Eugene Paul Wigner — A tribute*

N. Mukunda

One of our last surviving links with the
period of the creation and development
of quantum mechanics was broken with
the passing of Eugene Wigner on 1
January 1995 at Princeton in the USA.
Wigner was remarkably talented and
widc-ranging in his interests, and his
work touched innumerable aspects of
modern physics. In every area that he
turned to. he discovered new and pro-
found insights and interesting view-
points, often understood and carried
further by others much later. He was as
much at home in fundamental problems
of physics and their mathematical
analysis as in engineering and techno-
logical matters. In this tribute, | shalt first
describe briefly his life and career, then
tumn to a sketch of his work, and conclude
with an attempt to capture his personality
and philosophy of science and life.

A brief life sketch®

Eugene Paul (Jeno Pal in Hungartan)
Wigner was born on 17 November 1902
in Budapest, Hungary, to Elisabeth Eifi-
horn and Anthony Wigner. He thus be-
longed to the same generation as
Werner Heisenberg, Enrico Fermi and
Paul Dirac. Leo Szilard and John von
Neumann were Wigner’s classmates at
the Lutheran High School 1n Budapest —
‘at that time, perhaps the best high
school of Hungary and probably also
one of the best of the world'?. Wigner
retained great regard for his mathemat-
ics teacher L. Ratz, who also recognized
and encouraged von Neumann’s unusual
talents.

After a year spent at the Technical
Institute in Budapest, in 1921 Wigner
joined the Technische Hochschule in
Berlin to train as a chemical engineer.
He completed his doctorate in 1925 and
then worked for a ycar and a half as a
leather chemist. By this time he had
beccome very much a part of the Berhin
physics scene; his break came with an
appointment as assistant 1o Efwin
Schrédinger (who had succeeded Max
Planck at Berlin) for 1926-27. This was
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followed in 1927-28 by a position as
assistant to Max Born in Gbttingen, and
then as Privatdozent at Gottingen during
1928-30. At this point he moved to the
United States, where he spent the rest of
his life.

Wigner’s career in the US began as a
lecturer in mathematical physics during
1930 at Princeton University, quickly
elevated to a Professorship from 1930 to
1936. The year 1937-38 was spent as a
professor at the University of Wisconsin
at Madison. Upon return to Princeton,
he became Thomas D. Jones Professor
of Mathematical Physics in 1938, a
position he held until 1971. The aca-
demic year 1957—-58 was spent at Leiden
in the Netherlands.

In 1937 Wigner became a naturalized
citizen of the United States. He took his
citizenship very seriously, and played a
very active role in public affairs and
matters of government policy. As his
contribution to the war effort, he spcnt
1942-45 at the Mctallurgical Laboratory
of the University of Chicago, the last
two years as the hcad of the theory
group there. Earlier he had joined Szi-
lard and Fermi in persuading Einstein to
write the famous August 1939 lctter to
President Franklin Roosevelt that led to
the setting up of the Manhaltan Project.
He was present at the University of Chi-
cago’s Stagg Field Squash Courts on 2
December 1942 to witness the world’s

CURRENT SCIENCE, VOL. 69, NO. 4, 25 AUGUST 1995

e ———

first controlled nuclear fission reaction
set up under Fermi’s leadership. During
194647 he served as Director of what
later became the Oak Ridge National
Laboratory in Tennessee. In 1952 he
was full-time adviser to the Du Pont
Company to design the Savannah River
heavy-water plutonium production reac-
tors. Soon after, in 1954 he was ap-
pointed to the General Advisory
Committee of the United States Atomic
Energy Commission, and scrved also on
many panels of the Science Advisory
Committee to the President of the
United States.

Of the many awards that came to
Wigner, we must mention the Medal for
Merit, the Franklin Medal for 1950, the
Enrico Fermi Award of the USAEC for
1958, the Atoms for Peace Award for
1960, the Max Planck Medal for 1961,
and the 1963 Nobel Prize in physics
(shared with Maria Mayer and Hans
Jensen) for his wide range of contribu-
tions to quantum mechanics.

Wigner’s first marriage, to Ame¢lia
Franck in 1936, was followed by a sec-
ond one in 1941 to Mary Annette
Wheeler, a professor of physics. His
sister Margit Balasz nee Wigner marned
Paul Dirac in 1937. It appears that Dirac
was so shy that he once introduced his
wife to an old friend as Wigner’s sister.
In response (1) Wigner referred to Dirac
as ‘my famous brother-in-law*?, There is
a charming account by Margit of her
first meeting with Dirac in Wigner's
company. At a meeting in Budapest, the
von Neumanns had invited Margit to
visit and stay with them in Princeton.

And then®:

‘Eugene insisted, “I1f you come to
Princeton, you must stay with me. What
would people say. if you did not stay
with your brother?™ 1 was not terribly
thrilled with the ideca. The von Neu-
manns had a lovely home,..., while my
brother liked to appear, and act, like a
pauper. We sailed in the fall; Eugene
had a two-bedroom apartment, proudly
boasting that he furnished it to the cost
of under $25. It looked hike it ... It was
soon after my arrival; we were having
luach at one of these restaurants, when a
tall, slender young man entered the
dining room, looked at Lugene and
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greeted him. He looked lost, and sad. I
ashed who he was, still standing unde-
cided and none too happy-looking. 1
was told, he was an Enghish physicist,
whom Eugene knew in Gttingen, where
they used to have their meals together.
“He does not Like to eat alone’’. “So
why don’t you ask him to join us?” That
was how I met Paul Dirac. That was the
fall of 1934. The Institute for Advanced
Studies had no building of its own as
vet. Its members, like Einstein, von
Neumann and Dirac as a visiting mem-
ber, had adjoining rooms in a large uni-
versity building, called Fine Hall. 1
remember so well: to the left was Ein-
stein’s room, in the middle Eugene’s
and to the right of him, Dirac’s.’

Wigner, Szilard and von Neumann
formed the famous Hungarian trio who
contributed so decisively to intellectual
life in the United States in the 1930s
and later. There is a story that during a
meeting of scicntists connected with the
war effort there was so much confusion
due to many languages being used that
someone got up and exclaimed:
‘Gentlemen, et us use one language we
can all understand — Hungarian!’

When Wigner died he left behind his
third wife Eileen, a son and two daugh-

ters.

Contributions to science and
engineering

Wigner's work in physics 1s character-
ized by hard mathematical analysis
based on simple yet profound physical
assumptions. While there 1s a down-to-
earth practical quality to some of his
work, in others he dealt with the most
fundamental issues with great refine-
ment — he was both an artist and an en-
gineer, and quantum mechanics was hls
medium. To quote John A, Wheeler”:
‘In the work of Eugene Wigner one sees
the basic harmony between the concep-
tual framework of physics and the
structure of the mathematics associated
with that physics.” On the other hand,
his grasp of technology is best conveyed
by this passage from Lawrence Dresner
and Alvin M. Weinberg® : .... the facil-
ity with which he could pass back and
forth between engineering and physics —
from 2a discussion of the probable distni-
bution of energy lcvcls in U to a
critical examination of the blueprints of
the concrete foundations for the Han-
ford reactors, or from a group theoreti-
cal argument in transport theory to the
design of aluminium fuel elements!’
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Wigner’s first important work in
physics, completed during his appren-
ticeship with Schrddinger, was a power-
ful treatment of quantum many-fermion
systems. Around the time of the move to
Gottingen, and following a suggestion
by von Neumann, he undertook the
major task of introducing group-
theoretical methods into quantum me-
chanics. By 1928 he had published six
landmark papers on the subject; he
shares with Hermann Weyl the credit for
making this an essential and character-
istic component of quantum physics
which pervades all its applications.
During the 1930s he worked in solid-
state physics and at the frontiers of the
developing subject of nuclear physics,
making a major effort to understand the
forces between nucleons, and develop-
ing the compound nucleus model to
explain resonance phenomena in neu-
tron-induced nuclear reactions. His de-
velopment later of the R-matrix theory
of nuclear reactions was a response to a
comment by Fermi that the compound
nucleus model needed a firm theoretical
foundation. Probably his most remark-
able work in mathematical physics — the
study of the unitary representations of
the inhomogeneous Loreéntz group —
grew out of a suggestion made to him by
Dirac in 1928. This was completed In
Madison in 1937, and subsequently
became the basic framework for all
relativistic quantum theories. He came
back to problems of nuclear structure in
his supermultiplet theory of 1937, and
later in his statistical treatment of nu-
clear spectroscopy based on random

matrices.
In the midst of all this, in the 1940s

he worked on the theory of neutron
chain reactors and the design of pluto-
nium breeder reactors.

Wigner’s concern with the structure
of quantum mechanics has led to a se-
ries of incisive insights over many
years. In the early 1960s he turned to
problems of interpretation and episte-
mology raised by the standard interpre-
tation of quantum mechanics. At this
point it is convenient to present briefly
and selectively sketches of Wigner's
work under several broad areas. This Is
admittedly an inadequate, incomplete
and possibly superficial way to survey
his work, yet it may succeed in convey-
ing some idea of the range and magni-
tude of his achiecvements. Before

embarking on this, we may recall the

following important books published by
Wigner: (1) Group Theory and its Ap-
plication to the Quanfum Mechanics of
Atomic Spectra (Academic Press, New
York, 1959; the original German ver-
sion published by Friedrich Vieweg,
Braunschweig, 1931); (2) ANuclear
Structure, witn Leonard Eisenbud
(Princeton University Press, 1958); (3)
The Physical Theory of Neutron Chain
Reactors, with Alvin M. Weinberg
(University of Chicago Press, 1958);
and (4) Symmetries and Reflections —
Scientific FEssays (Indiana Untversity
Press, 1967). We may also mention that
the October 1962 issue of the Reviews
of Modern Physics, published on the
occasion of his 60th birthday, contains
many articles surveying Wigner’s work
in several areas,

Structure and content of quantum
mechanics

Any serious user of quantum mechanics
is sure to find hersclf employing repeat-
edly, either explicitly or implicitly, one
or another of the many basic concepts
and methods invented by Wigner. Onc
of the earliest is the concept of parity’.
In classical physics, space inversion Is
merely a geometrical operation or
transformation, a rule to map each point
in space to its image by Inversion
through a chosen origin. The time is left
unaffected. A particle trajectory, for
example, would be mapped on to an-
other possible trajectory.

Classical space inversion:
P x——-Xxt1—1,
x(1)—»—x(1).

Wigner showed that in quantum me-
chanics, parity is more than a transfor-
mation, it is a physical observable
whose value can be experimentally
measured. The possible results of meas-
urement are £1, and the corresponding
quantum states are said to possess even

or odd parity, respectively.

Quantum space inversion:

Py(x,t) = y(—x,1),
v(-x,1)=ty(x,1)= P=1l,

even/odd states.

It was this role of parity in quantum
mechanics that was shown by Wigner to
be the explanation for Laporte’s selec-
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tion rule in atomic spectroscopy®: the
matrix elements of the electric dipole
moment operator, and hence the corre-
sponding transitions, vanish unless the
two concerned states have opposite
parities.

The deep connection between invari-
ance principles and conservation laws,
both in classical physics and in the
quantum domain with specifically new
and subtle features, remained a lifelong
concern for Wigner, something he came
back to time and again. In the particular
case of rotational symmetry, the general
programme of incorporating group-
theoretical methods into quantum me-
chanics led to Wigner’s impressive body
of results concerning angular momen-
tum in quantum mechanics’. The de-
tailed representation theory of .the
rotation group SO(3) and 1ts covering
group SU(2), which is basic to quantum
mechanics, was developed by him in a
form suited to practical application. The
angular momentum addition theorem,
the concept of tensor operators, the
Wigner—Eckart theorem for their matrix
clements, explicit expressions for the
Clebsch—-Gordan coupling coefficients
(also called the Wigner 3j symbols),
leading on to the intricate Racah-
Wigner calculus for coupling of tensor
operators and computing the resulting
matrix elements, the generalizations to
other symmetry groups — all these oh-so
familiar tools of the trade in atomic,
nuclear and particle physics originate
from his work.

In his book on group theory, Wigner
formulated and proved a fundamental
theorem concerning the representation
of symmetry operations in quantum
mechanics'®. This is a very deep and
subtle result, and a brief explanation
would not be out of place, The relation
between physical states and wave func-
tions (or Hilbert space state vectors) In
guantum mechanics is one-to-many.
This is because a change in the overall
nhase of a wave function is physically
unobservable:

vectors vy, eV, ey, ... — same physical
state,

Many-to-one

vectors < physical states.

Therefore, what physical states corre-
spond to in a one-to-one manner are not
vectors but Tays: a ray is an equivalence
class of vectors, two vectors being de-
clared equivalent if they differ only by a

ol S
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phase. The ray to which a vector y be-
longs can be unambiguously described
by the corresponding projection opera-
tor or density matrix p.;

vector y —ray p = A
one-to-one

rays ¢ physical states.

Rays do not form a vector space, so
their geometry is somewhat harder to
visualize than that of vectors .
Wigner's theorem then shows that any
mapping T of rays (i.e. physical states)
onto themselves preserving quantum-
mechanical  probabilities—and  any
symmetry operation must be of such a
nature — can be ‘lifted’ to either a linear
unitary or an antilinear unitary
(antiunitary) transformation 7 on vec-
tors.

Unitary—antiunitary theorem:

Symmetry operation T,

p.=wy' o> T (p,)=p, =y
p,=9¢' > T (p,)=p,=0¢'¢"
W', ¢, ... determined up to phases,
(0", v) =l (e, y)| =

either

v=Tvy,¢=Tg,..,
T linear unitary,

(', ¥')= (9, ) — unitary
tive;
or
y=Twy, ¢=T9,...,
T antilinear unitary,

(9", ¥)= (9, V)*
= (y, ¢) — antiunitary alternative.

alterna-

(Here the inner product of the Hilbert
space vectors ¢, ¥ 18 denoted by
(o, ¥)). This remarkable theorem has
been extended and proved under differ-
ent conditions by others over the dec-
ades.

Most symmetries in quantum mechan-
ics turn out to be of the unitary type,
time reversal is one example where the
antiunitary alternative is realized. The
analysis of this transformation in quan-
tum mechanics was given by Wigner'!
in 1932. In Schridinger’s quantum me-
chanics, time reversal acts on wave
functions thus:

Tw(x,t)=y(x,~1)

Unlike parity, however, this operation
does not have the status of a physical
observable in gquantum mechanics, und
its eigenvalues are not invariantly de-
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fined and are not experimentally meas-
urable.

Continuing with the theme of symme-
try in quantum mechanics, Wigner and
von Neumann proved a very interesting
result in 1929, which is of great impor-
tance especially in molecular physics'*:
if the electronic states in a molecule are
classified according to their symmetry,
1.e. the representation of the full group
of symmetry of the relevant molecule,
and if we have two distinct eigenvalues
and eigenstates sharing the same sym-
metry (two electron terms), these eigen-
values will not cross (become
accidentally equal) as one varies the
internuclear distances in the molecule.
On the other hand, electron terms of
distinct symmetry can cross. This is a
general theorem of quantum mechanics,
applicable to a generic hamiltonian pos-
sessing some symmetries and dependent
on a continuous parameter: as the pa-
rameter is varied, distinct eigenvalues
‘of the same symmetry’ will not acci-
dentally cross but will repel each other.

Many years later, Wick, Wightman
and Wigner'® brought to light another
aspect of symmetry in quantum mechan-
ics, namely the existence of superselec-
tion rules. This amounts to a restriction
on the applicability of the superposition
principle in quantum mechanics. In gen-
eral, the Hilbert space of states of a
quantum system breaks up into sectors,
and the formation of complex linear
combinations to produce new states
from old is limited to one sector at a
time, not cutting across sectors. This is
the reason why the phase of a spinor
field —a field with half odd integer
spin — is nonobservable. So, for instance
a nontrivial linear combination of states
with integer and half odd integer angu-
lar momenta cannot be prepared. As
another example, one finds that linear
superpositions of states of distinct elec-
tric charge are unphysical. It is sus-
pected that these results had long been
known to Wigner, and he was persuaded
by his coauthors to join them and say so
in print.

In the preface to his book on group
theory, Wigner relates a conversation
with von Laue on the use of group the-
ory as the natural tool with which to
tackle problems in quantum mechan-
ics'?. He says: ‘1 like to recall his ques-
tion as to which results .., [ considered
most important, My answer was that the
explanation of Laporte’s rule (the con-
cept of parity) and the quantum theory
of the vector addition model appeared to
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me most significant. Since that time, |
have come to agree with his answer that
the recognition that almost all rules of
spectroscopy follow from the symmetry
of the problem is the most remarkable
result’.

The exponential decay law for unsta-
ble states has been well known since the
days of Rutherford's experiments on
radioactivity. The first properly quan-
tum-mechanical discussion and deriva-
tion of this law is due to Weisskopf and
Wigner'”. They were able to provide the
basic theory for the natural linewidths
and lifetimes of atomic states decaying
via transitions to other states with
emission of radiation. Their use of sec-
ond-order perturbation theory along
with judicious and delicate assumptions
also disclosed that the exponential de-
cay law is only an approximate, not an
exact, consequence of quantum mechan-
ics; 50 departures from it for both very
short and very long times are 1o be ex-
pected,

The linear superposition principle of
guantum mechanics, already referred to
above, finds its most natural expression
at the level of state vectors in Hilbert
space. The ray space or density matrix
description of physical states, which is
closer to a classical description, ob-
scures this principle somewhat—it is
present but not manifest. In 1932, while
studying thermodynamic equilibrium in
quantum mechanics, Wigner introduced
another description of states for quan-
tum systems possessing classical ca-
nonical analogues'®. Thus, each
quantum state 15 describable by a certain
real distribution or function on the
classical phase space. In one dimension
with classical phase space variables x
and p, the construction is as follows:

¥
4 [I-El'x') W (I+-§-x’) exp(ix'p/ %)

These distributions — named after Wigner —
are at the level of density matrices, not
state vectors. They are suggestively like
classical probability distributions on
phase space, such as one uses in classi-
cal statistical mechanics, However,
since in general W(x, p) can become
negative for some arguments, we do not
have a classical statistical picture with
well-defined probabilities. This is as it
should be, since quantum features must
be preserved. This description of states
in quantum mechanics turned out to be
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the counter-part, of companion, to a rule
or convention given by Wey! for asso-
ciating a quantum-mechanical operator
with every classical dynamical variable;
and these ideas were further extended,
particutarly by Moyal'”.

Wigner contributed a great deal to the
formal description of scattering and
reaction processes in quantum mechan-
ics, especially in the context of nuclear
physics. One of his results concerns the
physical meaning of phase shifts. In
general, scattering cross-sections are
determined by the squared magnitudes
of S-matrix elements, and in these the
phasg¢s get washed out. On the other
hand, the spatiotemporal development
of a scattering process described within
the limits set by quantum mechanics,
involves these phases. The beautiful
connection found by Wigner is the ex-
pression for time delay caused by inter-
action and its relation to the energy

dependence of the scattering pbhase
shift'®:

d
= —5

Here &(E) is the phase shift at energy E;
thus, an attractive (repulsive) interac-
tion leads to  &E) increasing
(decreasing) with energy, hence to a
delay (advance) in the appearance of the
final-state products of a collision after
undergoing interaction.

We conclude this account with a
couple of ‘curios’. Classically, one ex-
pects the possible states of a system of
interacting particles — especially, a two-
body system —to secparate into two
types: unbounded or scattering states,
having positive energy, and bound
states, having negative energy. In
quantum mechanics we expect the en-
ergy eigenvalues to behave analogously:
a continuum of unbound, positive-
energy scattering states sitting on top of
a set of discrete negative-energy, bound
states. Only the latter have normalizable
wave functions. In a remarkable paper
in 1929, Wigner and von Neumann pro-
duced an example of a two-body poten-
tial which possesses a bound state
embedded in the continuum'’! This is an
unexpected and essentially quantum-
mechanical result. The potential 1is
‘artificial’ in that it has to be carefully
engineered to produce the desired re-
sult, and the state involved is unstable
even under small perturbations.

The passage from classical to quan-
tum mechanics results, at the level of
dynamical variables, in the loss of com-

mutativity in multiplication. Thus, for
two physical quantities represented by
operators 4 and B, In general AB # BA.
However, this departure from the classi-
cal is limited in the sense that assocra-
tivity is maintained: for three (or more)
quantities multiplied in a given se-
quence the product is unambiguous:
(AB)C = A(BC) =ABC. One can ask
how quantum mechanics might be
modified if one takes the nonclassical
path one step further and, along with
commutativity, one gives up associativ-
ity as well. This was examined by Jor-
dan, von Neumann and Wigner’® in
1934 . It did not, however, lead to any
alternatives with sufficiently interesting
and flexible properties to give a further
extension of quantum mechanics.

Going over this rich list of contribu-
tions, one is tempted to say that Wigner
took his revenge for not having been
involved in the discovery of quantum
mechanics, and compensated for it ac-
cordingly!

Nuclear forces, structure and
reactions

Following the discovery of the neutron
by Chadwick in 1932, there was a great
deal of work exploring the nature of the
strong nuclear forces between neutrons
and protons. It was realized that these
would be strikingly different from the
familiar Coulomb forces between pro-
tons, of very short range, and with
complicated distance  dependences.
Further dependences on spin and space
exchange were also anticipated. Wigner
was one of the earliest contributors to
this field, and his name is associated
with one of the four basic¢ types of terms
in the potential energy cxpression:”:

potential energy between proton and
neutron =

purely distance-dependent Wigner term +
spin exchange Bartlett term +

space exchange Majorana term +

spin and space exchange Heisenberg
term.

Thus, the Wigner force is the simplest
of all; the others either distinguish bg-
tween singlet and triplet spin states, or
between even and odd orbital angular
momenta, or both. Such phenomenol-
ogical potentials are useful in analysing
low-energy nuclear bound states, scat-
tering processes, etc.
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The low-energy (in the keV to few
MeV range) scattering cross-sections of
neutrons off wvarious nuclei were ex-
pertmentally studied by Fermi and his
collaborators, and many other groups,
around 1936. They found striking reso-
nance structures in these cross-sections,
with sharp maxima separated by very
smail values in between. Soon after, a
theoretical explanation was offered in-
dependently by Niels Bohr on the one
hand, and by Gregory Breit and
Wigner’® on the other. This is the so-
called compound nucleus model. It
pictures the scattering and reaction
processes as taking place in two steps.
At first the incoming low-energy pro-
jectile (which could be some light nu-
cleus rather than a neutron) and the
target combine to produce a compound
nucleus 1n one of several possible me-
tastable states. In this process the pro-
jectile energy is quickly shared with all
the nucleons in the compound structure,
and then the mode of formation of this
structure is ‘forgotten’. In the second
step, the decay of the compound nuclear
state into various energetically allowed
channels is governed by probability
laws. It is the probability of occurrence
of the first step that shows an extremely
sensitive energy dependence and gives
rise to the observed resonances. In their
work Breit and Wigner derived the fa-
mous bell-shaped single-level resonance
formula known after their names:

Probability of formation of compound
nucleus

al; /{(E-E;)* +iT3%}.

E = total initial energy,
E, 1", =average energy, width, of
compound nuclear state A.

The partial cross-sections for subse-
quent decays into each of the several
available final channels retain this char-
acteristic energy dependence.

Sometime after this, around 1944,
Fermi remarked to Wigner (as was
mentioned earlier) that a good theoreti-
cal basis for the compound nucleus
mode] was lacking. Thereupon Wigner
set about formulating one. This was the
starting point of the R-matrix theory of
nuclear reactions, developed by him
largely in collaboration with Eisen-
bud**. The basic idea is to separate the
total multidimensional configuration
space of all the nucleons in the com-
pound nucleus (i.e. the projectile nucle-
ons plus the target nucleons) into two
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parts: an interior region where they are
all within the range of nuclear forces
acting between every pair, and an ¢xte-
rior region where this is not s0. In the
latter region, one then defines or picks
out essentially nonoverlapping subre-
gions, one for each possible (two-body)
final channel into which the compound
nucleus can decay. Instead of posing a
multichannel hamiltonian eigenfunction
and eigenvalue problem, a series of
matching conditions connecting the
intertor and exterior channel wave
functions and their radial derivatives,
across the borders between the interior
and each exterior region, are set up. The
R-matrix elements are quantities that
enter these relations, they are a multi-
channel generalization of the logarith-
mic derivative of a wave function in a
one-dimensional radial problem. The
parameters entering the R-matrix are the
energy values and the various partial
decay widths of all possible compound
mucleus levels. Thus, the K-matrix be-
came simultaneously a convenient
method for parametrization of scattering
and reaction amplitudes using phe-
nomenologically accessible compound
nuclear state energies and widths, and
with further developments,. a way to
embody general physical principles,
such as unitarity and causality, govern-
ing reaction processes. Inter alia this
led to a multilevel generalization of the
Breit—Wigner resonance expression
given above, and to a criterion for the
validity of the single-level formula.
Returning to the problem of nuclear
forces and structure, in 1937 Wigner
came up with the SU(4) supermultiplet
theory to systematize the low-lying en-
ergy levels of light nuclei®®. The idea
was that the interactions among protons
and neutrons, regarded as nucleons pos-
sessing the isospin degree of freedom
introduced by Heisenberg® as early as
1932, might to a good approximation be
both spin- and isospin-independent.
More generally, it might be invariant
under all four-dimensional unitary
transformations mixing up the four in-
dependent spin—isospin states of a nu-
cleon. (This assumption actually leads
to specific spin and isospin dependences
in the interaction.) It would then be
possible to arrange the energy levels of
‘neighbouring’ nuclei with a common
mass number into various unitary rre-
ducible represcntations {UIRs) of
SU(4), consider systematically the
breaking of this symmetry, etc. Each
UIR of SU(4) is made up of several
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spin-isospin multiplets in a definite
way. While the idea was physically well
motivated as a useful first approxima-
tion, it was pursued only to a limited
extent. However, many years later, in
1964, Wigner’s theory provided the
inspiration for a similar SU(6) invariant
theory of baryons and mesons in the
framework of the quark model 25,

At the other end of the scale from
low-lying well-separated energy levels
of light nuclei, we have the relatively
highly excited and closely spaced levels
of heavy nuclei with many degrees of
freedom. Here Wigner proposed a com-
pletely different physical approach, one
which has stimulated work by many
others and led to connections with sev-
eral other pro‘blems”* The physical
ideas may be motivated as follows. As
the excitation energy (of a complicated
nucleus) increases, on¢ expects the en-
ergy levels to get closer and closer, and
one also loses hope of being able to
obtain them individually from a first-
principles Hamiltonian. Instead, what
would be more accessible and physi-
cally interesting are various statistical
properties of the levels; the probability
distributions for successive levels to
occur at various energies, for the spac-
ing between neighbouring levels to have
different values, and so on. To obtain
these statistical features, and at the same
time to reflect the fact that one is deal-
ing with a very complex system with
many degrees of freedom, Wigner pro-
posed that the basic Hamiltonian (after
truncation to a large but finite dimen-
sion) be itself regarded as a random
matrix, belonging to an ensemble with
specified properties. Once one specifies
the nature of this ensemble, regarded as
a primary input, the statistical properties
of the eigenvalues of the Hamiltonian,
the spacing distribution, etc., can all be
derived, in principle, as secondary con-
sequences. It turns out that in using this
approach one must deal with one
‘simple sequence’ of nuclear levels at a
time; this is a set of levels possessing
the same exactly conserved quantum
numbers — ‘belonging to the same sym-
metry'— such as the total angular mo-
mentum and parity. Properties of
different simple sequences are inde-
pendent. Thus, Wigner's hypothesis was
that the local statistical behaviour of the
fevels in a simple sequence is given by
the propertics of the eigenvalue Spec-
trum of a random matrix drawn from a
suitable ensemble. The type of ensemble
to be used depends on the integer or
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half odd intcger nature of the total angu-
far momentum, behavigur under time
reversal, and presence or absence of
rotational symmetry. Later work has
shown that there are three natural types
of ensembles, in correspondence with
the three great families of classical
compact simple Lie groups: the Gaus-
sian real orthogonal, the Gausstan
complex unitary, and the Gaussian
symplectic ensembles. These ensembles
consist respectively of real symmetric,
complex hermitian and real quaternionic
matric%{of suitable dimenstons, even
in the last case). The probability distri-
bution defining the ensemble is Invari-
ant under a real orthogonal, complex
unitary or unitary symplectic group of
transformations applied to its elements;
moreover, the matrix elements of the
Hamiltonian are assumed to be inde-
pendent random variables. It is the
combination of these two properties that
makes these ensembles Gaussian.

A great deal of sophisticated mathe-
matical analysis has gone into these
objects, and this activily continues®®.
One very interesting feature that was
recognized very early was that the
spacing distribution vanishes as a power
of the spacing as the spacing tends to
zero. The rate of this vanishing, the
power involved, is characteristic for
each of the three families of ensembles.
The physical meaning of this result—
bome out by experiments and reminding
us of the no-crossing theorem of Wigner
and von Neumann for electron terms of
the same symmetry —is that within a
simple sequence neighbouring levels do
not like to come very close to on¢ an-
other. Had we imagined that the energy
levels themselves were 1ndependently
statistically distributed, there would
have been no cause for such level re-
pulsion. This only emphasizes Wigner’s
idea that the properties of the ensemble
of Hamiltonians must be chosen first,
and other properties then obtained as
consequences.

Quantum field theory, relativistic
classical and quantum mechanics

The rules for canonical quantization -
creating a quantum theory from a classi-
cal one ~ were originally invented in the
context of nonrelativistic particle
quantum mechanics. The first successful
application of these rules to a classical
field theory came with Dirac’s quanti-
zation of the electromagnetic field. This
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Dirac’s paper,

led to his classic 1927 paper in which
he treated the processes of emission and
absorption of radiation by matter, using
quantum principles and the photon con-
cept’®. The quantized field led to a
synthesis of complementary classical
particle and field languages, and could
describe states with variable numbers of
identical particles. The canonical quan-
tization method led to commutation
relations of the form

t _ —
a,d; ﬂldr "" 3!‘.5’?

aa. —-aa, =alal —alal =0.

Here a, (a!) are the annihilation
(creation) operators for photons in vari-
ous states indexed by ». These states are
an independent, orthogonal and com-
plete set of modes of the electromag-
netic field. The operators a,, a,T are
quantum analogues of the classical
complex coefficients in an expansion of
the classical field in these modes. In this
case the appearance of commutation
relations led naturally to Bose—Einstein
statistics for photons. Very soon after
Jordan and Wigner
showed that to describe fermions (such
as electrons) obeying Pauli’s exclusion
principle and Fermi—Dirac statistics, the
particle annihilation and creation operators
must obey anticommutation relations®®:

T,

Q,ag + g0y = 5”,
ayas +asa, =alal +alal =0,

For a finite number of modes, they
proved that up to equivalence there 1s

only one irreducible representation of

these relations, and it is finite-
dimensional. This uniquene¢ss is Similar
to a corresponding result in the case of
commutation relations. The major dif-
ference is that from a mathematical
point of view systems of operators
obeying the anticommutation relations

are quite ‘harmless’, while in the case of

commutation relations they are un-

bounded and the space is infinite-
dimensional — even for a finite number
of modes. Of course, in the Jordan-
Wigner case there is no sensible classi-
cal limit,

It is interesting to note that Dirac’s
initial reaction to this work of Jordan

and Wigner was decidedly negative’'.
Wigner later attributed this to Dirac’s

being very committed to the Hamitlto-
nian point of view in dynamics— ‘a

s e e el
P

captive of the Hamiltonian formalism’.
However, tt became clear very soon that
this was the correct way to set up
quantum field theory for fermions, and
it became part of the foundations of the
subject.

The first attempts at uniting quantum
mechanics and special relativity were
due to Klein and Gordon. This resulted
in the wave equation named after them,
but it faced problems of interpretation at
the one-particle level. The next, spec-
tacularly successful, attempt was Di-
rac’s work in 1928 that led to his wave
equation for the electron and its series
of amazing consequences’’. Probably
soon after, in 1928 itself, Dirac sug-
gested to Wigner a2 comprehensive study
of all possible unitary irreducible repre-
sentations of the inhomogencous
Lorentz group {IHLG), 1.e. of the homo-
geneous Lorentz group (HLG) supple-
mented by space-time translations. By
about 1932, Majorana had constructed
many of these UIRs, and later these
were simplified by Dirac and Proca’.
The solution of this problem posed by
Dirac to Wigner became a herculean
effort, being completed only in 1937,
The result was an all-time classic paper .
in mathematical physics®. In it, Wigner
acknowledges the help and guidance he
received not only from Dirac but also on
mathematical aspects from von Neu-
mann. At some stage Dirac advised
Wigner to be careful, and the latter re-
plied®’: ‘You point out.that care is
needed in the analysis of the represen-
tations of the Lorentz group; I promise
you that I will be careful’.

Wigner’s paper contains a detailed
analysis of the structure of the HLG and
the IHLG, and of general unitary repre-
sentations (URs) of the IHLG  in the
context of quantum mechanics; it then
turns to a study of the UIRs. The result
was that these could be classified into
four broad types, depending upon the
nature of the possible values of energy—
momentum p* occurring within the
UIR, and the allowed “states of polari-
zation’ for each energy—momentum. The
helicity A is defined as the component
of angular momentum in the direction of
momentum. For each kind ofp”
(provided it is not identically vanishing)
the allowed values of A are determined
by some UIR of a corresponding sub-
group of the HLG, the so-called ‘little-
group’ for thatp” ; it consists of all
clements of the HLG  which
leave p* invariant. The pattern of UIRs
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Table 1. The pattern of UIRs of the IHLG

Nature of p*

Little group within

Number of polarization

Remarks

HLG(SL(2,0)) states, spectrum of A
(a) Time-like SO(BHSU(2)) 2s+1lfors=0,1/2,1.. Massive particles with
(positive or A=s,5-1,.., ~5 zero or finite spin
negative) s = 0 for ® meson
s = 1/2 for electron
(b) Light-like E(2), two- One A=0 No known particles
posifive dimensronal Two. A=%5,5=1/2,1, ... s = ] for photons
or Euclidean Infinite: A =0, £1 2, . s=1/2, A=-1/2 for
negative) group or neutrinos
A=x1/2, +3/2, ... No known particles
(¢) Space-like SO(2,1) (SL(2,R)) One A =0 Imagrnary mass,
Infinite- A=s, s+ 1, ... unphysical
or
-8, —=5—1, .
s=1/2, 1, ...
or
A=0, %1, 2,
or

(d) Vanishing

HLG(SL(2, )) -

of the IHLG 1s displayed in Table |

(here space inversion or parity has been
included in the HLG, except that for
neutrinos this operation is undefined)®®.

While many of these UIRs were
known earlier to Majorana and Dirac,
the so-called infinite-spin or continu-
ous-spin representations in cases (b) and
(c) were genuinely new. In his work,
Wigner did not carry the investigation
of these, or of case (d), to completion.
He mentioned their existence, and only
remarked: ‘... the last case may be the
most 1nteresting from the mathematical
point of view. [ hope to return to it In
another paper. 1 did not succeed so far
in giving a complete discussion of the
3rd class.” Wigner’s ‘last case’ and ‘3rd
class’ correspond respectively to (¢) and
(d) in our table. We also see that not
every mathematically acceptable UIR of
the IHLG is acceptable on physical
grounds.

Relativistic quantum systems de-
scribed by any UIR of the THLG are
called ‘elementary systems’. Truly ele-
mentary particles, able to exist in isola-
tion, are described using them.
Examples are photons, ncutrinos, elec-
trons and muons. The  phrase
‘elementary systems’ conveys the
meantng that all their properties are
revealed by studying their behaviour

A=21/2, 2372, ..

under all elements of the IHLG — there
1S no internal structure involved. In the
above listing, only cases (a) and (b) for
finite helicity are realized in nature.

The UIRs of case (d) are actually
UlIRs of the HLG SO (3,1) (or of the
closely related group SL 2, C)). It re-
mained for Harish-Chandra and for
Gel’fand and Naimark to determine
them independently’’. The inputs
needed to construct the UIRs of case (<)
for infinite spin were provided by
Bargmann through his construction of
the UIRs of SO (2,1) and SL (2,R)*®.

In his contribution to RMP, Dirac
made the following comments on
Wigner's work®. ‘The problem of
working out all unitary representations
of the IHLG has been dealt with by
Wigner, taking the mathematical point
of view that two representations are
equivalent if they are connected by a
unitary transformation. He decomposes
the representations into their irreducible
constituents and finds that the irreduci-
ble constituents provide theories of
elementary particles with various spins.
This work docs not Icad to any interac-
tion between particles. To bring in in-
teraction, one must depart {rom the
point of view of looking at two repre-
sentations as equivalent if they are con-
nected by a unitary transformation, a
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point of view which involves looking
upon all unitary transformations as
trivial. To a physicist, some unitary
transformations are trivial, whereas oth-
ers (for example, the S matrix) are far
from trivial, so a physicist cannot look
upon two representations connected by
a unitary transformation as necessarily
equivalent.” The point is that for any
really interesting relativistic quantum
system, such as a relativistic quantum
field theory, it is not only tmportant to
know which UIRs of the IHLG are pres-
ent, but also how they are put together.
However it must be pointed out that as
early as 1949 Wigner himsclif had drawn
attention to this situation®’; ‘The ele-
mentary systems correspond mathemati-
cally to irreducible representations of
the Lorentz group and as such can be
enumerated... However, in the descrip-
tion by irreducible states, the form of
almost all physically important opera-
tors remains unknown and, tn fact, de-
pends on the system, the types of
interactions, ¢tc. This lecads to a rather
strange dilemma: in the customary de-
scription the form of the physically im-
portant operators is known but the time
dependence of the states 18 unpiedict-
able or difficult to calculate. In the de-
scription just mentoned, the situation 18
opposite: the time dependence of the
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states follows from the mvarnance prop-
ortics, but the form of the physically
important operators i1s hard to establish.’

Wigner returned on many 0cCcasions
to a deseription of the results of his
classic work te also constructed with
Bargmann a unified sct of wave equa-
tions whose soluttons would lead to
UIRs of types (a) and (b) in our table®'.
His work with Newton on the problem
of position 1s particularly interesting, so
[ describe 1t in a hittle detail *=.

The starting poimnt of nonrelativistic
particle quantum mechanics 1S the set of
positions and momenta as primary dy-
namical variables. out of which all other
variables are built up. (Later work has
shown that these positions and momenta
can be derived as sccondary objects
starting  from  suitable  quantum-
mechanical representations of the Galit-
lei group). Now, from Wigner’s point of
view in the relativistic context, the pri-
mary things are the UIRs of the THLG.
After having set them up, on¢ must ex-
amine within which UIRs one can con-
struct position operators with physically
desirable properties. Such an analysis
was first undertaken by Newton and
Wigner. They were able to show that in
every finite mass and finite spin UIR
(case (3)) a unique set of position opera-
tors possessing several physically rea-
sonable properties does indeed exist.
However, contrary to naive expectation,
they do not form the space components
of a relativistic four-vector. This illus-
trates the fact that in quantum theory the
unitary transformation law ts more basic
than the geometric one or manifest co-
variance. In the massless case with
finite nonzero  helicity even this
much cannot be done. Thus, neither
photons nor neutrinos can be localized
in space,.

In other related work we mention the
study by Inonu and Wigner of the proc-
ess of ‘group contraction’ by which the
IHLG goes over in the nonrelativistic
limit to the Galilei group®’; Salecker
and Wigner's analysis of deep concep-
tual problems in bringing together
quantum mechanics and general relativ-
ity, caused by quantum Iimitations on
position measurements®®; and van Dam
and Wigner's construction of classical
relativistic direct-interaction theories
resting upon integrodifferential equa-
tions for particle trajectories”. One of
Wigner's conclusions was that while
special relativity and quantum mechan-
ics could at least conceptually be com-
bined, with general relauvity and

3g2

quantum mechanics there was no com-
mon ground at all.

Interpretation of quantum
mechanics

In the early 1960s Wigner turned to a
serious examination of the problems of
interpretation of quantum mechanics,
and a clear expression of the orthodox
position which essentially coincided
with his own'®., As evidence for the lat-
ter, here is his own statement: ‘The or-
thodox view is very specific in its
epistemological implications ... A large
group of physicists finds it difficult to
accept these conclusions and, even
though this does not apply to the pres-
ent writer, he admits that the far-
reaching nature of the epistemological
conclusions makes one uneasy.” He also
often said that he was adding hardly
anything new to London and Bauer’s
classic 1939 exposition®’. He accepted
the treatment of measurement theory
that had been articulated by his friend
von Neumann®® as early as 1932, and
wanted to restate it for a new generation
and extract its ultimate consequences
for epistemology.

Wigner emphasized that the state
vector of a quantum system changes In
two  mutually  exclusive  ways -
continuous, deterministic Schrédinger
evolution when not subject to observa-
tion, and discontinuous, probabilistic,
collapse when measurements are made.
He went to much length to show that the
linear Schrédinger equation —even in-
cluding the apparatus and the system’s
coupling to it—can never produce the
macroscopically desired collapse phe-
nomenon, and stressed repeatedly that
pure states and mixtures have very dif-
ferent physical properties. He also pre-
sented a pragmatic answer to the
question ‘What is the state vector?’. It
was that it<odifies in a compact way all
past information about a system, on the
basis of which we can state the probabil-
istic connections that quantum mechan-
ics gives among a series of
measurements carried out subsequently
and sequentially in time; all the conse-
quences of quantum mechanics are just
such statements. So, as the orthodox
view claims, ‘the laws of quantum me-
chanics can be expressed only in terms
of probability connections’, and cannot
be formulated in terms of objective re-
ality.

— e
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Pursuing this analysis further, Wignc;
came to the concluston that human con-
sciousness is an essential external in-
gredient needed to make complete sense
of quantum mechanics. The collapse of
the state vector occurs when and only
when an observation is registered in
some individual consciousness: ‘It is at
this point that the consciousness enters
the theory unavoidably and unalterably.
If one speaks in terms of the wave func-
tion, its changes are coupled with the
entering of impressions into our con-
sciousness’. And again: ... it was not
possible to formulate the laws of quan-
tum mechanics in a fully consistent way
without reference to the consciousness’.
In support of this declaration, Wigner
appeals to Heisenberg and says: ‘W,
Heisenberg expressed this most poign-
antly (Daedalus, 1958, 87, 99): “The
faws of nature which we formulate
mathematically in quantum theory deal
no longer with the particles themselves
but with our knowiledge of the elemen-
tary particles ... The conception of ob-
jective  reality... evaporated into
the... mathematics that represents no
longer the behaviour of elementary par-
ticles but rather our knowledge of this
behaviour” °.

As one can imaging, this line of
thinking led Wigner inexorably to a
kind of solipsism, and to the delineation
of two kinds of reality — the content of
one’s own consciousness, the only abso-
lutely real, and everything else external
to oneself, inciuding every other per-
son’s consciousness. To support the
former he turned to Schrodinger; “... the
most eloquent statement of the prime
nature of the consciousness with which

this writer is familiar and which is of

recent date is on page2 of
Schrodinger’s Mind and  Matter:
“Would it (the world) otherwise

(without consciousness) have remained
a play before empty benches, not exist-
ing for anybody, thus quite properly not
existing?” ' But there was a sign of
asymmetry — the only absolutely real,
one’s own consctousness, does depend
on food, air and water for its own sur-
vival and functioning, as we are pain-
fully aware; so he made a case for
devising experiments which might show
up the effects of consciousness on mat-
ter. In taiking of the first kind of reality,
Wigner also realized and stated its ob-
vious limitations —its awakening with
birth and infant growth, its extinction at
death. So he argued for a deep study of
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the former phase, 10 understand the na-
ture of consciousness.

Wigner felt that the development of
quantum mechanics had widened the
outiook of most physicists, and also in a
sense made them inward-looking: ‘Until
not many years ago, the “existence” of a
mind or soul would have been passion-
ately denied by most physical scien-
tists ... Even today, there are adherents
to this view though fewer among the
physicists than — ironically enocugh —
among biochemists’. He also saw that
quantum mechanics reinforces the cir-
cumstance that any observation and
interpretation of measurement rests on
previously constructed and understood
theory. Thus, we are linked in a chain to
the very beginnings of our acquisition
of knowledge of our surroundings and
its regularitics —indeed 10 phylogenesis
and ontogenesis.

Today i1t may seem that these conclu-
sions of Wigner were premature. Cer-
tainly, efforts are aplenty to find more
‘acceptable’ interpretations of quantum
mechanics, without appeal to ourselves
as essential prcrequisites. Was Wigner
them ‘a wvictim of his generation’?
Should we smile at these conclusions
which he found inescapable? Or was he
only being ruthlessly honest and ex-
pressing clearly what others hesitated to
put into words?

Solid-state physics, reactor theory
and technology

I will touch upon these areas only
briefly. Wigner's interest in problems of
solid-state physics and materials science
stemmed from a very early date. There
must have been links to his original
training as a chemical engineer; later on
his detailed knowledge of properties of
materials played a key role tn his work
on reactors. Among his gifted students
in solid-state science in the 1930s we
may mention John Bardeen, Gregory
Wannier and Frederick Seitz. It was
Wigner who suggested to Wannier*’
‘that there ought to be a way to recon-
cile the local and the band concept for
electrons, and that such a reconcihation
would probably be useful in understand-
ing the spectra of insulators’. Wigner
also worked on radiation damage in
solids ~ the detailed microscopic picture
of latuice defects oceurring when male-
rnals are jrradiated with neutrons, the
resulting changes in heat and clectrical
conductivity and duculity, and also the
ways in which the maternial scems (o

recover from the damage as time goes
on>°.

Wigner was the source of much of the
theory and the major technological de-
velopments connected with nuclear re-
actors. His contributions began in 1940.
As briefly mentioned earlier, he was a
leader at the University of Chicago
Metallurgical Laboratory during 1943-
45. He contributed to the development
of research reactors, power reactors and
plutonium production reactors, On the
theoretical front he made major contri-
butions to the spectrum of the Boltz-
mann equation, neutron thermalization,
thermal wutilization and resonance ab-
sorption. All wvery practical contribu-
tions *which one would hardly, g priori,
have assoclated with the same man who
Introduced group theory into quantum
mechanics®’

-*

Views on science, philosophy and
life

Wigner was a gifted and articulate ex-
positor of science and its principles to
general audiences. However, he fre-
guently indulged in a kind of mock
humility —as his Princeton colleagues
explained his language’®, ‘A piece of
work is “amusing” if it is correct and
beautiful; it is “interesting” if it is
wrong and messy.” And in describing
the epistemology of quantum mechanics
to an audience of nonphysicists, he said
of himself the writer>*: ‘He realizes the
profundity of his ignorance of the
thinking of some of the greatest phi-
losophers and is under no illusion that
the views to be presented will be very
novel. His hop¢ is that they will appear
sensible.’ He could convey sharp ideas
pithily: ‘Some one once said that phi-
losophy is the misuse of a terminology
which was invented just for this pur-
pose’,

These apart, his grasp of and concern
for the grand principles of science were
very deep. The role of invariance prin-
ciples and their associated conservation
laws captivated him —he dwclt upon
them at length on many occasions’, and
said: ‘A large part of my scicntilic work
has been devoted to the study of symme-
try principles in physics ...." He tuled
his Nobel lecture ‘Events, laws of na-
ture, and invanance principles’. lle
often described as a miracle the fact that
human undcrstanding could uncover
laws of nature, and separate them from
the accidents of initial conditions. The
laws provide structure and coherence o
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events, and, in turn, the symmetry prin-
ciples provide these qualities to laws;
thus one has the ascending progression:
events to laws to symmetry principles.

Turning to the role of mathematics in
natural science, he expressed wonder at
the way in which mathematical concepts
and connections show up in unexpected

ways and places, and also at the fact that
tentative theories turn out upon further
development to be far more accurate
than could reasonably have been ex-
pecied at the outset. This*led him to
conclude that, since we do not quite
know why we succeed so well so often,
we must be cautioys and not immedi-
ately regard a successful explanation as
the truth!

Pondering on the likely future of sci-
ence, Wigner wondered whether (i
might not wind down under its own
weight, and lose its attractiveness 1o the
young. The increasing extent of science
makes it go beyond the reach of any one
individual. But the response to this can-
not just be an increase in team efforts,
because this can never capture true
creative thinking in the individual sub-
conscious. There is a need here to find
deeper ways of sharing information and
insight, of harmonizing the collecuve
conscious with the subconscious in each
individual.

Continuing on the theme of the
growth of science and the emergence of
large collaborative efforts, he argued for
protecting the individual and giving
value and esteem to little science: “One
does not have the sausfaction which
creative work, as we know it today,
provides, if one’s activities are too
closely directed by others’. About the
emergence of deep insights, "It is hard
to imagine how they can be developed
other than in comparative solitude’. And
as for the pleasures of pursuing science:
‘It has been said that the only occupa-
tions which bring true joy and satisfac-
tion are those of poets, artists, and
scientists, and, of these, the scientists
are apparently the happiest.’

Through the description of his work 1
have tried to convey the fact that
Wigner achnowledged very graciously
his debt to some of hus most gifted con-
temporaries. He was also generous iIn
his assessment of them. Of von Neus
mann he wrote: *,.. whenever T talhed
with the sharpest intcllect whom [ have
kpown — with van Neumann -1 always
had the impression that only he was
fully awahke, that 1 was halfway in a
dream.” And about Richard Feynman.
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‘HHe is a sccond Dirac, only this time 6
more human'.
Two persons that Wigner had been 7

very close to— Enrico Fermi and von
Ncumann - both died in their fifties.
Wiener described and contrasted their
attitudes to the inevitable. With Fermi,
*On a heroic scale was his acceptance of 9
death ... He was so completely com-
posed that it appeared superhuman’. But
with von Neumann it was very different:
‘It was heartbreaking to watch the frus-
tration of his rmind, when all hope was
gone, in its struggle with the fate which
appeared to him unavoidable but unac-
ceplable’. These experiences must have
affected Wigner deeply; at a convoca-
tion address to an audience of young
students soon after, he said: ‘Our cul-
ture is committing a sin by covering our
eyes against the realization that none of
us will be here always’. And to a gen-
eral audience some time later: ‘The rec-
ognition that physical objects and
spiritual values have a very similar kind
of reality has contributed in some meas-
ure to my mental peace’. These various 3
expressions seem related.

Wigner was a physicist who achieved
rare range and depth in his life and
work. He was a product of the old world
who flowered during the golden age of

theoretical physics, and carried the fra-  13.

grance of his subject to the new world.
The time seems past when such another
can appear.
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