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Riemannian geometry, based upon a metric form ds2 = gijdxidxJ', 
gives us the curvature tensor R)u as the sole basic differential in
variant of the space, and of the symmetric tensor gy. The general 
tensor g^ can be broken up into the sum of two irreducible com
ponents, namely the symmetric and antisymmetric portions defined 
respectively by 2giij)=gij+gji and 2g[ij]=gij--gji. The latter disap
pears in constructing ds2; but the general differential invariants of gij 
must necessarily be composed of those derivable from g(ij) (the curva
ture tensor above), from gun, and a group of mixed invariants de
pendent upon both. I t is proposed to investigate the general problem 
by use of a well known and easily proved fundamental lemma of the 
calculus of variations : The Euler equations derived from a variational 
principle are tensor-invariant under the group of transformations which 
leaves the original integral invariant. Actually the equations as di
rectly obtained state that a certain covariant vector vanishes. 

Given the tensor ga{xl • • • xn) we first introduce two (implicit) 
absolute parameters u, v, and construct the variational problem 

ƒ % j % ox 
gijXuxvdudv = 0; xu = > and so on. 

du 

Only ^-transformations will be allowed for the present. The Euler 
equations become 

2{g(ij)Xuv + Lfti%u%v\ = 0; 

Lju = (gi&.j + ga,h — gjk,i)/2; gi3',k = dga/dxk. 

These L^k must, therefore, have the law of transformation of Christof-
fel symbols of the first kind. In fact 

cr> Ljki = i£(iA:)'> "*"£(t7)'fc "• £<#)•<}/^ + {g[ik],i +gui],k +g[kj],i}/2 

= Tjki + Qjki. 

Here Fjk% are precisely Christoffel symbols of the first kind associated 
with g(^), and QJM is the fully covariant form of the Car tan torsion 
tensor. If now the discriminant |g<»y)| 5^0, we may construct g(ij) as 
usual to raise indices, and then obtain the coefficients of a general 
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affine connection: 

(4) L)k = gr Ljkr = v)k + 0%, 

with 
r r 

g(H)\k s g(ij),h — g(ir)Ljk "~ g(r3')Uk = 0. 

That is, the covariant derivative of g{ij) with respect to the affine connec
tion defined by (2) vanishes. This follows from the vanishing of the 
covariant derivative of g(ij) with respect to T%, and the antisym
metry of tiijk in any pair of indices. 

One may note in passing that Q ^ is the only basic differential in
variant dependent upon g[a\ alone. Any differential invariant con
structed from gun must be based upon some form of tensor differ
entiation. If we take the covariant derivative with respect to any 
symmetric affine connection, we may write 

( . 8,-y* = g[iü\h + g[jk]\i + gthiUi 
s gun,* + gim,i + g[ki),j. 

The antisymmetry of gun and the symmetry of the connection coeffi
cients make the latter cancel out of (5). The tensor gum* has only 
one other irreducible component besides Œ^, namely g[%j)\k+g[kj]\i 
and this is clearly dependent upon the connection coefficients; hence, 
in this case, the remaining tensor-invariants are mixed. The condi
tion Hijk = 0 is necessary and sufficient for gun to be a curl, that is, 
of form X,-,y—Xy,,-, as is well known. 

In the foregoing, however, we obtain no indication as to the in
trinsic geometry of a purely antisymmetric g^, that is, when 
£(»,)= 0, though this is the only case where the integral in (1) is in
variant under parameter transformation. This defect may again be 
remedied by utilizing another variational principle. We take a single 
absolute parameter /, and look for the geodesies of a metric of higher 
order (2) associated with gijXlxK But this is not an invariant under 
x-transformat ions, as xj is not a vector. We must therefore add to x{ 

the terms A)^cjxk
y where A% are as yet unspecified coefficients of 

affine connection symmetric, without loss of generality. Still further, 
we have to utilize the fact that a variational problem is unchanged 
by the addition of a perfect differential to the integral. If we integrate 
gijX1^/! by parts, we have left under the sign of integrationn 
— gjiX{xJ'/2 — gij^x^x10/2. The actual statement, therefore, is: 

(6) ö I {g[in*% + (-gij,k/2 + girA^x'xx }dt = 0. 
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The terms in parentheses are completely symmetrie in all three lower 
indices ijk, and we may therefore take A]k — Yr

jk, the Christoffel sym
bols associated with g(ij); then the terms in g^, k/2 cancel out with 
those in g(ir)A

r
jk, leaving only guriA^rfcWx10. We may then drop the 

brackets in subscript, taking ga — gun for we have finished with g^, 
which enters hereafter only through Y)k> its Christoffel symbols. 

We make the further assumption that \ga\ 9^0 which implies that 
n, the number of dimensions of the space, is even. This is to allow 
raising and lowering of indices, along with a solution of the Euler 
equations explicitly for dx{/dt. The equations themselves are 

(7) 2gij{dx/dt + SX X yrk + PkrsX X X } = 0, 

where 

(a) gij + ga = 0; 

(b) 3giryik = 3ga,k/2 + (giktj + gjk,i)/2 — Hi}k; 

(c) 2gul3jJcr = giU,k,r) — #i(jfc,r) + Hrjk,i\ 

(d) With Hij'k = girTjJc + gjrYki + gkrTijy 

where the bracketed subscripts in c denote only the completely sym
metric portion. The tensor analysis of equations dx^dt+a^x, x, x, t) 
= 0 has been discussed elsewhere. The basic set of differential invari
ants in our present case would be, besides the vector x* itself, the two 
tensors 

i % ( d i i k\ 
Pr = air — 3 l — 7r + 7&7r lî 

(9) i i i k d2 i k d i % d k i k i 
Qr = 0L,r - a]kyr - — - 7r + 2yr — yk - 2Y* — yr + 2 7 * 7 ^ ; 

dv dt dt 

where 
i r k i i k r « 

a = ÔX X yrk + Pkra% X X , 

i da1 i 1 da1 i k 
a,r = , a n ( J y. — . =- yjkx . 

dxr 3 dx3' 

The remaining (basic) differential invariants all vanish identically. 
Moreover, y% have the transformation law of coefficients of an affine 
connection, while there are three tensorial differential operators: 

d d r d 
(10) — , — 7 - 27< > 

dx% dx% dxr 
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and the third corresponding full covariant differentiation 

(11) 

h/du1 s du1' 
yrU S3 U,r — 7r( 7 ~~ 2 T * 

\dxk dx\ 
, ( d k h i k) du1 i r 

+ \2 — yr - 2yiyr - a;rV—- + yjru 
{ dt j dxk 

We are primarily interested in those differential invariants obtained 
from (9)—(11) which are independent of x and x. 

These invariants may be calculated very simply as follows. Wher
ever xl occurs, we add thereto the terms T%x3'xk, and subtract the cor
responding terms elsewhere in the same tensor. The tensor is thereby 
resolved into its invariant components, namely the coefficients of 
(xi+T%x3'xk) and the homogeneous polynomials of various degree in 
xr. 

The actual calculation is avoided almost entirely by the following 
considerations. I t is known and easily proved that the connection 
coefficients y% in (8b) have the same law of transformation as 
Christoffel symbols of the second kind. Moreover, we have 

(12) gij,k — girjjk ~ grWik = 0, identically, 

whence the covariant derivative of the basic tensor gij vanishes with 
respect to its own u'Christoffel symbols." Now the torsion, that is, the 
anti-symmetric portion, is seen to be 

(13) giryuh] = (Su.* + £*M — gih,i)/2 = 0</*/6, 

as before. Since any tensor of the proper rank may be added to or 
subtracted from connection coefficients without affecting their trans
formation law, we have only to investigate invariants of the sym
metric portion 

(14) y\m = g%r{guth + gik.j - Hijk)/3. 

From these, again, one may eliminate gij,k-\-gik,j by using their co-
variant derivatives with respect to T%, that is, g»vi*+g**ii, which is 
seen to be the irreducible component of gij\h mentioned before. We 
then have to investigate the curvature tensor formed by means of 
the symbols 

(15) L)h = {r% + 2gr(Tikg8j + T9agth)}/3. 

Choosing special coordinates in which T% (but not their derivatives) 
vanish at a point, the tensor in question is seen to be 
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(16) R)ik/3 + 2(gtrg8iR
8uk + g'gskRud/S, 

where R*u is the Riemann-Christoffel curvature tensor formed as 
usual from the T%. The derivation proves that the sole invariant de
pending only on the ga is 0,-y*, as before. 

To round out the discussion we have to consider other tensors of 
rank two, such as gi]' and gj\ as well as tensors of weight p other than 
zero. The weight can be reduced to zero by division with a suitable 
power of the determinant except when the determinant vanishes, or 
np+2=0, in which case nothing further can be done. Furthermore, 
we have the usual algebraic method of taking the normalized co-
factors of the transposed matrix for associating a contravariant 
tensor gi]' with a covariant g^. In this case, however, the geometry is 
associated with the variational principle ôfg^^^dx1 • • • dxn = 0 
and therewith a generalized Laplace equation. No new invariants are 
obtained. Finally, for the mixed tensor g*, one may look for the 
extremum hJ^>,iXjdt but it can be seen that this leads neither to a 
geometrical interpretation nor to differential invariants; though xl 

may be eliminated from the resulting equations, the equations them
selves cannot be solved explicitly for d^/dx^x1'. Thus, we obtain 
only the trivial cases (1) gj = Sj which is then an invariant of every 
affine connection, the integral above reducing to that of a perfect dif
ferential, hence independent of the path, and (2) the obvious in
variant gij. 

BOMBAY, INDIA 


