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Abstract

Coalescing binary stars are perhaps the most promising sources for the observation of

gravitational waves with laser interferometric gravity wave detectors. The waveform from

these sources can be predicted with sufficient accuracy for matched filtering techniques to

be applied. In this paper we present a parallel algorithm for detecting signals from coalesc-

ing compact binaries by the method of matched filtering. We also report the details of its

implementation on a 256-node connection machine consisting of a network of transputers.

The results of our analysis indicate that parallel processing is a promising approach to

on-line analysis of data from gravitational wave detectors to filter out coalescing binary

signals.

The algorithm described is quite general in that the kernel of the algorithm is appli-

cable to any set of matched filters.



1. Introduction

The detection of gravitational waves from Galactic and extragaiactic sources will pro-

vide us with an alternative view of the universe hitherto not obtained via the electromag-

netic spectrum of radiation. Their detection is important to further our understanding of

fundamental theories of physics: confirmation of the predictions of Einstein's general the-

ory of relativity, providing useful inputs towards the solution to a long standing theoretical

problem of quantizing gravity, getting accurate values of certain cosmological parameters

like the Hubble constant [1], etc. These are but only a few reasons why several groups

around the world have been concentrating on building laser interferometric gravitational

wave detectors of very high sensitivity, several prototypes of which already exist in different

countries [2].

The principle behind such a detector is the following:

An interferometric detector, in its simplest form, is a Michelson interferometer con-

sisting of a corner mirror and two end mirrors. Instead of an ordinary monochromatic

light a continuous wave laser is used as the source of light. The beam is first split and

reflected by the mirrors several times and then brought together to form a fringe pattern on

a photo-diode. A gravitational wave impinging on the detector causes the masses attached

to the two end mirrors to oscillate and which results in a shift in the fringe pattern. This

shift constitutes the gravitational wave signal.

However, the data from the detector is contaminated with noise from several sources.-

which limits the sensitivity of the detector. The sensitivity can be expressed in terms of

the metric perturbation due to the gravitational waves . The fullscale detectors which

have been planned for the future have armtengths 3 to 4 kilometres and expected peak

sensitivities ~ 1CT22 or 10~23 [2]. Our current knowledge of astrophysical sources indicates

that at such sensitivities several events may be observed per year.

Data from such detectors would be sampled at a rate of ~ 100 kHz and all through

the year [3]. Unless on-line data analysis systems which can search for a variety of signals

are designed all the effort in doing such an experiment will be wasteful as the number of

expected events are not too large and it is neither desirable nor practical to store all the

data. With this view in mind several groups have been concentrating on the design of data

analysis systems that can effectively pick out specific signals from noisy detector output.

In this paper we present one such algorithm to detect gravitational waves from coalescing

binary systems.

Coalescing binary systems are one of the most promising sources for the detection of

gravitational waves with broad band detectors [2]. A compact coalescing binary system

consists of two stars, typically, neutron stars or blackholes, which orbit around each other

bound by their mutual gravitational attraction. General theory of relativity predicts that

such a system should radiate energy in the form of gravitational waves [4]. The gravita-

tional waves emitted carry away energy and angular momentum of the system causing the

two stars to spiral-in. The wave's frequency, is just twice the orbital frequency of the sys-

tem. With the inspiral of the two stars, the amplitude and the frequency of gravitational

wave increase. Thus, the nature of the gravitational waves emitted by the system has a

very characteristic waveform - the so called ckirp waveform. The power emitted in the

process depends not only on the distance between the component stars but also on their

individual masses. However, in the Newtonian approximation a certain combination of the

masses - the mass parameter - determines the evolution of the system. Such binaries are

expected to spiral-in and coalesce over time scales much less than the age of the universe.

Recent estimates [5] show that the event rate is about 3 per year in a volume of a sphere

of radius 200 Mpc. Near coalescence the physical conditions in the vicinity of the system

will be such that an understanding of the nature of the gravitational waves would entail

a fully general relativistic treatment of the evolution or at least a certain approximation

that incorporates some of the strong field effects of the full theory. Since the fully general

relativistic solution to the two body problem has not been obtained so far, there have been

efforts which make use of the wellknown post-Newtonian and post-Minkowskain approxi-
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mations [6] and numerial methods with high resolution grids on fast computers [7]. These

investigations indicate that the waveform from coalescing binaries would be different from

those based on Newtonian approximation and novel algorithms will have to be employed

for the analysis of data.

Parallel processing is a new development in the area of fast computing which over-

comes the von Ntumann bottleneck [8] and promises to be very useful in analysing data from

gravity wave detectors. Parallel processors avoid this bottleneck because they are Multiple

Instruction Multiple Data systems. Development of application software related to data

analysis on such systems has become extremely important since, as metioned above, the

present day physics problems involve formidable amounts of data and sophisticated pro-

cessing. For instance, matched filtering technique is a very powerful tool to detect known

signals buried in noisy data. This technique makes use of the fact that the waveform of

the signal is known accurately. When the noisy output of a detector is correlated with

a copy of the expected signal the correlation is also noisy. When a signal of sufficiently

large amplitude is present in the output of a detector, the correlation will peak at a time

when the signal arrives at the detector. Because of the random nature of the noise, it

is possible that there is a chance large amplitude in the correlation — the so called false

alarm [9], However, if we choose a sufficiently high threshold so that the chance of a false

alarm during a certain time of observation is vanishingly small then we can be confident

about detecting the presence of a signal by looking at the height of the correlation.

Matched filtering is a promising tool for detecting gravitational waves from coalescing

binaries [2, 3],although there exist other algorithms to detect them (see e.g. [10]). Even

though the waveforms of certain signals, like coalescing binaries, quasi-normal modes of a

black hole, etc., are known, the experimenter will not know before hand what the values

of the parameters are. The method followed then consists of constructing a bank of filters,

which scans the relevant range of parameters, which correlates a data segment with each

of these filters. Since calculation of each correlation is independent of any other, the

problem is highly parallelizable; matched filtering is a Multiple Instruction Single Data

problem and therefore parallel processing is the appropriate approach. However, there are

other complications. The number of filters needed to search for gravitational waves from

coalescing binaries in the astrophysically relevant range of parameters is formidably large

- about a couple of thousands. Thus, if one is using a parallel machine like a set of inter-

linked transputers, due to the large number of templates through which one has to filter the

output, data transfer times and communication overheads would be appreciable and every

effort should be made to minimize such overheads. This can be achieved by connecting

the processors in a judicious manner so that the resulting topology leads to minimization

of data transfer times and communication overheads. In this paper we present one such

algorithm well suited to detect gravitational waves from coalescing compact binaries and

which takes care of the problems mentioned above. We also describe its implementation

on a parallel machine consisting of a network of 256 transputers. The code developed

here can be modified easily to suit any other set of matched filters, the basic methodology

remaining the same. Similar implementation can also be found in the work of J. Watkins

[11].

The paper is organized as follows. In section 2 we discuss briefly the nature of the

coalescing binary waveform. We also discuss a criterion to detect signals and show how a

lattice of niters corresponding to various parameters can be constructed. In section 3, we

present an algorithm to detect chirp signals and describe the implementation of this on a

parallel machine.

1 2. The Coalescing Binary Signal

During the final stages of its evolution a binary system of stars emits a burst of

gravitational waves with a very characteristic spectrum. There are two independent wave

amplitudes corresponding to the two independent polarizations of the wave. However, the

response of the detector is a linear combination of the two amplitudes and therefore, for



the purpose of development of data analysis algorithms, it is sufficient to deal with only

the normalized response function [12], henceforth referred to as paper I. In our discussions

we shall use the noise free normalized response <(((; t a ,£,$) given by:

<?(*; U, f, *) = ATa(t)-* cos[i/ae(l - a(t)i) + *] (2.1a)

where

= 3.00
M

100 Hz sec,

(2.U)

(2.1c)

Here M@ = 2 x 1033g is the mass of the Sun, M is the normalization constant and £ is the

time taken for the two stars to coalesce starting from the time when the frequency of the

gravitational wave is /o , M is called the mass parameter and is related to the reduced mass,

H, and the total mass , M, of the binary by: M = (ji 'M2)1 '5 . For a fixed /„, f serves as one

of the parameters of the signal instead of M. The time when the gravitational frequency

reaches / a is ta and is called the time of arrival of the signal. In the context of gravity

wave detectors, whose sensitivity has a lower cut off around 100 Hz, it serves as the second

parameter of the signal. Finally, $ is the phase of the signal at t = ta. Thus, the response

or the signal is characterized by three parameters: the coalescence-time, the time of arrival

and the phase. It should be noted that the binary system is assumed to consist of point

mass stars and the standard quadrupole radiation formula has been used (see, eg., [13]) in

deriving the above waveform. Thus, this waveform will not accurately describe the actual

wave emitted by the system when the two stars approach relativistic speeds and/or when

the tidal interaction between the two stars becomes important [6]. The waveform can at

best be used up to times not too close to the coalescence time. Since the sensitivity of

laser interferometers is expected to be peaked around 100 Hz this finer point need not

concern us in the present paper. We shall treat the waveform to have compact support -

it is non-zero only in the frequency range 100-1000 Hz.

The noise in real detectors is expected to be colored and its nature depends on the

kind of technique employed to enhance the sensitivity of the detector [2]. However, for the

purpose of setting up an algorithm to detect gravitational waves the nature of the noise,

while important, is secondary. Thus, we assume that the detector noise is Gaussian with

a flat power spectrum. In that case the normalization constant N is determined by the

condition that the maximum of the auto-correlation divided by the noise power spectral

density, 5k, is equal to unity:

• 1 max /
Sh A« J-

q{t)q{t + A*) dt = -1 / "q{tf dt = 1 = J?±. (2.2)
V ^

This normalization has several advantages (see ref. [12] for details). Notice that the nor-

malization is different for waveforms with different coalescence times. This is permissible

since the multiplicative constant for niters is arbitrary and the signal-to-noise ratio is

independent of this constant.

We can now express the actual waveform [2,3] of a coalescing binary including all

its dependences on the distance to the binary, etc., in terms of normalized filters. The

multiplicative factor S, which we call the strength of the signal, will contain the distance

to the binary and the coalescence time:

= Sq(t; *.,£,*). (2.3)

Gravitational wave from a coalescing binary located at a distance r and whose coalescence

time, starting from a frequency /„, is £, is of strength

• S(r:f) m f r P f h n Sh T*[ € 1"* (2 4)
*l r '« ' / 'J-4 4 J[ l00Mpcj [lOO Hzj [lO-*" Ha-'J [3 secj ' {^V

where 1 Mpc = 3.086 xlO24 cm.

In the matched filtering technique the statistic used to decide the presence or absence

of a signal is the correlation of the output with a filter. Due to the choice of our normal-

ization it turns out that the expected value of the maximum of the correlation is nothing
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but the signal strength (2.4) itself for a perfectly matched filter. We say that a signal is

present, if the maximum of the correlation crosses a preset threshold 7. The threshold is

set by allowing for one false alarm (due to noise) in a year's time. At the sampling rate

of 2.5 kHz and 100 filters per second implies one crossing in 1013 trials. For a Gaussian

noise distribution with standard deviation a this implies FJ ~ 7<r. The filters will be con-

structed for a discrete set of values of the parameters while the actual signal could have

any values for these parameters. In general, therefore, the values of the parameters of the

signal would differ from those of the filters in the set and the expected value of the signal-

to-noise ratio will be less than the signal strength. It is therefore possible to detect, with a

great confidence level, only those signals that have strengths larger than the threshold by a

certain amount. How large the strength should be depends on the spacing between filters

in the parameter space. In the context of detection of chirp signals we essentially need

to construct filters for the phase and the mass parameters; the time of arrival is decided

when the correlation peaks.

In paper I, we have shown that there is a two dimensional basis in which a signal of

arbitrary phase can be expanded. As a result, the maximum correlation between a signal

and filter, for a given mass parameter and arrival time, can be found analytically by using

just two filters.

Suppose we are interested in detecting all signals of strength greater than or equal to

a certain minimal strength 5min = KTJ, K > 1. We begin with a filter with coalescence time

£ = £1 corresponding to an initial mass parameter Mj, say 0-5M@, at the lower end of the

mass parameter range. A signal whose coalescence time is £1 produces a correlation equal

to KT). As we decrease the coalescence time £ of the signal (this corresponds to increase in

-M), the correlation decreases and for some value of the coalescence time, say £1 + jA£,

of the signal it hits the threshold level. Further mismatch reduces the correlation still

further and another filter 'IF needed to detect such signals. We have shown in paper I,

that for the astrophysically interesting range of mass parameter values, the correlation (in
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the stationary phase approximation) depends only on the differences in the parameters of

the signal and the filter. This implies that the spacing between filters remains a constant.

Choosing the filter spacing to be A£ guarantees that the correlation of a signal of minimal

strength always exceeds the threshold (the A£ defined here is twice that in paper I).

For a given value of K, the bank of filters ia the set characterised by the coalescence

times £t, where,

ft ={ i — (fc-l)Af, k = 1,2, ...,n. (2.5)

Note that in the filter bank, there are two filters corresponding to two values of the phases

0 and jr/2, for each value of f*. Thus the bank consists of n/ = In filters. We may

choose n so that £„ is just about greater than zero. This ensures a high value for the mass

parameter at the upper end of the range.

No simple analytical relation exists between Af and K in the white noise case, as the

second derivatives of the correlation at the peak become infinite and no Taylor expansion

is possible [14]. However, the relation between Af and K is implicit in figure 1. Figure 1

shows the number of filters n/ plotted against K = Smin/rj for the initial mass parameter

Mi = O.5Af0(£i = 9.54 sec). We have the relation A£ ~ 2^ /n / which connects A£ to K

through figure 1. For example, for K = 1.25 we get from the figure, nf ~ 1150 and hence

A? ~ 16.6 milliseconds.

3. Parallel Algorithm for Matched Filtering

In this section we shall first discuss the demands on the computing speeds brought

about by the need to filter each data set through several thousand templates and how this

affects the volume of space from which we can expect to detect gravitational waves. We

then go on to describe the algorithm which we have developed to search for chirp signals by

using matched filtering technique on a network of interlinked transputers. The algorithm

reported here is similar to the one found in ref [11].
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A. Online data analysis

The astrophysically relevant range of the mass parameter for coalescing binary systems

is [0.5, 20] M 0 . If £1 and £2 are the corresponding values of the coalescence times and A£

is the distance at which the correlation between a filter and a signal of minimal strength

falls down to the threshold level, then the total number of filters, n^, including two basis

filters for the phase for each mass parameter filter, is

2(6 - 6) (3.1)

Generally, £2 <£ (1 and we can write nj solely in terms of M1 using (2.1c):

-I

[M0J [WO HzJ [20 msj " "^

A graph of the number of filters as a function of 5min/f is plotted in Figure 1 (cf. Table III

in paper I) for M\ = O.5M0. It clearly demonstrates that we have here a case of dimin-

ishing returns: close to the threshold one has to fight harder to improve upon sensitivity;

very little is gained in choosing the minimal strength to be less than about 1.1 t) while the

number of filters, and effectively the cost of computing, increases enormously below this

value. Now, the computing speed dictates the coarseness or fineness of the lattice — more

the available computing speed, finer the lattice and signals of weaker strengths can be de-

tected. Though little gain in sensitivity is brought about at the cost of a heavy investment

on computing, it should be remembered that while the signal strength falls off as 1/r, the

number of events is proportional to the volume which scales as r*. Thus, detecting weaker

signals also means an increase in the number of events which is very important for the

detection of gravitational waves. Therefore, a compromise has to be reached on the choice

of minimal strength. This brings us to another question- in the data analysis problem, in

the context of gravitational wave detection, viz, analysis of data in real time. Let S be the

speed of the computer measured in units of the number of million floating point operations

per second (MFLOPS). It is straightforward to show that such a machine can filter the
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data on-line through a number n/ of filters given by

S
nf = 1000

100 MFLOPSJ [2.5 kHzj
(3.3)

Here A is the sampling interval between consecutive data points. We now have two equa-

tions for the number of filters. Equation (3.2) relates the number of filters to the range

of mass parameter in which the search is carried out and the distance between filters. On

the other hand, (3.3) relates the number of filters to the demands on computing speed

for on-line data analysis. Equating these two expressions we obtain a very useful relation

between computing speed and the spacing between consecutive filters:

.1"
100 MFLOPSj 12.5 kHz

-1

100 Hz

- I
milliseconds. (3.4)

The usefulness of this relation is two-fold. On one hand, given a spacing between filters

it tells us what the minimum computing speed should be to do on-line data analysis; on

the other hand, given a machine of a certain speed it facilitates a choice for the spacing

between filters in order to do on-line data analysis. This has deep implications since

spacing between filters is related to the minimal strength of detectable signals and hence

the distance up to which we can see. Smaller the spacing between filters, lesser would

be the minimal strength of detectable signals, implying a larger distance up to which we

can see, and hence a greater event rate. For instance, if A£ = 16.6 milliseconds then for

Ali = 0.5M© we would need a machine of speed 115 MFLOPS to process the data on-line.

With this set of filters, the distance up to which the binaries can be detected is ~ 500 Mpc

(see, paper I for details).

B. The numerical algorithm and its implementation

The computer we have used for the simulation is a network of 256, INTEL T-800

chips interlinked with one another. It is possible to use any topology for the connection of

diiferent processors since there is a hardware link from each transputer in the network to

13



every other via a cross bar exchange. The only constraint in the present configuration of

the machine is that only one transputer in the network can access the host. (We believe

this constraint will soon be removed).

For the simulation of the experiment we have two tasks. The first one, henceforth

referred to as the master task, has access to the host and performs the necessary i/o and

book keeping. The second task, henceforth referred to as the worker task, searches for

coalescing binary signal by the method of matched filtering. A copy of the worker task is

placed in the rest of the processors.

While we are using a network of a large number of transputers, data transfer and

communication overheads will cost appreciably if proper care is not taken in setting up

the algorithm. However, the availability of concurrent processes — the so called threads

— facilitates the choice of a very simple topology while avoiding these overheads. We have

connected up the processors in a ring topology as shown in Figure 2. As we shall argue

and demonstrate below such a configuration leads to a linear increase in the machine speed

as the number of processors in the network is increased. Moreover, this configuration is

immediately portable to a network consisting of any number of transputers without any

change in the source code.

In our algorithm both the master and the worker tasks have threads. A thread in

parallel Fortran is a subroutine of the main program that runs concurrently with the main

program and has its own workspace. A thread can share common blocks with the rest of ^

the code and has access to communication channels too. Thus, if a serial code has several

pieces each of which can be executed independently of the other then it is possible to

execute each of them concurrently by having those pieces as threads. For instance, in our

problem, when the worker task is analysing data we can have a concurrent thread which

receives data from its input port and keeps it ready for analysis. We follow the following

terminology in the description of the algorithm: the main programme will be referred to

as the main thread and any concurrent processes that are initialized by the main routine
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will be referred to as subsidiary threads.

The two tasks together perform data analysis in the following way. Since the programs

are intended to be portable on to a network consisting of any number of transputers, the

master task first sends initialization parameters to the first worker task which in turn

passes it on to the next worker and so on. The identity of each task is maintained by an

id number. The id of each task tells it the range of mass parameter values for which it

should construct filters. The worker tasks store only the Fourier transforms of the filters

to save on the number of operations in computing the correlations. Each computation

of a correlation then involves just computing an inverse Fourier transform amounting to

3JVlog2JV operations. Since we are placing one task per transputer, given the speed E of

a transputer, equation (3.4) can be used to find the maximum number of filters per task.

The sustained speed of a T-800 chip is about 0.5 MFLOPS. Thus, for on-line analysis

it is necessary that each task has at the most 5 filters; in the simulation that we have

carried out ten filters are placed on each task in order to analyse data for a low value of

the minimal strength.

After initialization, the main thread in the master task generates Gaussian, stationary,

white noise using the International Mathematical and Scientific Library (IMSL) subroutine

GGNML. A chirp waveform sampled at 2.5 kHz is added to the noise with a 50 % prob-

ability so that a data segment may or may not contain the signal; the values of the mass

parameter, phase and time of arrival are chosen randomly. Finally, the FFT of the data

segment is taken using the REALFT routine of Numerical Recipes [15J. The data so gen-

erated is sent to the main thread in the first worker task which in turn sends it first to the

main thread in the second worker and then to iU subsidiary thread and so on. In Figures 3

and 4 we have shown the flow charts of the main and the subsidiary threads, respectively,

of the worker task. The subsidiary thread in the worker task filters the data through the

filters that it has built. The filtering involves computation of the correlations and maxi-

mization over all the parameters. Maximization over phase-shift is done analytically using
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the fact that there exists a two-dimensional basis in the phase-space. Maximimum over

mass parameter and time-shift is found numerically. The results of the search that it has

carried out, viz, the maximum of the correlation together with the corresponding values of

the parameters, are sent to the main thread which in turn immediately passes on a fresh

data segment. The subsidiary thread then sets upon analysing the fresh data set. After

having sent the data set to the subsidiary thread, the main thread seeks for the results

of the analysis carried out by a previous worker task, if any, and then sends the results

corresponding to larger of the two correlations to the next worker task. In this way the

results of the analysis corresponding to the maximum of the correlation reaches the master

task which sends an alarm if the signal-to-noise ratio is larger than the threshold. For the

purpose of studying the noise characteristics and other housekeeping all significant events

are recorded by the master task.

From flow charts S and 4 it w clear that as long as the data transfer rate between

processors is less than the rate at which analysis of data is carried out, the subsidiary

thread does not waste its time ire either waiting for the data to arrive or to send the results

of its analysis through to the main thread. This is because the main thread in each worker

task would have received the data from a previous worker task and sent it to the main

thread of the next worker task much before its subsidiary thread can send results since

inter processor data transfer rates are much larger than the rate at which analysis is carried

out. As an example, data transfer rates across hard links of a transputer is ~ 2 Mbytes per

second while a typical data set is only as large as 120 kbytes. On the average, such data

segments require analysis times ~ 40 sees. Thus, if we use a ring topology communication,

overheads will start delaying the processing only if the number of processors are larger than

about 500. In that case a judicious choice of a more complicated topology of processors

will be beneficial.

It is quite straightforward to test that the above statements are indeed correct. If

the communication overheads are not present in a given algorithm then as the number of
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processors are increased the computation time per processor should remain a constant or

the effective speed of the machine should increase linearly. We have tested this out for

numbers varying from 4-256 transputers on the network and found that the increase in

speed is linear to a very high degree of accuracy.
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Figure Captions

Figure 1. A plot showing the dependence of the number of filters as a function of K -

Sminh- Note that for minimal strenghts below about 1.1 r] the number of filters required

rises sharply indicating that it is harder to improve the sensitivity beyond a certain value.

This plot is obtained for the initial mass parameter 0.5MQ.

Figure 2. The topology for communication between processors. On each transputer there

is a main program and a thread. The main program in the master task does the necessary

i/o and the thread generates the data that mimics the output of a gravity wave detector.

The main program in each worker task avoids the accumulation of communication times

by having a data set ready for analysis with the help of a thread.

Figure 3. Flow chart for the main thread in the worker task.

Figure 4. Flow chart for the subsidiary thread in the worker task.
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Here N is the number of processors used.
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