THE DIFFERENTIAL INVARIANTS
OF A TWO-INDEX TENSOR

D. D. KOSAMBI

Riemannian geometry, based upon a metric form ds?=g;;dx’dx’,
gives us the curvature tensor Rj, as the sole basic differential in-
variant of the space, and of the symmetric tensor g;;. The general
tensor g;; can be broken up into the sum of two irreducible com-
ponents, namely the symmetric and antisymmetric portions defined
respectively by 2gu; =g:i+gi; and 2gp; =g:;—gji. The latter disap-
pears in constructing ds?; but the general differential invariants of g;
must necessarily be composed of those derivable from g;; (the curva-
ture tensor above), from g;;;, and a group of mixed invariants de-
pendent upon both. It is proposed to investigate the general problem
by use of a well known and easily proved fundamental lemma of the
calculus of variations: The Euler equations derived from a variational
principle are tensor-invariant under the group of transformations which
leaves the original integral imvariant. Actually the equations as di-
rectly obtained state that a certain covariant vector vanishes.

Given the tensor g;;j(x! - - - x*) we first introduce two (implicit)
absolute parameters %, v, and construct the variational problem

F dxt

(1 Bf g,-,-xixidudv = 0; Xy = » and so on.

o

Only x-transformations will be allowed for the present. The Euler

equations become
. .
2 z{g(ii)x:w + le,.;xzxv} = 0;
Liki = (gik,j + giik — gjk.i)/z; giik = ag;f/axk.

These L;;; must, therefore, have the law of transformation of Christof-
fel symbols of the first kind. In fact

Lii = {gan.i+ gan — gama} /2 + {gumi + guas + guini} /2
= Tjri + Qji.

Here T'jx; are precisely Christoffel symbols of the first kind associated

with guj, and Qs 4s the fully covariant form of the Cartan torsion

tensor. If now the discriminant ] g(,-,-)l 50, we may construct gié? as
usual to raise indices, and then obtain the coefficients of a general
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affine connection:
[ (ir)

4) Ljy=¢g
with

L = Tit + i,

T r
gtk = gai e — gaunLix — gepLic = 0.

That is, the covariant derivative of g.:; with respect to the affine connec-
tion defined by (2) vanishes. This follows from the vanishing of the
covariant derivative of gg; with respect to I'j, and the antisym-
metry of Q; in any pair of indices.

One may note in passing that Q. s the only basic differential in-
variant dependent upon gu; alome. Any differential invariant con-
structed from gp;; must be based upon some form of tensor differ-
entiation. If we take the covariant derivative with respect to any
symmetric affine connection, we may write

Qijre = guine + guiniis + guwali

() _
= guik + gl + guwit.i

The antisymmetry of gp;;; and the symmetry of the connection coeffi-
cients make the latter cancel out of (5). The tensor gpj;x has only
one other irreducible component besides 2, namely grjx+gms
and this is clearly dependent upon the connection coefficients; hence,
in this case, the remaining tensor-invariants are mixed. The condi-
tion ;=0 is necessary and sufficient for gp;; to be a curl, that is,
of form N;,;—\;;, as is well known.

In the foregoing, however, we obtain no indication as to the in-
trinsic geometry of a purely antisymmetric g;;, that is, when
giih =0, though this is the only case where the integral in (1) is in-
variant under parameter transformation. This defect may again be
remedied by utilizing another variational principle. We take a single
absolute parameter ¢, and look for the geodesics of a metric of higher
order (2) associated with g;;%###’. But this is not an invariant under
x-transformations, as & is not a vector. We must therefore add to &*
the terms Aj%'%*, where A% are as yet unspecified coefficients of
affine connection symmetric, without loss of generality. Still further,
we have to utilize the fact that a variational problem is unchanged
by the addition of a perfect differential to the integral. If we integrate
gi%'%7/2 by parts, we have left under the sign of integrationn
— ;%81 /2 — gij x%i%7%% /2. The actual statement, therefore, is:

7 r T .7k
(6) 5f {gunt's’ + (—girn/2 + guwd )4 &% Jdt = 0.
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The terms in parentheses are completely symmetric in all three lower
indices jk, and we may therefore take A =T7, the Christoffel sym-
bols associated with g.;,; then the terms in g;, »/2 cancel out with
those in gundjy, leaving only gunAjxitiz*. We may then drop the
brackets in subscript, taking g;;=gj; for we have finished with ggj,
which enters hereafter only through I'y, its Christoffel symbols.

We make the further assumption that Ig;,-l #0 which implies that
n, the number of dimensions of the space, is even. This is to allow
raising and lowering of indices, along with a solution of the Euler
equations explicitly for dié?/di. The equations themselves are

k. r. s

@) 2g,,{dx/dt + 3&'% 'Yrk + Bzmx %%} =0,

where

(@) i+ gii = 0;

(b) 3gavir = 3giin/2 + (gir,i + gind)/2 — Hips

(c) 2gilﬁlikr = gitibry — Hiery + Hejryis

(d) with Hijz = gaTi + giThs + gTis,

where the bracketed subscripts in ¢ denote only the completely sym-
metric portion. The tensor analysis of equations d&i/dt+ai(x, %, &, t)
=0 has been discussed elsewhere. The basic set of differeniial invari-

ants in our present case would be, besides the vector %* itself, the two
tensors

(8)

i i d ik
Pr=a;r—'3 _'Yr+'yk7r>;

dt
9 ‘ i ik ar P d i d i k1
r = O — OGkYr - -2 - Yr 2 Ty
Qr=a a;ry pr — % + 27, pr i w dtv + YEYIYrS
where

s r b 7 i k. r.s
a=35¢5€’)’rk+ﬁkrsxxx1
: dat d : 1 9ot i k
L= —— an j=— — = X .
O;r Py ’ Yi 3 9 Yik
The remaining (basic) differential invariants all vanish identically.
Moreover, vy have the transformation law of coefficients of an affine
connection, while there are three tensorial differential operators:
a a a

10 i RS W
(10) ot ot g
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and the third corresponding full covariant differentiation

i i k(aui oo aui)
Ve = u,r - Y\ T —
’ Y\oxe — M g

(11) .
{Zi B k1 k}?_u__’__l_ P
+ T A = e Ytk
We are primarily interested in those differential invariants obtained
from (9)—(11) which are independent of % and #.

These invariants may be calculated very simply as follows. Wher-
ever &% occurs, we add thereto the terms I'z47%%, and subtract the cor-
responding terms elsewhere in the same tensor. The tensor is thereby
resolved into its invariant components, namely the coefficients of
(£ +T%%%%) and the homogeneous polynomials of various degree in
x

The actual calculation is avoided almost entirely by the following
considerations. It is known and easily proved that the connection
coefficients v} in (8b) have the same law of transformation as
Christoffel symbols of the second kind. Moreover, we have

(12) Lij b — gir'Y;k - gr,")'i'k = 0, identically,

whence the covariant derivative of the basic tensor gi; vanishes with
respect to its own “Christoffel symbols.” Now the torsion, that is, the
anti-symmetric portion, is seen to be

(13) gavtin = (i + givs — o0, )/2 = Quin/6,

as before. Since any tensor of the proper rank may be added to or
subtracted from connection coefficients without affecting their trans-
formation law, we have only to investigate invariants of the sym-
metric portion

(14) Yen = & (e + gini — Hin)/3-

From these, again, one may eliminate g;;x+g,; by using their co-
variant derivatives with respect to I'};, that is, gijiutgisj, which is
seen to be the irreducible component of g;;x mentioned before. We
then have to investigate the curvature tensor formed by means of
the symbols

(15) Lj‘k = {Th + 28"(I‘:kgcf + Tiigan) } /3.

Choosing special coordinates in which I'}; (but not their derivatives)
vanish at a point, the tensor in question is seen to be
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(16) Rin/3 + 2(g guiRox + g guRi1) /3,

where Rj, is the Riemann-Christoffel curvature tensor formed as
usual from the T};,. The derivation proves that the sole invariant de-
pending only on the g;; is Q.jx, as before.

To round out the discussion we have to consider other tensors of
rank two, such as gi and g;¢, as well as tensors of weight p other than
zero. The weight can be reduced to zero by division with a suitable
power of the determinant except when the determinant vanishes, or
np-+2=0, in which case nothing further can be done. Furthermore,
we have the usual algebraic method of taking the normalized co-
factors of the transposed matrix for associating a contravariant
tensor g¢ with a covariant g;;. In this case, however, the geometry is
associated with the variational principle 8fgiip i ;dx* - - - dx"=0
and therewith a generalized Laplace equation. No new invariants are
obtained. Finally, for the mixed tensor g, one may look for the
extremum §[gj¢ #dt but it can be seen that this leads neither to a
geometrical interpretation nor to differential invariants; though %?
may be eliminated from the resulting equations, the equations them-
selves cannot be solved explicitly for d%/dx‘xi. Thus, we obtain
only the trivial cases (1) gj=4} which is then an invariant of every
affine connection, the integral above reducing to that of a perfect dif-
ferential, hence independent of the path, and (2) the obvious in-
variant g ;.
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