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A BIVARIATE EXTENSION OF FISHER’'S Z TEST

D. D. KOSAMBI
(Fergusson College, Poona)

NORMAL distribution in k varnates x,,

Lo, .. XLy
(population mean) zero is defined by the
probability density ¢ exp — ¢/2, where ¢ is
always to be understood as a constant so
chosen as to make the total probabilisy
equal to unity, and ¢ is a positive definite
nomogeneous quadratic form in the variates,
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Here, we use the tensor summation con-
vention for repeated indices and the integral
is t0o be taken as extended over that portion
of the k-space in which the variates are to
lie. The coefficients ¢,; are to be formed
by taking the normalized co-factors of the
corresponding element in |; ¢” il, as usual.

. MNoge*
we can write o= :
bﬂ'z;,*

The form ¢ being definite, the determinant
0- does not vanish, and there is no theoreti-
cal difficulty in finding either &7 or o,
the matrix of the other coefficients being
given.

Suppose now that a sample of n observa-
tions be taken from such a population, the
ith sample wvalue of the variate x, being
x;; Then it is known that the best' esti-
mates of o,; are given by

(1) p=
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Alternatively,
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where z,==- 2 X;
n;-
=1
The best! estimate ¢* is s* = | s5;;| and of "

the corresponding normalized co-factors, s‘?

It i1s well known that the quantities s;;
are the sample variances when 1 = 3}, and the
sample correlations multiplied by the cor-
responding standard deviations when t = 3.
Again, s?, the determinant of the sampling
coefficients, has a strong claim to be con-
sidered as the generalized variance of the
multivariate sample. The ratio of two such
variances chosen from the same populations
would be independent of a linear homogene-
ous transformation of the co-ordinates, and
also of the population parameters. It is

each with expectation

natural to ask whether the distribution of
this ratio, or rather of its logarithm, has
anything in common with Fisher’s z, so that
the z tables could be used without further
ado. The answer 1s negative in general but
1t is the purpose of this note to point out
the fact that for a bivariate populatioan
(k=2), such an extension is wvalid.

2. Foliowing the methods pgiven by
Uspensky,” it is a comparatively simple
matter to find the distribution of S, where
(3) S2= det. (Z' (x;— x;) (x;

J——I

=1, 2.

It 1s to be noted that s2=S82/(n— 1)-.
By a distribution, we mean the probability
that S2 < t®, the derivative of this with
respect to t being then the probability
density, which is sometimes called the
“distribution’” by statistical writers.

For convenience of notation, let the two
variates be x and y. The ¢ = ax® + 2bxy
cy®. But as we mean ultimately to consider
the ratio of two generalized variances,
which 1s a function independent of linear
homogeneous transformations, we might as
well consider the transformation to have
been performed in advance which brings ¢
to 1ts canonical form: for a positive definite
form, ¢ = x* + y-. The required distribution
is then given by
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where the region of integration R is defined
by the inequality:

(5) S2= X (x; - r)2(1'-~~ V)

— (& (x;— x) (v; — P)}? < 17,

]
with =2,
n
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The variates x and y have the samplinyg
values x,, ..&,, Y. ...¥, Which are 1nae-
pendent, being chosen at random by
hypothesis, and the formuleae (4 -- 5) are then
self-evident.

For the reduction of the integral,
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the
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treatment by Uspensky for the distribution
of the correlation coefficient is rigorous and
can be carried out step by step. Choosing
the new *variables of integration as the

means I, Y, and n — 1 each of the differences

X xr, Y;— y, and performing a suitable
linear homogeneous transformation, the in-
tegral in (4) is reduced to a similar one with
n — 1 in place of n, the usual loss of a degree

of freedom for measuring from the sample

mean. A second transformation and one
mtegration will reduce the integral further
to
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But we have the twog classical formulse of

integration:
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These allow us at once to write down dp/dt
in the form:

(§) j’?:ce*”t”“3:range t= (Q— oo.
This is, again, of the form of the integrand
for the incomplete gamma function, and so,
if we wish to find the distribution of the
ratio of two independent sampling observa-
tions of S*, we can proceed as usual. But
it is clear that the exponent is not the usual
number of degrees of freedom. In fact,
the degrees of freedom, as is to be seen by
comparing exponents with those in the usual
formula, are now 2n — 4. Thus, we must
use {2n — 4)* as the divisor for 5% in place
of (n— 1) Finally, a last correction 1s
necessary for the fact that we have used
S2 < t* in place of the usual distribution,
which would be the probability S? < t. All
of this, however, 1s now guite obvious, and

the result can be summed up In a theorem:
If two independent samples of n, n
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spectmens are taken at random from a bi-
variate normal population, then the quantity

! S? —2
(9 2=, log gy +Ylog -

= | S / 5§
V% {‘\/n AN

has the same distribution as Fisher’s z for
a single variate, with the degrees of freedom
n — 4, 2n’ — 4,

The distribution was known (Wilks,? 478)
but the adjustment for the proper number
of degrees of freedom, and the possibility
of using Fisher's tables, have apparently
been overlooked. The rule is quite as simple
as for a single variate. In the usual nota-
tion we calculate the gquantity s s (1 — r2),
multiply by the correction factor

(?1 "_ 1)31’4(7?' - 2):1!
and take a quarter instead of a half of the
natural logarithm of the ratio of two such
sampling observations. Then, enter Fisher's
fables of z as usual, but with the degrees of
freedom. 2n — 4 instead of n —1.

3. The results of the preceding sectioan
are not extensible to k= 3. The integrais
do not reduce so easily, at least by any
known formulae. For example, the case
kt=3 can be solved completely if an
explicit formula for the integral from zero
to infinity of exp — (x 4+ a2/x*) is. found.
But 1t does not seem possible that this
would allow a rigorous use to be made of
the z tables.

It would be interesting to see the extend-
ed z test for k=2 used for analysis of
variance: say for plot experiments with two
simultaneous crops sown on each plot. The
test is open to the same criticisms levelled
against the z test for one wvariate, in that
it does not take the mean wvalues into
account, but tests directly on the basis of
the observed wvariances, the hypothesis that
both samples might have been drawn from
the same normal population. For tests also
taking the mean values into account, as In
Student’s t test, we have the T* of Hotelling
and 1its generalizations. But for a bivariate
population, the test suggested here 1s surely
more complete than the usual method of
testing the wvariances s2,, s2, individually,
along with the correlation coefficient 7.
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