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Abstract

Coalescing binary stars are perhaps the most promising sources for the observation of
gravitational waves with laser interferometric gravity wave detectors. The waveform from
these sources can be predicted with sufficient accuracy for matched filtering techniques to
be applied. In this paper we present a parallel algorithm for detecting signals from coalesc-
ing compact binaries by the method of matched filtering. We also report the details of its
implementation on a 256-node connection machine consisting of a network of transputers.
The results of our analysis indicate that parallel processing is a promising approach to
on-line analysis of data from gravitational wave detectors to filter out coalescing binary
signals.

The slgorithm described is quite general in that the kernel of the algorithm is appli-

cable to any set of matched filters.
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1. Introduction

The detection of gravitational waves from Galactic and extragalactic sources will pro-
vide us with an alternative view of the universe hitherto not obtained via the electromag-
netic spectrum of radiation. Their detection is important to further our understanding of
fundamental theories of physics: confirmation of the predictions of Einstein’s general the-
ory of relativity, providing useful inputs towards the solution to = long standing theoretical
problem of quantizing gravity, getting accurate values of certain cosmological parameters
like the Hubble constant [1], etc. These are but only a few reasons why several groups
around the world have been concentrating on building laser interferometric gravitational
wave detectors of very high sensitivity, several prototypes of which already exist in different
countries [2].

The principle behind such a detector is the following:

An interferometric detector, in its simplest form, is a Michelson interferometer con-
sisting of a corner mirror and two end mirrors. Instead of an ordinary monochromatic
light a continuous wave laser is used as the source of light. The beam is first split and
reflected by the mirrors several times and then brought together to form a fringe pattern on
a photo-diode. A gravitational wave impinging on the detector causes the masses attached
to the two end mirrors to oscillate and which results in a shift in the fringe pattern. This

shift constitutes the gravitational wave signal.

However, the data from the detector is contaminated with noise from several sources_

which limits the sensitivity of the detector. The sensitivity can be expressed in terms of

the metric perturbation due to the gravitational waves . The fullscale detectors which

have been planned for the future have armlengths 3 to 4 kilometres and expected peak

sensitivities ~ 10722 or 10723 [2]. Our current knowledge of astrophysical sources indicates
that at such sensitivities several events may be observed per year.
Data from such detectors would be sampled at a rate of ~ 100 kHz and all through

the year [3]. Unless on-line data analysis systems which can search for a variety of signals
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are designed all the effort in doing such an experiment will be wasteful as the number of
expected events are not too large and it is neither desirable nor practical to store all the
data. With this view in mind several groups have been concentrating on the design of data
analysis systems that can effectively pick out specific signals from noisy detector cutput.
In this paper we present one such algorithm to detect gravitational waves from coslescing

binary systems.

Coalescing binary systems are one of the most promising sources for the detection of
gravitational waves with broad band detectors [2]. A compact coalescing binary system
consists of two stars, typically, neutron stars or blackholes, which orbit around each other
bound by their mutual gravitational attraction. General theory of relativity predicts that
such & system should radiate energy in the form of gravitational waves [4]. The gravita-
tional waves emitted carry away energy and angular momentum of the system causing the
two stars to spiral-in. The wave’s frequency, is just twice the orbital frequency of the sys-
tem. With the inspiral of the two stars, the amplitude and the frequency of gravitational
wave increase. Thus, the nature of the gravitational waves emitted by the system has a
very characteristic waveform - the so called chirp waveform. The power emitted in the
process depends not only on the distance between the component stars but also on their
individual masses. However, in the Newtonian approximation a certain combination of the
masses - the mass parameter - determines the evolution of the system. Such binaries are
expected to spiral-in and coalesce over time scales much less than the age of the universe.
Recent estimates [5] show that the event rate is about 3 per year in a volume of a sphere
of radius 200 Mpc. Near coalescence the physical conditions in the vicinity of the system
will be such that an understanding of the nature of the gravitational waves would entail
a fully general relativistic treatment of the evolution or at least a certain approximation
that incorporates some of the strong field effects of the full theory. Since the fully general
relativistic solution to the two body problem has not been obtained so far, there have been

efforts which make use of the wellknown post-Newtonian and post-Minkowskain approxi-
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mations [6] and numerial methods with high resolution grids on fast computers [7]. These
investigations indicate that the waveform from coalescing binaries would be different from
those based on Newtonian approximation and novel algorithms will have to be employed

for the analysis of data.

Parallel processing is a new development in the area of fast computing which over-
comes the von Neumann bottleneck [8] and promises to be very useful in analysing data from
gravity wave detectors. Parallel processors avoid this bottleneck because they are Multiple
Instruction Multiple Data systems. Development of application software related to data
analysis on such systems has become extremely important since, as metioned above, the
present day physics problems involve formidable amounts of data and sophisticated pro-
cessing. For instance, matched filtering technique is a very powerful tool to detect known
signals buried in noisy data. This technique makes use of the fact that the waveform of
the signal is known accurately. When the noisy output of a detector is correlated with
a copy of the expected signal the correlation is also noisy. When a signal of sufficiently
large amplitude is present in the output of a detector, the correlation will peak at & time
when the signal arrives at the detector. Because of the random nature of the noise, it
is possible that there is a chance large amplitude in the correlation — the so called false
alarm [9]. However, if we choose a sufficiently high threshold so that the chance of a false
alarm during a certain time of observation is vanishingly small then we can be confident

about detecting the presence of a signal by looking at the height of the correlation.

Matched filtering is a promising tool for detecting gravitational waves from coalescing
binaries [2, 3],although there exist other algorithms to detect them (see e.g. [10]). Even
though the waveforms of certain signals, like coalescing binaries, quasi-normal modes of a
black hole, etc., are known, the experimenter will not know before hand what the values
of the parameters are. The method followed then consists of constructing a bank of filters,
which scans the relevant range of parameters, which correlates a data segment with each

of these filters. Since calculation of each correlation is independent of any other, the
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problem is highly parallelizable; matched filtering is a Multiple Instruction Single Duta
problem and therefore parallel processing is the approprihte approach. However, there are
other complications. The number of filters needed to search for gravitational waves from
coalescing binaries in the astrophysically relevant range of parameters is formidably large
— about a couple of thousands, Thus, if one is using a parallel machine like a set of inter-
linked transputers, due to the large number of templates through which one has to filter the
output, data transfer times and communication overheads would be appreciable and every
effort should be made to minimize such overheads, This can be achieved by connecting
the processors in a judicious manner so that the resulting topology leads to minimization
of data transfer times and communication overheads. In this paper we present one such
algorithm well suited to detect gravitational waves from coalescing compact binaries and
which takes care of the problems mentioned above. We also describe its implementation
on a parallel machine consisting of a network of 256 transputers. The code developed
here can be modified easily to suit any other set of matched filters, the basic methodology

remaining the same. Similar implementation can also be found in the work of J. Watkins

[11].

The paper is organized as follows. In section 2 we discuss briefly the nature of the
coalescing binary waveform. We also discuss a criterion to detect signals and show how a
lattice of filters corresponding to various parameters can be constructed. In section 3, we
present an algorithm to detect chirp signals and describe the implementation of this on a

parallel machine.

2. The Coalescing Binary Signal

During the final stages of its evolution & binary system of stars emits a burst of
gravitational waves with a very characteristic spectrum. There are two independent wave
amplitudes corresponding to the twe independent polarizations of the wave. However, the

response of the detector is a linear combination of the two amplitudes and therefore, for
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the purpose of development of data analysis algorithms, it is sufficient to deal with only
the normalized response function [12], henceforth referred to as paper L. In our discussions

we shall use the noise free normalized response q(t;tq,£, ®) given by:

ltita,€.9) = Na(t)™} coslvat(1 - a()h) + 8] (2.1a)
where
a(tite) = (1 —£71(¢ = ta)), (2.18)
M1 4 17
£=3.00 [A_/Ig] [10('; Hz] sec., (2.1c)
ve = 3207 IOOquz] Hz. (2.1d)

Here Mg = 2 x 10%g is the mass of the Sun, A is the normalization constant and £ is the
time taken for the two stars to coalesce starting from the time when the frequency of the
gravitational wave is f;, M is called the mass paremeter and is related to the reduced mass,
u, and the total mass , M, of the binary by: M = (p* M?}}/5_ For a fixed f,, £ serves as one
of the parameters of the signal instead of M. The time when the gravitational frequency
reaches f, is t, and is called the time of arrival of the signal. In the context of gravity
wave detectors, whose sensitivity has a lower cut off around 100 Hz, it serves as the second
parameter of the signal. Finally, @ is the phase of the signal at t = t,. Thus, the response
or the signal is characterized by three parameters: the coalescence-time, the time of arrival

and the phase. It should be noted that the binary system is assumed to consist of point

mass stars and the standard quadrupole radiation formula has been used (see, eg., [13]) in

deriving the above waveform. Thus, this waveform will not accurately describe the actual
wave emitted by the system when the two stars approach relativistic speeds and/or when
the tidal interaction between the two stars becomes important [6]. The waveform can at
best be used up to times not too close to the coalescence time. Since the sensitivity of
laser interferometers is expected to be peaked around 100 Hz this finer point need not
concern us in the present paper. We shall treat the wa.véform to have compact support -

it is non-zero only in the frequency range 100-1000 Hz.
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The noise in real detectors is expected to be colored and its nature depends on the
kind of technique employed to enhance the sensitivity of the detector [2]. However, for the
purpose of setting up an algorithm to detect gravitational waves the nature of the noise,
while important, is secondary. Thus, we assume that the detector noise is Gaussian with
a flat power spectrum. In that case the normalization constant A is determined by the
condition that the maximum of the auto-correlation divided by the noise power spectral

density, Sk, is equal to unity:

1 = 1= S
5 I%%xﬂmq(t)q(t + At) dt = S—h]”mq(t) di =1=2N= " (2.2)
This normalization has several advantages (see ref. [12] for details). Notice that the nor-
malization is different for waveforms with different coalescence times. This is permissible
gince the multiplicative constant for filters is arbitrary and the signal-to-noise ratio is
independent of this constant,
We can now express the actual waveform [2,3] of a coalescing binary including all
its dependences on the distance to the binary, etc., in terms of normalized filters. The
multiplicative factor §, which we call the strength of the signal, will contain the distance

to the binary and the coalescence time:
h(t;tuafué) = Sq(t;tmE!‘p)' (23)

Gravitational wave from & coalescing binary located at a distance r and whose coalescence

time, starting from a frequency f., is £, is of strength

SR ST o I R SR L
S(r’E’fﬂ)_“'a[lOO Mpc] [100 Hz} [10‘45 Hz—l] [3 Sec] ’ (24)

where 1 Mpc = 3.086 x10%* cm.

In the matched filtering technique the statistic used to decide the presence or absence
of a signal is the correlation of the output with a filter. Due to the choice of our normal-

ization it turns out that the expected wvalue of the maximum of the correlation is nothing

9



but the signal strength {2.4) itself for a perfectly matched filter. We say that a signal is
present, if the maximum of the correlation crosses a preset threshold . The threshold is
set by allowing for one false alarm (due to noise) in a year’s time. At the sampling rate
of 2.5 kHz and 100 filters per second implies one crossing in 10'% trials. For a Gaussian
noise distribution with standard deviation & this implies n ~ 7o. The filters will be con-
structed for a discrete set of values of the parameters while the actual signel could have
any values for these parameters. In general, therefore, the values of the parameters of the
signal would differ from those of the filters in the set and the expected value of the signal-
to-noise ratio will be less than the signal strength. It is therefore possible to detect, with a
great confidence level, only those signals that have strengths larger than the threshold by a
certain amount. How large the strength should be depends on the spacing between filters
in the parameter space. In the context of detection of chirp signals we essentially need
to construct filters for the phase and the mass parameters; the time of arrival is decided

when the correlation peaks,

In paper I, we have shown that there is a two dimensional basis in which a signal of
arbitrary phase can be expanded. As a result, the maximum correlation between a signal
and filter, for a given mass parameter and arrival time, can be found analytically by using

just two filters.

Suppose we are interested in detecting all signals of strength greater than or equal to

a certain minimal strength Smin = 1, £ > 1. We begin with a filter with coalescence time

£ = £, corresponding to an initial mass parameter M, say 0.5Mg, at the lower end of the
mass parameter range. A signal whose coalescence time is £, produces a correlation equal
to k5. As we decrease the coalescence time ¢ of the signal (this corresponds to increase in
M), the correlation decreases and for some value of the coalescence time, say £ + %AE ,
of the signal it hits the threshold level. Further mismatch reduces the correlation still
further and another filter ir needed to detect such signals. We have shown in paper I,

that for the astrophysically interesting range of mass parameter values, the correlation (in
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the stationary phase approximation) depends only on the differences in the parameters of
the signal and the filter. This implies that the spacing between filters remains a constant,
Choosing the filter spacing to be A{ guarantees that the correlation of a signal of minimal
strength always exceeds the threshold (the A¢ defined here is twice that in paper I).

For & given value of «, the bank of filters is the set characterised by the coalescence

times £z, where,
=& —-(k—1)A¢,  k=1,2..n (2.5)

Note that in the filter bank, there are two filters corresponding to two values of the phases
0 and #/2, for each value of ;. Thus the bank consists of ny = 2n filters. We may
choose n so that £, is just about greater than zero. This ensures & high value for the mass

parameter at the upper end of the range.

No simple analytical relation exists between Af and « in the white noise case, as the
second derivatives of the correlation at the peak become infinite and no Taylor expansion
is possible [14]. However, the relation between Af and « is implicit in figure 1. Figure 1
shows the number of filters ny plotted against & = Syin/n for the initial mass parameter
M1 = 0.5Mg(¢r = 9.54 sec). We have the relation A ~ 2£, /n; which connects Af to «
through figure 1. For example, for £ = 1.25 we get from the figure, n; ~ 1150 and hence
Af ~ 16.6 milliseconds.

3. Parallel Algorithm for Matched Filtering

‘In this section we shall first discuss the demands on the computing speeds brought
about by the need to filter ench data set through several thousand templates and how this
affects the volume of space from which we can expect to detect gravitational waves, We
then go on to deseribe the algorithm which we have developed to search for chirp signals by
using matched filtering technique on a network of interlinked transputers. The algorithm

reported here is similar to the one found in ref [11].

11



i - L e D T R R R

A. Online data analysis

The astrophysically relevant range of the mass parameter for coalescing binary systems
is [0.5, 20] M. If £ and ¢£; are the corresponding values of the coalescence times and A£
is the distance at which the correlation between a filter and a signal of minimal strength
falls down to the threshold level, then the total number of filters, ny, including two basis

filters for the phase for each mass parameter filter, is

_2Ah-6)
ny= SR (3.1

Generally, £z < £ and we can write ny solely in terms of M; using (2.1c):

Caen[Mi1 I S 1Y e 7T
"’f_?’OO[II@_] [100 Hz] [20 ms] ‘ (3-2)

A graph of the number of filters as a function of Smin /7 is plotted in Figure 1 (cf. Table ITI

in paper I) for M; = 0.5Mg. It clearly demonstrates that we have here a case of dimin-
ishing returns: close to the threshold one has to fight harder to improve upon sensitivity;
very little is gained in choosing the minimal strength to be less than about 1.1 5 while the
number of filters, and effectively the cost of computing, increases enormously below this
value. Now, the computing speed dictates the coarseness or fineness of the lattice — more
the available computing speed, finer the lattice and signals of weaker strengths can be de-

tected. Though little gain in sensitivity is brought about at the cost of a heavy investment

on computing, it should be remembered that while the signal strength falls off as 1/r, the

number of events is proportional to the volume which scales as r*. Thus, detecting weaker
signals also means an increase in the number of events which is very important for the
detection of gravitational waves. Therefore, a compromise has to be reached on the choice
of minimal strength. This brings us to another question in the data analysis problem, in
the context of gravitational wave detection, viz, analysis of data in real time. Let L be the
speed of the computer measured in units of the number of million floating point operations

per second (MFLQOPS). It is straightforward to show that such a machine can filter the
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data on-line through a number ny of filters given by

-1 -1
g = 1000[ E ] A ]

100 MFLOPS| | 2.5 kHz (3.3)

Here A is the sampling interval between consecutive data points. We now have two equa-
tions for the number of filters. Equation (3.2) relates the number of filters to the range
of mass parameter in which the search is carried out and the distance between filters. On
the other hand, (3.3) relates the number of filters to the demands on computing speed
for on-line data analysis. Equating these two expressions we obtain a very useful relation
between computing speed and the spacing between consecutive filters:

— z ! A_l Ml _i fn _.5 .
AE‘G[mu MFLOPS] [2.5 kHz] [M_@] [100 Hz] milliseconds.  (3.4)

The usefulness of this relation is twoe-fold. On one hand, given a spacing between filters
it tells us what the minimum computing speed should be to do on-line data analysis; on
the other hand, given & machine of & certain speed it facilitates a choice for the spacing
between filters in order to do on-line data analysis. This has deep implications since
spacing between filters is related to the minimal strength of detectable signals and hence
the distance up to which we can see. Smaller the spacing between filters, lesser would
be the minimal strength of detectable signals, implying a larger distance up to which we
can see, and hence a greater event rate. For instance, if Af = 16.6 milliseconds then for
M, = 0.5Mg we would need a machine of speed 115 MFLOPS 1;0 process the data on-line.
With this set of filters, the distance up to which the binaries can be detected is ~ 500 Mpc
{see. paper I for details).

B. The numerical algorithm and its implementation

The computer we have used for the simulation is a network of 256, INTEL T-800
chips interlinked with one another. It is possible to use any topology for the connection of

different processors since there is 8 hardware link from each transputer in the network to
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every other via a eross bar exchange. The only constraint in the present configuration of
the machine is that only one transputer in the network can access the host. (We believe

this constraint will soon be removed}.

For the simulation of the experiment we have two iasks. The first one, henceforth
referred to as the master task, has access to the host and performs the necessary ifo and
book keeping. The second task, henceforth referred to-as the werker task, searches for
coalescing binary signal by the method of matched filtering. A copy of the worker task is

placed in the rest of the processors.

While we are using a network of a large number of transputers, data transfer and
communication overheads will cost appreciably if proper care is not taken in setting up
the algorithm. However, the availability of concurrent processes — the so called threads
— facilitates the choice of a very simple topology while avoiding these overheads. We have
connected up the processors in a ring topology as shown in Figure 2. As we shall argue
and demonstrate below such a conflguration leads to a linear increase in the machine speed
as the number of processors in the network is increased. Moreover, this configuration is
immediately portable to a network consisting of any number of transputers without any

change in the source code.

In our algerithm both the master and the worker tasks have threads, A thread in

parallel Fortran is a subroutine of the main program that runs concurrently with the main

program and has its own workspace. A thread can share common blocks with the rest of _

the code and has access to communication ckennels too. Thus, if a serial code has several
pieces each of which can be executed independently of the other then it is possible to
execute each of them concurrently by having those pieces as threads. For instance, in our
problem, when the worker task is analysing data we can have a concurrent thread which
receives data from its input port and keeps it ready for analysis. We follow the following
terminology in the deseription of the algorithm: the main programme will be referred to

as the main thread and any concurrent processes that are initialized by the main routine
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will be referred to as subsidiary threads.

The two tasks together perform data analysis in the following way. Since the programs
are intended to be portable on to a network consisting of any number of transputers, the
master task first sends initialization parameters to the first worker task which in turn
passes 1t on to the next worker and so on. The identity of each task is maintained by an
id number. The #d of each task tells it the range of mass parameter values for which it
should construct filters. The worker tasks store only the Fourier transforms of the filters
to save on the number of operations in computing the correlations. Each computation
of a correlation then involves just computing an inverse Fourier transform amounting to
3Nlog, N operations. Since we are placing one task per transputer, given the speed ¥ of
a transputer, equation (3.4) can be used to find the maximum number of filters per task.
The sustained speed of a T-800 chip is about 0.5 MFLOPS. Thus, for on-line analysis
it is necessary that each task has at the most 5 filters; in the simulation that we have
éa.rried out ten filters are placed on each task in order to analyse data for a low value of

the minimal strength.

After initialization, the main thread in the master task generates Gaussian, stationary,
white noise using the International Mathematical and Scientific Library (IMSL) subroutine
GGNML. A chirp waveform sampled at 2.5 kHz is added to the noise with a 50 % prob-
ability so that a data segment may or may not contain the signal; the values of the mass
parameter, phase and time of arrival are chosen randomly. Finally, the FFT of the data
segment is taken using the REALFT routine of Numerical Recipes [15]. The data so gen-
erated is sent to the main thread in the first worker task which in turn sends it first to the
main thread in the second worker and then to #ts subsidiary thread and so on. In Figures 3
and 4 we have shown the flow charts of the main and the subsidiary threads, respectively,
of the worker task. The subsidiary thread in the worker task filters the data through the
filters that it has built. The filtering involves computation of the correlations and maxi-

mization over all the parameters. Maximization over phase-shift is done analytically using
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the fact that there exists a two-dimensional basis in the phase-space. Maximimum over
mass parameter and time-shift is found numerically. The results of the search that it has
carried out, viz, the maximum of the correlation together with the corresponding values of
the parameters, are sent to the main thread which in turn immediately passes on & fresh
data segment. The subsidiary thread then sets upon analysing the fresh data set. After
having sent the data set to the subsidiary thread, the main thread seeks for the results
of the analysis carried out by a previous worker task, if any, and then sends the results
corresponding to larger of the two correlations to the next worker task. In this way the
results of the analysis cotresponding to the maximum of the correlation reaches the master
task which sends an alarm 1f the signal-to-noise ratio is larger than the threshold. For the
purpose of studying the noise characteristics and other housekeeping all significant events

are recorded by the master task.

From flow charts § and § it is clear that as long as the dote transfer rate between
processors is less than the rate at which anelysis of deta is carried out, the subsidiary
thread does not waste 1is time in efther waiting for the data to arrive or to send the results
of s analysis through to the main thread. This is because the main thread in each worker
task would have received the data from a previous worker task and sent it to the main
thread of the next worker task much before its subsidiary thread can send results since
inter processor data transfer rates are much larger than the rate at which analysis is carried

out. As an example, data transfer rates across hard links of a transputer is ~ 2 Mbytes per

second while a typical data set is only as large as 120 kbytes. On the average, such data

segments require analysis times ~ 40 secs. Thus, if we use a ring topology communication,
overheads will start delaying the processing only if the number of processors are larger than

about 500. In that case a judicious choice of a more complicated topology of processors

will be beneficial.

It is quite straightforward to test that the above statements are indeed correct. If

the communication overheads are not present in a given algorithm then as the number of

16

processors are increased the computation time per processor should remain a constant or
the effective speed of the machine should increase linearly. We have tested this out for
numbers varying from 4-256 transputers on the network and found that the increase in

speed is linear to a very high degree of accuracy.
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Figure Captions

Figure 1. A plot showing the dependence of the number of filters as & function of x =

Smin/n. Note that for minimal strenghts below about 1.1 5 the number of Slters required

rises sharply indicating that it is harder to improve the sensitivity beyond a certain value.

This plot is obtained for the initial mass parameter 0.5Mp.

Figure 2. The topology for communication between processors. On each transputer there
is a main program and a thread. The main program in the master task does the necessary
ifo and the thread generates the data that mimics the output of a gravity wave detector.
The main program in each worker task avoids the accumulation of communication times

by having a data set ready for analysis with the help of a thread.
Figure 3. Flow chart for the main thread in the worker task.

Figure 4. Flow chart for the subsidiary thread in the worker task.
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Here N is the number of processors used.
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