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ABSTRACT

Two important ingredients in the mathematical style of modern physics —the many roles of

symmetry and the uses of unobservable quantities - are

recounted and reviewed.

Examples are taken from pre-relativistic and relativistic physics, particle and field mechanics,
classical and quantum theory to illustrate these ideas. The words of many Masters

illuminate our understanding of these concepts.

T is a spectal privilege to speak to such a distin-
Iguished audience and I thank the Academy f{oi
giving me the chance on this occasion. Special
because one finds representatives from all areas of
science gathered at one place, to whom one has the
opportunity to convey something significant from a
particular area. For the same reason what I wish to
present under the title ‘The Mathematical Style of
Modern Physics’ will not be the latest technical
advances in this field, but instead some characteristic
features it has acquired over the past few decades
and which are of course shared by recent develop-
ments. Naturally what I say must be taken as coming
from one who constantly struggles to comprehend
the Masters and who wishes to communicate his
understanding to a wider audience.

A certain well-known book on mechanics descri-
bes physics as the science of measurement and
change. In physics, as In other natural sciences,
particular phenomena ar¢ isolated far enough to
make precise observations and measurements, then
models and theories are constructed in our minds to
explain them and predict new phenomena. This
involves relying on refined instruments of obser-
vation to aid our limited human senses, especially as
we explore phenomena far removed from the human
scale. Such instruments are of course based on
previously understood phenomena and can be
regarded as extensions of ourselves. The important
point is that as we look at processes taking place at
the microscopic or the macroscopic level, far smaller
or far larger than ourselves, intuition gathered from
everyday experience often fails as a guide to under-
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Italiano per gl Studi Filosofici, Napoli, Italy, September
1983; Mathematical Association of India {Delhi Chapter),
Delhi,. Apnl 1986; National Symposium on Theoretical
Physics, C.M.S. College, Kottayam, Kerala, September
1986.

standing. In its place we have to develop and rely on
mathematics as our guide and make it into a sixth
sense.

Mathematics is of course used and most effectively,
also to describe phenomena on our own scale and it
1s easy to underestimate the difficulties faced in the
past i the creation of new concepts. Be that as it
may, 1t is generally agreed that with the develop-
ments of relativity and quantum theory the texture
of theoretical physics has become much more subtle
and abstract than might have been anticipated. This
sttuation was described by Dirac in 1931 in these
‘words:

“The steady progress of physics requires for its
mathematical formulation a mathematics that gets
continually more advanced. This is only natural and
to be expected. What, however, was not expected by
the scientfic workers of the last century was the
particular form that the line of advancement of the
mathemafics would take, namely it was expected that
the mathematics would get more and more compli-
cated, but would rest on a permanent basis of axioms
and definitions, while actually the modern physical
developments have required a mathematics that
continually shifts its foundations and gets more
abstract. Non-euchidean geometry and non-commui-
tative algebra, which were at one time considered to
be purely fictions of the mind and pastimes for
logical thinkers, have now been found to be very
necessary for the description of general facts of the
physical world. It seems hkely that this process of
increasing abstraction will continue in the future and
that advance in physics is to be associated with a
continual modification and generalization of the
axioms at the base of the mathematics rather than
with a logical development of any one mathematicai
scheme on a fixed foundation™.

This passage conveys most eloquently the chang-
ing relationship between mathematics and physics at
the fundamental level. It can well be contrasted with,
say, the situation in fluid dynamics where the basic
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equations of Navier and Stokes have been known for
a very long time and the problem lies in solving them
under various conditions.

As parts of this changing style in which mathe-
matical structures are used in physical theories, 1
wotlid like to describe two sets of ideas today. One 1s
the increasing importance of the ideas of symmetry
and invariance; the other is the often unavoidable use
of unobservable quantities in physical thearies.

On the eve of his retirement from the Institute for
Advanced Study, Hermann Weyl gave a set of lectures
on Symmetry which have since become a classic. In
it he says: ‘Symmetry, as wide or as narrow as you
may define its meaning, is on¢ idea by which man
through the ages has tried to comprehend and create
order, beauty and perfection’. The subject of Weyl's
discourse was symmetry in the static sense, the most
immediate sense in which we all at first appreciate
this notion. To say that an object is symmetric—such
as a beautiful building or a well-grown crystal-—is to
say that it presents the same appearance before and
after the application of certain transformations to it.
These transformations are geometrical mn character,
being made up of rotations, reflections and trans-
lations; and the symmetry of an object 1s conveyed by
the set of all transformations that leave it unchanged.
The mathematical language to handle such static
svinmetry—static because time is not involved—is
developed in Weyl's book and is the theory of finite
and of discrete groups. But the focus of the present
discussion i1s not the static symmetries of objects in
space; rather it is the symmetries of physical laws
describing processes taking place in space and time
and to appreciate this requires some amount of
abstraction. In Bargmann's words, . ... those laws
of physics which express a basic ‘invariance’ or
‘symmetry’ of physical phenomena seem to be our
most fusdamental ones”.

Symmetry tn this more fundamental sense operates
at three levels which may be called the descriptive,
sheaviticuiveand ghe gantve e sae shielar e it
recall with Wigner that there are three ideas of equal
importance when discussing any set of physical laws;
these are the laws themselves, then the allowed
choices of initial conditions and finally the symme-
tries of the laws. Again as Wigner says, “The purpose
... ..of all equations of physics is to calculate, (rom
the knowledge of the present, the state of alfairs that
will prevail 1n the future™ To begin with, let us con-
sider such deterministic laws of motion alone. So
they tell us, piven some observed initial condition of
a physical system, how the system evolves and what
its candition 15 at all later times. Thus each solutton
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of the equations determines ong possible sequence of
states in time, one history, corrgsponding to one
choice of mitial condition. In this context, a symmetry
1$ an operation that leads us from one solution of the
equations of motion to another generally different
one. Such a symmetry ts not a property of the condi-
tion of a physical system at an initial or any other
time; rather it consists in the unchanging relation-
ship at each time between the physical conditions on
two different histories or solutions of the equations
of motion. As opposed o static symmetry, this is a
dynamical concept describing a property of the
concerned physical laws and not of this or that state
or condition. It is the equations that are preserved
under the symmetry operation; this makes it somewhat
abstract since the symmetry “cannot be seen by the
eye but only by the mind™,

In this sense one says that the equations of me-
chanics of Gahleo-Newton are symmetric or in-
variant under the transformations of the Qalilei
group. Similarly the Maxwell equations of the
Faraday-Maxwell theory of electromagnetism are
symmetric under the Lorentz—or better Poincare—
transformations. And these are the two prime ins-
tances of the descriptive role of symmetry, since it
happened in both cases that the relevant equations
were discovered well before the complete under-
standing of their respective symmetries {chart 1),

Descriptive Role of Symmetry

Gahlean-Newtonian Mechanics: Galilei Group and
Transformations

Faraday-Maxwell Electromagnetism: Poincare
Group and Lorentz Transformations

(Chart 1)

However from the early years of this century came
a shift of emphasis and a change tQ a new point of
view, due principally to Poincarg and Einstetn. it
arase fram the realizatinn that the I orentz trans.
formations and Lorentz invariance, though [irst seen
i the context of Maxwell's equations, actually
described general propertics of space, time and
measurement and so had a much wider sigmficance,
This led to the use of symmetry as a restrcte
principle m the construction of new theortes, In the
words of Bargmann again, speabing of speaial rela-
livity which poverns space-time in the absence of
gravitation: ", .. ... every physical theory s suppo-
sed 1o confornt to the basic relativistic principles and
any concrete physical problem mvohes a synthesis of
relativity and some spectfic physical theony™,
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Nany srihing examples of thes restrictive rofe of
ammely are concerned with special eelativity, some
dre (n the framework of clasawal physies. others m
connection with  guantum  theory and quantum
mechantes and yet others with quantum field theory.
B well worth devotung a few minutes to quickly
recounting them (chart 2}

e ———

S el

Restrictive Role of Symmetry

Mass Energy Equnvalence E = me?
Ten Conservation Laws
Dicac-Lorentz Equation

Sommerfeld Fine Structure Formula

Photon Momentum P=E/¢
Planck’s E = hv to De Broglie's P=hk

Dirac Electron Equation
Weyl Neutnino Equation
Wigner Analysis of Elementary Systems

Fermi Weak Interaction Theory
Pxuli Spin Statistics Theorem
Tomonaga Feynman Schwinger Renormalization
Theory

(Chart 2)

The most famous classical result 1s perhaps the
equivalence of mass and energy, E=mc?, this came
from amending the Galilean-Newtonian mechanics
of material particles so that it too would share the
Lorentz invariance of electromagnetism. Thus the
two separate prerelativistic conscrvation laws of mass
and energy were combined into one. More generally,
special relativity or Lorentz invariance of a theory
(almost) automatically ensures the ten basic conser-
vatton laws of encrgy, momentum, angular momen-
tum and moment of energy. One of the most imp-
ressive uses of this was Dirac’s 1938 treatment of the
classical relativistic potnt electron: using essentially
only the energy-momentum conservation laws he was
able to obtain equations of motion, now called the
Lorentz-Dirac equations, including the radiation-
reactton terms. In the period of the old quantum
theory, one can recall the use of special relativity by
Sommerfeld tn deriving the fine structure of the
hydrogen spectrum To that same period also
belongs the association of a momentum to a light
guantum with the energy-momentum relation £=pec,
which requires and can only be understood on the
basis. of special relativity, Shghtly later, special rela-
tivity showed de Broghe the way to extend Planck’s

energy frequency  relattion E=hv 10 his own
fmomentum wave number relation P=hk for matenal
particles: thus he assoctated a relativisuc wave with a
moving partucle, the particle properties of energy-
momentum being proportiondl to the wave proper-
ties of frequency and wave number through Planck’s
constant. Turning to quantum mechanics, one has
first the amazing discovery of the relativistic wave
equation for the electron by Dirac in 1928. 1t came
about by combining three clements—the general
structure of quantum mechanics, the requirement of
symmetry with respect to special relativity and the
genius of Dirac—and 1t ended up explaimming more
things than its discoverer could have hoped for. the
spin of the electron, 1ts magnetic moment, the
hydrogen fine structure, and the existence of the
positron and antimatter. This last was of course a
prediction and not an explanation. After this in-
auguration of relativistic quantum mechanics, one
can mention Weyl's discovery of the wave equation
for the massless neutrino; and somewhat later the
analysis by Wigner of the gquantum mechanical
representations of the symmetry group of specaal
refativity, which gave a systematic classtfication of
all possible free relativistic systems. Finally in this
recounting of the restrictive role of symmetry we
have some instances from quantum field theory and
elementary particle physics. Soon after Ferm: con-
structed a theory of the weak 1nteractions in 1934, it
was seen that on the basis of spezial relativity there
were five independent forms for this interaction. This
was based on the assumption that space reflection
was a symmetry of nature. After 1t was shown by Lee
and Yang in 1956 that this was not a valid symmetry
for weak processes, the number of forms of inter-
acuion allowed by relativity jumped to ten; but 1t was
quickly reduced to one by the discovery in 1957 of
the universal V-A interaction by Sudarshan and
Marshak. This mcidentally then led to a new symmetry
called Chirality. In quantum field theory itself the
remarkable connection between spin and statistics—
the fact for instance that photons obey Bose statsstics
while electrons obey Fermi statistics—was shown by
Pauli to be a consequence of relativity. In {act he
concludes his paper on the subject with the words:
“, .. we wish to state, that according to our opinton
the connection between spin and statistics 15 one of
the most important apphcations of the spectal rela-
tivity theory”. Later in the 1940’s relativistic n-
variance was one of the crucial guiding principles
that enabled Tesonaga, Feynman and Schwinger to
develop a consistent way to handle divergences and
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mnftnities in quantum field theory calculations, the
renormalization theory, and thus to make meamngful
predictions that could be compared with experiment,

These illustrative examples of the restrictive
function of symmetry show the power and the fruitful-
ness of the point of view introduced by Poincare and
Finstein in the early 1900's, It is by carrying these
ideas to one higher level of sophistication—so to
speak by pursuing them to their logical conclusion
In various contexts—that one arrives at the creative
role of symmetry (chart 3).

Creative Role of Symmetry

Abelian Gauge Invaniance — Electrodynamics

General coordinate

Transformation Invariance  —» General Relativity

Non Abelian Gauge Invariance - Yang Mills Theory
(Chart 3)

This is however quite a subtle step which has,

delicate connections with the second maia idea [ wish
to present, namely the use of unobservable quantities
in physical theories. Maxwell’s electromagnetism ts a

relatively simple instance, while the general theory of-

relativity and the more recent nonabelian gauge
theory are quite intricate instances, of this situation.
Before going on to a description of these interrela-
tionships, it may be well to recall the words of Dirac
which motivate so beautifully the transition from the
restrictive to the creative role of symmetry. “The
growth of the use of transformation theory, as
applied first to relativity and later to the quantum
theory, is the essence of the new method in theoreti-
cal physics. Further progress lies in the direction of
making cur equations invariant under wider and still
wider transformations”.

Let me begin to describe the uses of unobservable
quantities in physical theories, which occur at several
fevels, so that at a suitable level the tnterface with
the creative function of symmetry can be brovZ.ut in.
The ideas are best conveyed through examples, the
first of which is from the field of classical optics. If
one takes a black and white photograph, say, one is
making a record of the variation of the total intensity
of light over the photographic film at a certain time,
A colour photograph records the intensities of light
at various frequencies. Now the fundamental theory
of light at the classical level is given by the electro-
magnelic ficld equations of Maxwell, They tell us
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how from given initial conditions the electric and
magnetic fields develop in the course of time. Howevel
the intensity of light involves essentially the sum of
tiie squares of the electric and magnetic fields: and 1t
is not true that if we knew the initial distribution of
light intensity, say in some region of space, we could
predict it elsewhere or at a later time, I we had
provisionally defined the intensity of light to be the
only observable quantity tn optics, then n order to
see how intensity changes with space and time; we
would have been forced to introduce something
called the two-point correlation function—an un-
observable quantity at this level-——and express the
laws of evolution in terms of it. The two-point
function is a measure of the correlation between the
electromagnetic field at one point of space at one
time and at another point of space at a possibly
diflerent time. It is of the same mathematical nature
as, but physically distinct from, the light mtensity.
The Maxwell equations for the electric and magnetic
ficlds lead to definite laws of propagation {or the two-
point function, but the intensity being a partrcular
case of the two-point function does not obey any
propagation law on its own, Once one admits that
the Maxwell fields are observable, then so is the
correlation function. This example is in a sense rather
clementary since what is initially regarded as un-
observable becomes, in a wider framework and with
better understanding, an observable quantity.

Qur next and less trivial, example concerns ele-
ctromagnetism again but now assuming that the
electric and magnetic fields are—at least ¢lassically-—
observable. In the presence of classical charged
particles, the combined system of Maxwell's cqua-
tions for the ficld strengths and Lorentz's equations
for the particles involve observable quantities only—
field strengths on the one hand, particle positions on
ihe other. The system is deterministic In the sense
assumed earlier and is also local. In practical calcu-
lations one finds it convenient to ¢xpress the field
strengths in terms of an auxiliary quantity called the
vector potential, However the potential is in principle
unobservable because there are transformations or
changes in the potential—gauge transformations us
they were called by Weyl—which do not change the
observable field strengths at alll Quite gencrally,
even in other contexts, pauvge wransformations are
transformations which vaty continuously but aibe-
trarily from point to point in space tinw, Maying of
coursc within a given class; and thoswe quanti
which do change under 4 gauge tramfurmation e
unobservable, As a result, the equation ior the
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potential cannot determine 1t completcly since they
must allow for an arbitrary gauge transformation;
but this causes no problem since the potential was
Introduced for conventence only and can be dispensed
with. But the situation changes when the charged
particles are subject to the laws of quantum mecha-
niey, assupung for the moment that the field 1s
classical and externally given. The quantum equation
of mouen for the particles, the Schrodinger £quation,
uses the yvector potential m an essential way. In
quantum theory 1t 1s much more awkward to elimi-
nate the unobservable vector potential than 1n
classical theory, One can do so and it has been done
not only for the case considered but also for the
complete system of quantized matter and Maxwell
{iclds. using a method due to Dirac and Mandelstam.
But one then has to work with nonlocal quantities
and equations—quantities depending not just on a
point in space-time but on an arbitrary path leading
up to that point, If one is prejudiced in favour of
locally defined quantitics and equations, one has to
use the unobservable vector potential with the asso-
ciated freedom of gauge transiormations.

The third example concerns general relativity, The
original way 1n which the equations of this theory
were derived and presented depended very heavily
on the invariance requirements placed upon them,
These requirements were strong enough to almost
determine the equations—the creative role of
symmetry. One considers events taking place in space
and ume and desenbes them with the help of space
and time coordinates. The essential point now 1s
that one allows a great deal of freedom (n the assign-
ment of coordinatey to events and demands that the
equations of the theory must retain their form under
any changes of coordinates. This requirement of
symmetry makes the coordinates really unobservable.
In the words of Wigner: “The basic premise of this
theory is that coordinates are only auxiliary quanti-
ties which can be given arbitrary values for every
event. . .. coordindtes are only labels to specify space-
time points. Thetr values have no particular signifi-
cance unless the coordmate system 1S somehow
anchored to cvents in space-time™, Now-a-days rela-
tivists use the term “coordinate markers” to convey
this quatity of coordinates and compare the situation
to a telephone directory; mndeed one of the best
known books on the subject is a telephone book. As
long a. c1e retains the freedom to make arbitrary
changes of coordinates, they cannot be anchored to
space-time events in any way and $0 remain un-
observable. Of course in recent times more refined
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mathematical methods have been brought in to
formulate the laws of general relativity in what is
called an intfinsic coordinate free description, thus
eliminating the unobservable coordinates altogether.
Nevertheless the problem of deciding what mathe-
matical quantities qualify as observables remains
tricky and has no easy answers.

The nonabehan gauge theories discovered by
Yang and Mills in 1954—and which are basic to the
unification of electromagnetism anc the weak inter-
actions and als0 to the currently accepted theory of
nuclear forces—stand midway between electro-
magnetismh and general relativity in complexity. The
arbitrary space-time dependent transformations now
do not act on the space-time coordinates but in an
interpal space describing properttes which are a
generalization of electric charge. Qnce again there is
a vector potential which changes under these trans-
formations, but it 18 more intricate than in the case
of electromagnetism since now even the analogues
of electric and magnetic fields change when the
potential changes. This makes both the potentials
and the field strengths unobservable. Here again the
increased demands of symmetry are powerful enough
to almost determine the basic equations; the diffe-
rence is that now the analogues of the Maxwell
equations involve the potential in an essential way.
The problem of constructing observables 1s somewhat
more easily solved here than in the case of relativity,
while the nonlocality mvolved i trying to express
everything in terms of them i1s more severe than n
the electromagnetic case.

At this stage some general comments connecting
the creative function of symmetry to the use of
unobservable quantities can be made.

. Nonobservables:

. Nondeterminisue Equations.

. Restriction on initral
Conditions

Gauge Symmetry —»

il -

At any rate at a classical leve] one can say that in
a theory without any symmetry of the gauge type,
such as Galilean Newtonian mechanics or Maxwell-
Lorentz electrodynamics not using the potential, all
quantities in the theory are in principle observabie
and the basic laws can be expected to be determini-
stic. However in the presence of a gauge type
symmetry, three related things happen: those quan-
tities which change under the transformations must
be regarded as unobservable; because of the arbitrary
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efements in these transformations the equations of
motion cannot be fully deterministic; and on the
technical stde restrictions emerge on the allowed
mitial conditions. In terms of the three components
involved in the discussion of any set of physical
laws—the laws themselves, the possible initial data
and the symmetries—t means that an increase of the
third component 10 gauge type symmetries has imp-
ortant repercussions on the first two components. If
the freedom to perform gauge transformations is
maintained, one has local quantities obeying local
but not completely deterministic equations; if one
wants fo work with observable gquantities alone,
some degree of nonlecahity 15 unavoidabie. Con-
versely the fully local description will involve some
uncbservable guantities.

The creative uses of symmetry in both general
relativity and nonabelian gauge theory give to these
theories a strongly geometric flavour. One is re-
minded of Klein’s well-kknown Erlangen Program
and gets the feeling that physics is bemng geometrized
or becoming geometry. What saves the sjtuation 1s
that, as Regge said, physics is not geometry but
geometry plus an action principle. Hence the state-
ment made more than once carhier that gauge type
symmeiry almost completely determines the form of
the basic equations, but not quite.

While unobservable quantities seem 1o be closely
related to local symmetries at the classical level, this
connection is weakened in quantum theory, which is
the fourth and last of our examples. In some respects
the situation is similar to that of classical optics
except that it is not provisional. According to
quantum mechanics not all the physical quantities
assoclated with an atomic system can be simulla-
neously measured or specified as numbers. There are
definite limitations on the amount of “information™
we can have about an atomic system at one time. If
by means of a measurement one has obtained maximal
permitted information at 2 certain time, that can be
mathematically represented by something called a
wave function. The basic laws of quantum mechanics
then determine how the wave function varies with
time and at that level things are deterministic,
However the wave function itself is unobservable. At
each time the wave function determines the probabi-
iities for various outcomes of various experiments
that may be performed at that time and these pro-
babilities are essentially quadratic in the wave
function, Thus the obscrvable quantitics are essen-
tially these probabilities, but there s no way to
direcly calculate how they change and evolve In
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time, There is no way of avoiding the use of the
unobservable wave function or something essentfally
like 1t so as to be able to express all the features of
quantum phenomena.

This discussion of the uses of unobservable quan-
tities in physical theories shows that the rule of three
operates here just as in so many other contexts.

The Rule of Three

. Fundamental Equations
. Init1al Condittons

. Symmetrics

—l.

Physicg Laws —

. Descriptive
. Restrictive
. Creative

Symmetries -

. Provisional, Temporary

. Conveuntence, Locality;
Avoidable with effort

. Essential, Unavotdable

Nonobservables —>

Thus such quantities may appedr in a provisional
and temporary sense alone; or they may be used as a
matter of convenience, it being a matter of lesser or
greater difficulty 1o dispense with them; or finally
they may be essential and unavoidable. If one kas not
come across any of these possibilities, one may feel
that there is something strange or even alarming in
nonobservable quantities playing such an tmportant
role in physical theory. But one can take comiort in
the words of Max Planck: “It 15 absolutely untrue,
although it is often asserted, that the world picture
of physics contains, or may contain, directly obser-
vable magnitudes only”; and in Richard Feynman's
reassurance: "It is not true that we can pursue science
completely by using only those concepts which are
directly subject to experiment. In quantum mecha-
nics itself there 15 a probability amplitude, there 15 a
potential and there are many constructs that we
cannot measure directly. . ... ., It 15 absolutely
necessary to make constructs™. This suggests that
these ideas have a wider range of relevance than just
physics and one also recalls Enstein’s advice to
Heisenberg: “It is never possible 10 introduce only
observable quantitics in a theory. 1t is the theory
which decides what can be absarved™.

It has been said that cach generation of physicists
feels that the next gegeration 18 teo mathematical,
Why is this so and why does physical theory get
more and more abatract as it develops? One can do
nag better than quote Dirac i answer: "The methods
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of progress in theoretical phyvsics have undergone a
vast change during the present century. The classical
traditron has been tu consider the world to be an
association of observabie objects (particles, fluds,
ficlds, ctc) moving about according to definite laws of
force. so that one could form a mental picture tn
space and time of the whole scheme. This led to a
physics whose aim was to make assumptions about
the mechanism and forces connecting these obser-
vable objects, to account for their behaviour in the
stmplest possible way. It has become increasingly
evident in recent times. however, that nature works
on a different plan,.Her fundamental laws do not
govern the world as-it appears in our mental picture
in any very direct way, but instead they control a
substratum of which we cannot form a mental picture
without introducing irrelevancies”. What a contrast
to Lord Kelvin's statement from the !ast century that
“1t seems to me that the test of ‘Do we or do we not
understand a particular point in physics? 1s ‘Can we
make a mechanical model of it? ”. Far from this, it
has become increasingly necessary to rely on our
feeling for the abstract and on our mathematical
sensibilities in trying to comprehend the developing
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physical picture of nature, And though I have quoted
from many Masters, it scems that more than anyone
else the writings of Dirac express beautifully the style
of, and his works have contributed a great part of the
content of, the changing mathematics that underles
modern theoretical physics,
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ANNOUNCEMENT

THIRD NATIONAL SYMPOSIUM ON BIO-ORGANIC CHEMISTRY

The Third National Symposium on Bio-organic
Chcmistry will be held during July 9-11 1987, under
the joint auspices of the Centre for Cellular and
Molecular Biology, Regional Research Laboratory,
and the Department of Biochemistry, Osmania Uni-
versity. This symposium is held once 1n two years.
Topics to be covered in the symposium are: 1) Lipids,
Biomembranes, Chemica) messengers and Receptors,
i)} Biotechnology, Immunochemistry Enzymes and
related topics, mi) Biotransformations, Biosynthesis
and Biommetic Chemistry, iv) Synthetic methods 1n
Peptides, Obgonuclcotides and Carbohydrates,
v) Macromolecular interactions and Structural
methods in Bioorganic Chemistry.

The scientific programme will consist of plenary
lectures and half-an hour oral presentations by invi-
ted speakers. The Proceedings of the Symposium will

appear as a special issue of the Journal of Biosci-
ences, published by the Indian Academy of Sciences,
Bangalore.

One of the objectives of the symposium is to gene-
rate and promote interest in areas related to bio-
organic chemistry among young scientists. It Is
planned to select twenty-five young and promistng
research scholars and teachers in national labora-
tories and for participation in the symposium. The
partial or complete expenses on participants under
this category will be borne by the orgamzers, depend-
ing on the availability of funds.

Further particulars may be had from: Dr K. N.
Ganesh, Convenor, Third National Symposium on
Bio-organic Chemistry, Centre for Cellular and
Molecular Biology, Hyderabad 500 007.




