ways of logical thinking, of working out
consequences of assumptions, arguments, the notion of
consistency — all these are also the results of biological
evolution, when faced with a world having mathematical
qualities, and subject to laws governing its behaviour,

However, behind this level of understanding stands
another mystery. Why .does the human brain have so
many faculties, so much more capacity, than seems
necessary for biological survival? We can surely under-
stand the biological advantage of the ability to construct
language for communication —but why should 1t go so

far as to create drama and poetry where elementary

communication may have been enough? And why this
marvellous capacity to think of mathematical objects of
great depth and structure, where rudimentary arithmetic
and some little geometry may have sufficed? As Wigner
says’: ‘... it is hard to believe that our reasoning power
was brought, by Darwin’s process of natural selection,
to the perfection which it seems to possess.’

I once asked a biologist this question and he said it
was all an ‘emergent phenomenon’ —a brain suddenly
evolved with all these capacities, which could not be
understood in terms of its parts but only as a whole.
But this is not a satisfying answer in the present context;
it is like Churchill’s description of the erstwhile Soviet
Union as a mystery wrapped in an enigma! In the same
vein onc can ask: granted that mathematics s of some
use in the formulation of natural laws, why does 1t then
turn out so fantastically accurate, so much more so than
we could have reasonably expected? This was just the
question behind Wigner's essay recalled varlier’,

At the same time, though, another view of all this
is possible, Could we understand a nature which was
somchow only partly mathematical and not so all the
way? Within fundamental physics we are familiar with
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the argument that we cannot have classical physics valid
over some domain and then quantum physics for the
rest. We should have a unified and common pattern, or
else its absence would become a problem calling for
resolution!

Now let us return to the relationship between mathe-
matics and physics. I mentioned earlier that the level
of sophistication and abstractness here keeps continually
increasing. However one should also realize that for his
time, the creation of the concept of acceleration by
Galileo was a gigantic achievement. In contrast to the
first denivative or rate of change, the second derivative
1s highly nonintuitive and far removed from immediate
experience. As Wigner put it’, ‘... those of us who
have tried to draw an osculating circle to a curve know
that the second derivative is not a very immediate
concept’. Here Wigner probably also implies that not
many of us have tried to do this exercise! Be that as
it may, in the early phase of classical physics the
guiding principle can in retrospect be seen to be the
simplicity of the mathematical concepts used in physics.
But as further progress and elaboration occurred, there
was a gradual transition and the quest for simplicity
gave way to a quest for beauty. Dirac put it this way*:
after relativity and even more so after quantum theory,
‘... we now see that we have to change the principle
of simplicity into a principle of mathematical beauty.’

This is of course subjective, but both Dirac and the
mathematician Hardy, in their respective contexts, justify
it in remarkably similar words*';

“This 1s a quality which cannot be defined, any more
than beauty in art can be defined, but which people
who study mathematics usually have no difficulty in
appreciating.’

‘It may be very hard to define mathematical beauty,
but that is just as true of beauty of any kind — we may
not know quite what we mean by a beautiful poem,
but that does not prevent us from recognizing one when
we read it)’

One must only add that with some modern poetry
there may be difficulties.

Parallel with this development, the notions of existence
and reality in physics too have evolved and increased
greatly in subtlety. During the 19th century, the success
of Galilean-Newtonian physics led to a purely mechanical
view of nature; and in Lord Kelvin's words: ‘It seems
to me that the test of “do we or do we not understand
a particular point in physics?” is “Can we make a
mechanical model of 1t?”’

As we all know, it took a lot of effort to accept
electric and magnetic fields on their own terms, as
primitive constituents of nature not reducible to matter.
Even Maxwell on many occasions sought for explanations
for them in terms of gears and wheels. Then with the
coming of relativity and quantum mechanics, things
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became more abstract, and the constituents of the picture
of nature became much more refined than before. The
ideas of transformations and symmetry have gained
enormous importance, so much so that Dirac once said’;
‘... both relativity and quantum theory ... show that
transformations are of more fundamental importance than
equations’. This is already true 1n classical physics,
wherein both special and general relativity physically
important quantities are often partly defined by the way
they change under a given family of transformations. This
becomes even more pronounced in quantum theory where
physical quantities are defined by the transformations they
generate and by their behaviours under them.

So we are led to ask: at what level do the ideas of
transformations and symmetry exist in nature? It is
already difficult to answer questions like: even though
they are admittedly approximate, are Newton’s equations
and Maxwell's equations parts of nature? Granted that
this is a naive and overly simplistic question, but they
are good approximations to the workings of nature in
certain domains. Subject to this qualification, do they
not ‘exist’ one step behind the specific phenomena that
obey them? Now what of their symmetries and those
of other laws? Do they stand two steps behind phe-
nomena? Natural laws unify individual phenomena or
occurrences 1n nature, each obeying the laws concerned.
In turn, transformations and symmetries bring together
different laws sharing the same symmetry, and so belong
to an even deeper level of functioning of nature.

After all that has happened since the 19th century,
we should surely not tie ourselves down to a mechanical
view of nature, or ultimately to a view based on sense
impressions alone. It is true that our normal unaided
senses are both quantitatively and qualitatively limited,
and scientific instruments extend their range and accuracy
enormously. Even so they can reach out only to space,
time and their contents. Our intuitive ‘middle-world’
feeling is that all that exists must be within space and
time. But now we must be willing to go beyond this
and face up to the question: are these subtle ideas and
aspects, where mathematics is the main guide, also
present 1n nature somehow? In the general framework
of quantum mechanics, we use so many mathematical
objects and operations — noncommuting quantities for
physical variables, spinors, group representations, Grass-
mann numbers, operators for electric and magnetic fields
and so on. Is it not legitimate to ask: in what manner
do they exist in nature? More pointedly: is there an
aspect to nature not accessible to the ordinary senses
but only to a mathematical sensitivity? Is there a level
of functioning of which we cannot torm any conventional
mental picture except as governed by equations, trans-
formations, symmetry and mathematical consistency?

I honestly feel a retreat into a point of view 1gnoring
all these ‘intangible’ elements of the mathematical
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description of nature, hanging on only to the results of
calculations and experimental predictions, is not available
to us. That would be no way to judge the situation.
Long ago in 1910-11, while Einstein was teaching a
course on electromagnetic theory, he made this remark-
able comment'*: |

"We set up a conceptual system the individual parts
ot which do not correspond directly to empirical facts.
Only a certain totality of theoretical material corresponds
again to a certain totality of experimental facts.’

In the same spirit, when we judge theories of physics,
even though they are incomplete and evolving, we must
judge them in their wholeness and taking account of
their mathematical structures. Here I cannot avoid quoting
from Heisenberg’s' recollection of his feelings on the
night he discovered matrix mechanics in June 19235:

‘I had the feeling that, through the surface of atomic
phenomena, I was looking at a strangely beautiful interior,
and felt almost giddy at the thought that I now had to
probe this wealth of mathematical structure nature had
so generously spread out before me.” So the mathematical
structure itself is a part of nature!

Mathematics then is a language but a special one
because it is the language of nature, it is also a method
of reasoning, and the least ambiguous mode of com-
munication we possess. Through phylogenetic evolution
we have acquired the capacity to create mathematical
objects. In this way we acquire a new sense independent
of and in addition to the other ordinary ones, and so
we reach aspects of nature beyond space and time. This
should make us sympathize with the Platonic view of
mathematics as well. On the other hand, as in other
respects recounted above, we have got more than we
could have anticipated. Once created by us, mathematical
objects take on a life of their own. The consequences
of initial ideas are not all evident at the beginning but
are revealed only after much effort. There i1s more In
them than was consciously put in.

Strange as it may initially seem and hard as it may
be to accept, we seem driven to this conclusion — because
mathematics is essential to describe nature, we have to
adopt a more open view of existence and reality going
beyond space, time and the tangible. The problem of
existence and reality is much subtler than our naive
expectations may have been. Mathematics then, like
nature, has also an intangible level of existence. This
line of thinking seems to bring us close to the point
of view expressed by Connes and recalled earlier. So,
have we solved the problem of the existence of mathe-
matics by saying that it is the language of natural
science? No, not quite. There remains a gap, this con-
nection between mathematics and its use in natural
science goes only a certain distance and does not cover
all aspects of the situation! Some differences remain
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since, as far as one can see, we can imagine mathematical
objects and structures which may not have counterparts
in nature. Thus as the mathematician Atle Selberg says'®:

‘It one looks at mathematics as a body of knowledge,

I think 1t definitely can be characterized as a science,
but if one looks at the way in which it grows and

accumulates, the actual doing of mathematics seems
much more to be an art.’

And for the physicist’s expression of the difference,

I conclude with C. N. Yang'”:

‘It would be wrong, however, to think that the dis-

ciplines of mathematics and physics overlap very much;
they do not. And they have their separate aims and
tastes. They have distinctly different value judgements,
and they have different traditions. At the fundamental
conceptual level they amazingly share some concepts,
but even there, the life force of each discipline runs
along its own veins.’

So at the end we just have to say: it really seems

like a case of ‘so near and yet so far apart!’.
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