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1. Introduction

The nonlinear Schrödinger equation (NLSE) and its stationary solutions, such as solitons and
vortices, have been extensively studied in various fields such as nonlinear optical systems, plas-
mas, fluid dynamics, Bose-Einstein condensation and condensed matter physics. Fiber optics
and waveguide optics are used in most of the important applications, and studies of optical
similaritons, which are the self-similar waves that maintain their overall shapes but with their
parameters such as amplitudes and widths changing with the modulation of system parameters,
have recently attracted much attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Generally speaking, optical similaritons can be divided into two categories. The first category
is the asymptotic optical similaritons, which are mainly described by the compact parabolic,
Hermite-Gaussian and hybrid functions [1, 2, 3, 4] in the context of nonlinear optical fiber
amplifiers. Later, the concept of self-similar evolution of parabolic pulses was transplanted to
the context of nonlinear planar waveguide amplifiers where the asymptotic parabolic similari-
tons were found not only for (1+1)-dimensional NLSE but also for (2+1)-dimensional NLSE
[5]. The second category is the exact optical similaritons, which are mainly described by exact
soliton solutions [6, 7, 8, 9, 10, 11, 12, 13, 14].

Among the two categories, the exact solitonic similaritons are more intriguing because their
stability is guaranteed [12]. There are many ways to find the exact solitonic similaritons, and it
must be noted that, the process of finding the exact solitonic similariton is in essence the reduc-
tion of original NLSE, which is generally inhomogeneous, into standard, homogeneous NLSE,
and all of the methods can be unified by the powerful generalized inverse scattering technique
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with variable spectral parameter [6, 8, 14]. Extensive research work has been carried out in the
context of obtaining exact solitonic similaritons having sech or tanh-type profiles pertaining to
(1+1)-dimensional NLSE. Some of them are as follows: In [7], soliton management regimes
for nonlinear optical applications were considered for the first time. A similarity transforma-
tion to the autonomous NLSE was constructed for the first time and general applications for the
dispersion-managed optical systems were studied in details in [10]. Moreover, the dynamics
and interaction of bright and dark solitons were studied using the NLSE model with an exter-
nal nonstationary harmonic potential in [15] and [16] respectively. In addition, the method of
similarity solutions have been used in detail in nonlinear wave theory. Similarity solutions for
the Korteweg de Vries, modified Korteweg de Vries, NLSE and sine-Gordon equations have
been studied extensively in literature [17, 18, 19, 20]. However, only a few results have been
reported about exact optical similaritons described by the quasi-soliton solutions in dispersion-
managed optical fibers [21, 22]. Such kind of exact quasi-soliton similariton has more attractive
properties than those of the soliton because of its reduced interaction and smaller peak power
than the soliton [21] and allows a possible pedestal-free pulse compression [22].

However, in nonlinear fiber optics, it is well known that in addition to dispersion manage-
ment, there exist the nonlinearity and amplification management. Thus, the prime aspect of
this paper is to seek the exact optical similaritons, other than those with sech or tanh-type pro-
file, under the dispersion, nonlinearity and amplification management. On the other hand, since
all the exact optical similaritons are found in (1+1)-dimensional NLSE, then one would ask
whether the exact optical similaritons exist in (2+1) or even in (3+1)-dimensional NLSE or not.
The other important aspect of this paper is to report the existence of exact optical similaritons
in these higher dimensional NLSEs.

2. Model equations

Here we outline the NLSEs under investigation as below. For (1+1)-dimensional systems, there
are two different types of NLSE. The first one is

iuz +
1
2

uxx + σ |u|2u+ f (z)
x2

2
u = i

g(z)
2

u, (1)

which describes the propagation of optical beam in a planar graded-index waveguide ampli-
fier with the refractive index n = n0 + n1 f (z)x2 + n2|I|2 [11, 13]. Here, the beam envelope u,
propagation distance z, spatial coordinate x and amplification parameter g(z) are respectively
normalized by (k0|n2|LD)−1/2, LD, w0 and L−1

D , with the wavenumber k0 = 2πn0/λ at the
input wavelength λ , the diffraction length LD = k0w2

0 and the characteristic transverse scale
w0 = (2k2

0n1)−1/4. The nonlinear coefficient is σ =sgn(n2) = ±1 and the inhomogeneous pa-
rameter is f (z), which describes the inhomogeneity of waveguide. Note that when the amplifi-
cation parameter vanishes, the dynamics and interaction of bright and dark solitons have been
studied [15, 16]. While the second one is

iψZ +
β (Z)

2
ψTT + γ(Z)|ψ |2ψ = i

G(Z)
2

ψ , (2)

which describes the propagation of picosecond optical pulses through dispersion and nonlin-
earity management fiber. [6, 9, 12]. Here ψ(Z,T ) is the pulse envelope in comoving coor-
dinates, β (Z) is the group velocity dispersion parameter, γ(Z) is the nonlinearity parameter,
and G(Z) is the amplification parameter. In fact, the above two equations are almost identical:
if we introduce the transformations u(z,t) → √|γ(Z)/β (Z)|ψ , z → ∫ Z

0 β (z′)dz′, x → T and
g → G/β − (βZγ − γZβ )/β 2γ , then Eq. (2) can be transformed to Eq. (1) with σ =sgn(β γ) and
f = 0.
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The (2+1)-dimensional NLSE under consideration is

iuz +
1
2
(uxx +uyy)+ σ |u|2u+ f (z)

x2 + y2

2
u = i

g(z)
2

u, (3)

which describes the propagation of optical beam inside the two-dimensional graded-index
waveguide amplifier with refractive index n = n0 + n1 f (z)(x2 + y2) + n2|I|2. The normaliza-
tions are the same with that used in Eq. (1). Finally we consider the (3+1)-dimensional NLSE
of the form

iuz +
1
2
(uxx +uyy)+

δ
2

uττ + σ |u|2u+ f (z)
x2 + y2

2
u = i

g(z)
2

u, (4)

which describes the propagation of optical bullet inside the two-dimensional graded-index
waveguide amplifier with refractive index n = n0 + n1 f (z)(x2 + y2) + n2|I|2 [23]. Here
δ =sgn(β ) with β being the group velocity dispersion parameter, τ the retarded time, while
other normalizations are the same as used in Eq. (1).

3. Similaritons in (1+1)-dimensional systems

3.1. Spatial similaritons

To investigate the exact self-similar evolution of optical beam, the establishment of scaling
properties of optical beam parameters such as amplitude and width is of significant importance.
Here we first assume that the beam width varies as �(z). Then the scaling property of the beam
power and the invariability of the function form of the beam envelope determine the beam am-
plitude to be proportional to exp[

∫ z
0 g(z′)/2dz′]/

√
�(z). Secondly, as the beam width changes,

the ”expansion velocity” of beam envelope is given as � zx/�, hence the beam phase contains
the quadratic term �zx2/2� [24]. Note that the quadratic phase is a natural choice due to the
variation of beam width, not just an assumption. Lastly, the propagation distance z should also
be scaled by �(z) accordingly. Thus the beam envelope u can be expressed as follows

u(z,x) =
exp[

∫ z
0 g(z′)/2dz′]
√

�(z)
U(Z,X)exp[i

�z

2�
x2], (5)

where Z = Z(�) and X = x/�. Further calculations show that when Zz = �−2 and �z = −g�, the
governing equation for U(Z,X) is obtained as

iUZ +
1
2

UXX + σ |U |2U = K
X2

2
U, (6)

where K = (g2 −gz − f )�4. The transformation utilized in Eq. (5) is known as lens-type trans-
formation [25], which has been widely used in BEC and plasma problems [10, 26, 27, 28,
29, 30, 31]. Such transformation enables us to obtain the information of original equation (1)
via the investigation of Eq. (6). Specially, when K vanishes, Eq. (6) turns to the well-known
standard, homogeneous NLSE which possesses soliton solutions [32]. Therefore, when para-
meters g(z) and f (z) satisfy the self-similarity condition f = g2 −gz, namely, K = 0, the exact
solitonic similariton solution for Eq. (1) can be recovered by lens-type transformation (5) with
� = exp[−∫ z

0 g(z′)dz′] and Z =
∫ z

0 exp[2
∫ z′

0 g(z′′)dz′′]dz. The exact soliton-like similaritons ob-
tained by this way is equivalent to those presented in [11, 12, 13].

Other than the exact solitonic similaritons, lens-type transformation can lead us to a more
general type of exact optical similaritons. We find that when K is constant, Eq. (6) may possess
stationary state solution U(Z,X) = S(X)exp(iμZ), where μ is the propagation constant (Note
that here the word ”may” means that for negative K, it is difficult to say whether the stationary
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state solution exists or not, while for positive K the stationary state solution always exists and
it is localized). Then, the corresponding exact similariton solution for Eq. (1) can be written as

u(z,x) =
1

�(z)
S

[
x

�(z)

]
exp

[
iμ

∫ z

0

dz′

�(z′)2 − i
g(z)

2
x2

]
. (7)

Thus we conclude that, i) when the optical beam S(x)exp
[
−i g(0)

2 x2
]

is injected into a graded-

index waveguide amplifier, this beam will evolve exact self-similarly if the amplification para-
meter g(z) and inhomogeneous parameter f (z) satisfy the following self-similarity condition

f = g2 −gz −K exp[4
∫ z

0
g(z′)dz′]. (8)

ii) the amplitude and width of exact optical similaritons depend totally on the amplification
parameter g(z), and iii) the exact solitonic similaritons are just a subclass of the general sim-
ilaritons (7), since when K = 0, nontrivial stationary state solution U(Z,X) takes the exact
soliton profile.

We hereafter assume K to be positive constant. In this context, we recall that for positive K,
Eq. (6) becomes equivalent to the NLSE with variable dispersion and zero gain term, derived
for the first time by Shiva Kumar and Akira Hasegawa, and whose stationary solutions are the
well known quasi-solitons [21]. Note that the exact optical similaritons (7) are conceptually
equivalent to the quasi-solitons in dispersion-managed system, where the exact quasi-soliton
similaritons were found to have relatively lower power and reduced interaction than exact soli-
tons [21, 22]. We here further investigate their potential applications.

We recall that in experiments, in order to obtain exact solitonic similariton, one should first
produce soliton by injecting optical beam (usually Gaussian beam) into nonlinear waveguide,
and then propagate the produced solitons to the graded-index waveguide amplifier. Therefore,
two waveguides are needed to propagate exact solitonic similaritons, and wave radiation always
exists during the evolution of original Gaussian beam to soliton beam. However, if S(X) is cho-
sen to have the same profile with the injected Gaussian beam, only one graded-index waveguide
amplifier is needed for the exact self-similar propagation of such beam, which means that there
will be no radiation. In practice, we can properly choose the parameters f (z) and g(z) according
to self-similarity condition (8) to make S(X) asymptotically approach to the Gaussian profile
Aexp(−X 2/2W 2). We find that when A and W are sufficiently small, then the Kerr nonlinearity
can be neglected and when K ≈W −4, S(X) do closely approach to Gaussian profile. Numerical
calculations of Eq. (6) reveal that even when A = 1 and W = 0.5, the stationary state solu-
tions S(X) are well described by Gaussian function when K = 13.2 for σ = 1 and K = 18.8
for σ = −1, respectively. The self-similar evolution of this Gaussian beam has been confirmed
by numerical simulations of Eq. (1) both for focusing and defocusing nonlinearity, respectively.
Specifically, here we choose the gain parameter g(z) = tanh(z). Thus, � =sech(z), which implies
that the amplitudes of Gaussian similaritons increase as A/sech(z) while their widths decrease
as W sech(z). Figure 1 depicts the excellent agreement between the theoretical predictions and
numerical simulations. Further numerical simulations with other amplification parameters and
corresponding inhomogeneous parameters lead to similar results.

Contrary to the fact that small initial power of optical beam
∫ ∞
−∞ |u(x,0)|2dx leads to the

negligible Kerr nonlinearity, we find that large initial power results in the negligible diffraction
term UXX when σ = −1. In this case, the stationary state solution of Eq. (6) takes the compact
parabolic form: U = A

√
1−X2/W 2 exp(−iA2Z) when |X |<W , and U = 0 when |X |>W with

K = 2A2/W 2. We recall that such parabolic beams can be generated in the planar waveguide
[4], where the governing equation is similar to Eq. (1) but with f (z) = 0 and g(z) equals to
positive constant g1. Observe that under such configuration the output beam has a quadratic
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Fig. 1. (a) Self-similar evolution of initial Gaussian beams, (b) inhomogeneous parame-
ters f (z), (c) the amplitudes and (d) the widths (defined as

√∫ ∞
∞ 2x2|u|2dx/

∫ ∞
∞ |u|2dx) of

Gaussian similaritons as functions of propagation distance z. The solid lines are theoretical
predictions, dots and open circles are numerical simulations with K = 13.2 for σ = 1 and
K = 18.8 for σ = −1, respectively.

phase −g1/6x2, and its amplitude and width satisfying W =
√

18A/g1. From transformation
(5) or Eq. (7) we know that, for the self-similar propagation of such parabolic beam inside
the graded-index waveguide amplifier, the gain parameter g should be equal to g 1/3 for the
continuity of quadratic phase, meanwhile, f and g should satisfy the similarity condition (8)
with K = g2

1/9. This theoretical prediction is confirmed by the numerical simulation, as shown
in Fig. 2.
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Fig. 2. The theoretical prediction of the propagation of parabolic similaritons (solid lines)
inside the graded-index waveguide amplifier with gain parameter g = g1/3 and inhomo-
geneous parameter f is confirmed by numerical simulations (open circles), where the par-
abolic beam (at z = 24) is generated by injecting a Gaussian beam (z = 0) into the homoge-
neous planar waveguide with gain parameter g1 = 0.3 (dashed-lines show its evolution into
parabolic beam). From bottom to top, the propagation distance z is 0, 4.8, 9.6, 14.4, 19.2,
24, 26, 28, 30, 32 and 34, respectively.

3.2. temporal similaritons

As stated in Section 2 that Eq. (2) can be transformed to Eq. (1), we immediately know that Eq.
(2) possesses general type of optical similaritons when g satisfies the following equation

g2 −gz = K exp[4
∫ z

0
g(z′)dz′]. (9)
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However, it must be noted that in this equation, g = G/β − (βZγ − γZβ )/β 2γ is a function of Z
instead of z, so strictly speaking, Eq. (9) should take the form

g2 − gZ

β
= K exp[4

∫ Z

0
g(z′)β (z′)dz′]. (10)

Thus, when K = 0, the exact optical similaritons are solitonic similaritons. One can check that
the exact solitonic similariton is equivalent to those found in [6, 9, 12]. While K �= 0, the exact
optical similaritons are quasi-soliton similaritons [21, 22]. However, it seems that the self-
similarity condition is quite complicated when the dispersion, nonlinearity and amplification
management appear together. Specifically, when there exists the dispersion management alone,
we obtain the self-similarity condition for exact quasi-soliton similaritons from Eq. (10)

β βZZ −β 2
Z = K, (11)

which is identical with the result reported in [21]; when the dispersion coefficient is constant,
for example, β = 1, the self-similarity condition for exact quasi-soliton similaritons is

G+
γZ

γ
= − Z + c2

(Z + c2)2 + c1
, (12)

where c1 and c2 are constant with K = c1
(c2

2+c1)2 .

4. Similaritons in (2+1)-dimensional systems

For (2+1)-dimensional NLSE (3), we find that only when the amplification parameter is absent,
it can be transformed to the following equation under the self-similarity condition (8)

iUZ +
1
2
(UXX +UYY )+ σ |U |2U = K

X2 +Y2

2
U, (13)

via the lens-type transformation

u(z,x,y) =
1
�
U(Z,X ,Y )exp[i

�z(x2 + y2)
2�

], (14)

where (X ,Y ) = (x,y)/�, Zz = �−2, �z = −g�.
It is remarkable that, i) although we continue to use g in Eq. (8), it has nothing to do with

the amplification parameter anymore: now it is just a sign to identify −� z/� and this means
the power of optical similariton is constant, and ii) the change of the amplitude and width
of optical beam is determined by �, and � is controlled by f (z). Similar to the discussion in
(1+1)-dimensional case, we can choose inhomogeneous parameter f (z) to let the Gaussian or
parabolic beam propagate self-similarly in two-dimensional graded-index waveguide. Further-
more, we find that such waveguides also support the exact self-similar evolution of other soliton
structures such as ring solitons and vortex rings. Figures 3 and 4 show the examples of the exact
self-similar evolution of an initial optical vortex with topological charge 1 and an initial ring
soliton in two-dimensional graded-index waveguides. In both cases, the numerical simulations
(solid lines) agree well with theoretical predications (marked by cross) which imply that the
amplitudes of the vortex and ring solitons are inversely proportional to � while their widths are
proportional to �.
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Fig. 3. Exact self-similar evolution of vortex beam in two-dimensional graded-index
waveguide with σ = −1 and f (z) = 1 − 2sech2(z)−K/sech4(z) such that � =sech(z).
From bottom to top, the six radial profiles correspond to the propagation distance z =
0,0.4,0.8,1.2,1.6,2.0, respectively. Here K = 0.01.

Fig. 4. Exact self-similar evolution of ring soliton in two-dimensional grade-index
waveguide with σ = 1 and f (z) = 1−Ksech4(z) such that � = 1/sech(z). Here K = 0.01.

5. Similaritons in (3+1)-dimensional systems

In the above sections, we have discussed the construction of exact self-similar solutions via
lens-type transformation for (1+1) and (2+1)-dimensional NLSEs. Now, in this section, we plan
to investigate physically important self-similar solutions in (3+1)-dimensional NLSE, which
describes the evolution of optical bullet in two-dimensional graded-index optical waveguides.
For this purpose, we use the following lens-type transformation

u(z,x,y,τ) =
1
�
U(Z,X ,Y,T )exp

[
i
g
2
(x2 + y2 +

τ2

δ
)
]
, (15)

where (X ,Y,T ) = (x,y,τ)/�, �z = g� and Zz = �−2. Substituting this in Eq. (4) and performing
some manipulations, it can be converted to

iUZ +
1
2
(UXX +UYY + δUTT )+ σ |U |2U =

KXY

2
(X2 +Y 2)+

KT

2
T 2, (16)
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where the parabolic potential parameters

KXY = (gz +g2 − f )�4, KT = (gz +g2)�4. (17)

Obviously, when KXY and KT are non-negative constants, Eq. (16) possesses stationary state so-
lutions. This implies that the optical bullets described by Eq. (4) can evolve exact self-similarly
under the following exact self-similarity condition, which is obtained by solving Eq. (17)

g =
z+ c2

(z+ c2)2 + c1
, f =

KT −KXY

2ln[(z+ c2)2 + c1]
, (18)

where c1 and c2 are constants satisfying KT = c1
(c2

2+c1)2 .

It is rather interesting that, in (3+1)-dimensional NLSE, the amplitude of the optical bullet
is proportional to exp(

∫ z
0 −g(z′)dz′). This means that when the amplification parameter g(t)

is positive/negative, the amplitude of exact self-similar optical bullet decreases/increases and
its width increases/decreases, which is in contrast to optical similaritons in (1+1)-dimensional
NLSE.

6. Conclusion

In summary, we have found a more general type of exact optical similariton solutions in the
context of nonlinear optical fiber amplifiers and graded-index waveguide amplifiers. By using
the lens-type transformation, we reduced the (1+1), (2+1) and (3+1)-dimensional NLSEs to
standard NLSEs with additional constant parabolic potential possessing stationary state solu-
tion. Under certain conditions, we found that optical waves with Gaussian, parabolic, vortex
and ring soliton profiles can propagate exact self-similarly without any radiation. It should be
emphasized that, when the parabolic potential is absent, we obtained the exact spatial and tem-
poral soliton similaritons of (1+1)-dimensional NLSEs.
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