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Abstract. We study the optical switching of the two-dimensional nonlinear coupler in a
doped photopolymer. The coupled nonlinear Schrödinger equations (CNLSEs) describing
our coupler system are analysed using Lagrangian variational method. From the La-
grangian, a set of coupled ordinary differential equations (ODEs) describing the system
dynamics is obtained. This set of ODE’s is further reduced to single coupled equation
and an analytical solution is obtained using the cnoidal functions and the system dy-
namics is studied. The key factor for switching mechanism of our coupler system is the
metal-induced surface plasmon resonance (SPR). This SPR-induced local nonlinear effects
results in self-focussing of the optical beam through the launched core. A description of a
particle in a well is also made to study the photon switching through the coupler system.
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1. Introduction

The seed for the nonlinear directional coupler (NLDC) was first made by Jensen
in the year 1982 [1]. After its introduction, nonlinear optics was grown rapidly
and it is greatly attractive for its potential applications in thrust areas of op-
tics such as optical bistability, power splitters, couplers and logic systems [2,3].
NLDCs are four-port devices that can split an optical field into two coherent but
physically separated parts and vice versa. By suitably adjusting the intensity of
the input field, the optical beam can be switched between the two ports [4]. In-
terest in manufacturing optical waveguides and other integrated optical devices
using polymers has grown because of low cost and easy fabrication. Compared
to semiconductor materials and dielectric materials, polymers are inexpensive and
can be used to fabricate any optical devices and integrated circuits [5]. There
are a multitude of different polymers with a desired set of optical, electrical and
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mechanical properties. The prime advantages of polymers are the refraction in-
dex and the attenuation. Both as function of wavelengths, play vital role in the
light-controlled devices. Important properties of the polymers used for integrated
optics including acrylates, polymides and olefins are summarized by Eldada and
Shaklette [6].

In this work, we study the switching characteristics of a two-dimensional NLDC
formed in a photopolymer doped with nanometals. Metal-doped photopolymer
received great attention for its excitation of the localized surface plasmon [7,8].
Plasmon is the quantum of collective longitudinal oscillation of valence electron
clouds in metals. In typical noble metals, volume plasmon results in energy exci-
tation in the range of 5–10 eV. They found many applications in optoelectronics,
optical switches and in optical computers [9]. The experimental study of optical
properties of metal-doped materials was made by Ganeev and Ryasnyansky [10].
When the wavelength of the incident electromagnetic field coincides with the reso-
nance wavelength of the noble metal particles, the surface plasmon will be excited.
This SPR-induced effects in nanometals leads to a significant enhancement of the
local field intensity, which results in decreased radiative decay, large nonlinear op-
tical response, strong enhanced Raman scattering and also rapid photo-induced
enhancement in isomeration of azopolymer molecules [11,12].

Here, we investigate our system by means of a set of coupled nonlinear
Schrödinger equations. This set of equations is theoretically analysed by the vari-
ational method developed by Anderson [13]. Following the variational principles
a set of first-order equations for each optical parameter describing the system dy-
namics is derived and finally an analytical solution is obtained for the system. A
potential well description is also made to study the condition for optical bistability.

The paper is organized as follows. Section 2 deals with the necessary theoretical
model describing the nonlinear directional coupler. The system is studied using
the variational approach in §3 and an analytical solution is derived for the energy
difference through the system using the Jacobian elliptic functions. A potential well
formulation is presented in §4 for the analysis of the NLDC. Section 5 concludes
the paper.

2. Theoretical model

Coupler system acts as a passive device for low-intensity input optical field. When
such an optical beam is introduced into the through-port of a coupler, it suffers dif-
fraction and a part of the input field spreads to the neighbouring core. But, when a
sufficiently high-intensity optical field is introduced through the through-port, the
optical beam gets self-focussed because of the balance between diffraction and non-
linearity. As a result of classic nonlinear Kerr effect, input field travels through the
launched core itself. Here, we deal with the coupler made of photopolymers such as
PMMA and polystyrene which shows weak nonlinearity. To enhance the nonlinear
absorption property, dielectric host is uniformly doped with metal particles such as
silver, gold and copper particles which show enhanced SPR [14,15].

The third-order nonlinear optical properties of metal particles-doped dielectric
materials depend significantly on many factors such as the materials themselves
(kind of metal and host medium, metal concentration, particle size, shapes and
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spatial arrangement) and the excitation laser (wavelength, intensity, beamwidth)
[16]. The localized surface plasmon resonance (SPR) excited in noble metal clus-
ters exhibits selective photoabsorption, scattering and local electromagnetic field
enhancement. The refractive index induced by the high-intensity optical field is
given by [17]

∂∆n

∂t
= AP IP

(
1− ∆n

∆ns

)
, (1)

where AP is a real coefficient which depends on the doped material, intensity I =
|Ψ|2 and P is one (two) for one (two) photon process [18]. Ψ is the amplitude of
the wave envelope.

Light propagation through an NLDC, formed using a metal particle-doped pho-
topolymer, is governed by the following normalized CNLSEs [19]:

i
∂Aj

∂z
+

1
2
∇2
⊥Aj + NAj + γ|Aj |2Aj + κA3−j = 0, (2)

where Aj(r, z) is the optical field through the medium with j = 1, 2 for wave
guides 1 and 2, respectively. ∇2

⊥ is the Laplacian operator along the transverse
region which can be written as follows:

∇2
⊥ =

1
rD−1

∂

∂r

(
rD−1 ∂

∂r

)
. (3)

For the two-dimensional case, D = 2 and r =
√

x2 + y2. γ = n2ωp/cAeff is the
nonlinearity parameter where n2 is the nonlinear refractive index, ωp is the plas-
mon frequency, c is the velocity of light and Aeff is the effective area of the core.
Also, the waveguiding term N = a2

0k
2n0∆n, where a0 is the initial beamwidth, n0

is the initial refractive index and k = 2π/λp is the propagation constant with λp

the plasmon wavelength. The coupling coefficient κ is defined as π/2Lc where Lc

is the coupler length. The beam propagation is along the longitudinal direction
(z-axis) and diffraction along the transverse direction (x–y axes). The above equa-
tion describes a system of NLDC formed in a photopolymer whose nonlinearity is
enhanced by the doping of nanometal particles. A number of studies was done
about the SPR enhancement in the host medium doped with metal particles. The
wavelength at which extinction is minimum can be tuned by adjusting the metal
particle’s size, shape, volume fraction, interparticle distance and the dielectric prop-
erties of the metals as well as medium [14,15]. Here, we study the dynamics and
switching characteristics of the coupler by varying nonlinearity parameter.

3. Variational approach

Variational method is widely applied to obtain approximate solutions of problems
related to the optical beam propagation using the nonlinear Schrödinger equation
(NLSE). The main advantage of the variational approach is that it provides an
explicit approximate analytical expression for different parameters of a propagating
pulse governed by the NLSE. The importance of variational principles in physics has
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long been appreciated. The whole physics of the problem is expressed in terms of a
single function through which the equations of motion are obtained by taking the
functional derivatives. The basis of the approximate solutions of different physical
problems is formulated using this idea. The potential application of this principle
can be viewed in different physical systems like fluid dynamics, thermodynamics,
magnetism, plasma physics and electromagnetic theory. Historically, the variational
principle was introduced to describe conservative physical systems. The success of
the system depends on the choice of a suitable input profile for the corresponding
system [13]. We proceed with writing the Lagrangian for the system of eq. (2)
which is given by

L =
2∑

j=1

Lj + L12 (4)

with

Lj =
irD−1

2

[
Aj

∂A∗j
∂z

−A∗j
∂Aj

∂z

]
+

rD−1

2

∣∣∣∣
∂Aj

∂r

∣∣∣∣
2

−rD−1N |Aj |2 − γrD−1

( |Aj |4
2

)
, (5)

and

L12 = −rD−1κ(A∗1A2 + A∗2A1), (6)

where L1 and L2 represent the single Lagrangian and L12 indicates the interaction
Lagrangian. Assuming the Gaussian input wave profile, which is suitable to describe
the diffraction of the optical field

Aj(r, z) = Fj(z) exp(−ρr2 + iθj(z)), (7)

where Fj(z) is the amplitude of the field, θj(z) is the phase variable and ρ is a
constant. The reduced Lagrangian is given by

〈L〉 =
∫ ∞

0

Lrdr. (8)

Substituting eq. (7) in eqs (5) and (6), and applying eq. (8) we get

〈L〉 =
15π3/2√ρFj(z)2

256
√

2
+

π3/2

ρ3/2

[
− NFj(z)2

16
√

2
− γFj(z)4

128

−exp(iθ1(z)− iθ2(z))κFj(z)F3−j(z)
16
√

2

−exp(−iθ1(z) + iθ2(z))κFj(z)F3−j(z)
16
√

2
+

Fj(z)2 ∂θj(z)
∂z

16
√

2

]
. (9)

Now varying eq. (9) with respect to the variational parameters F1(z), θ1(z), F2(z)
and θ2(z), we get the following set of four coupled ordinary differential equations
of the form
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∂θ1(z)
∂z

=
κ cos (θ1(z)− θ2(z))F2(z)

F1(z)
+

γF1(z)2

2
√

2
− 15ρ2

16
+ N, (10)

∂θ2(z)
∂z

=
κ cos (θ1(z)− θ2(z))F1(z)

F2(z)
+

γF2(z)2

2
√

2
− 15ρ2

16
+ N, (11)

∂F1(z)
∂z

= κ sin (θ1(z)− θ2(z))F2(z), (12)

∂F2(z)
∂z

= −κ sin (θ1(z)− θ2(z))F1(z). (13)

After defining the new phase variable as θ(z) = θ1(z)−θ2(z), variable for the energy
difference as U(z) = F1(z)2−F2(z)2, the total energy is given by F1(z)2 +F2(z)2 =
E (constant). Using the above chosen variables, we arrive at the following set of
two coupled ordinary differential equations:

dθ

dz
=
−2κU cos θ√

E2 − U2
+

γU

2
√

2
, (14)

dU

dz
= 2κ

√
E2 − U2 sin θ. (15)

We find that the above two equations can be reduced to a single equation by finding
a constant of motion [19]. The constant of motion for our coupler system is obtained
as

G =
[
−2κ

√
E2 − U2 cos θ +

γU2

4
√

2

]
. (16)

By using the constant of motion, a single equation for U can be written as

dU

dz
= ±

[
(2κ)2(E2 − U2)−

(
G− γU2

4
√

2

)2
]1/2

. (17)

The periodic solutions for eq. (17) can be obtained by using the Jacobian elliptic
function. We consider the cnoidal periodic solution for U(z) which takes the form

U(z) = %cn[Ωz, m], (18)

where % and Ω are arbitrary constants and m is the modulus parameter of the elliptic
function which takes the value 0 < m < 1. Cnoidal waves are periodic waves with
sharp crests separated by wide flat troughs. Here, the wave characteristics are
described in the parametric form using modulus parameter m, over the range 0
and 1, of the elliptic integrals. Thus, there are two known limits to the cnoidal
waves. The first one is the solitary wave theory which occurs when the period of
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the Jacobian elliptic function is infinite (m = 1). The second limit is the linear wave
theory which occurs for m = 0 where the cnoidal wave approaches the sinusoidal
wave [21]. Substituting the above solution in eq. (17) and after simplifying and
equating the coefficient of cn function from the above equation, we find the values
for % and Ω as % = 4

√
2mΩ/γ and Ω =

√√
2Gγ − 16κ2/2

√
(1− 2m2).

Substituting the values of % and Ω in eq. (18) we arrive at

U(z) =
4
√

2mΩ
γ

cn

[√√
2Gγ − 16κ2

2
√

(1− 2m2)
z, m

]
(19)

and similarly the cnoidal sn solution for U(z) takes the form

U(z) = %sn[Ωz, m]. (20)

Substituting the above ansatz in eq. (17), after simplifications, we obtain the
values for % and Ω as % =

√−32m2Ω2/γ2 and Ω =
√

2Gγκ2/
√

2
√

2m2 + 1. Sub-
stituting the values of % and Ω in eq. (20), we arrive at

U(z) =
√−32m2Ω2

γ2
sn

[ √
2Gγκ2

√
2
√

2m2 + 1
z,m

]
. (21)

Energy difference of the input optical field between the two cores for various
nonlinearity values is plotted using the obtained cnoidal solution. When γ = 0.3
the energy difference between the cores is very high, shown by solid line of figure 1a.
Initially, when z = 0 most of the energy is propagated through the launched core
itself. Energy sharing between the two cores occurs, when the input field reaches
coupling length. For this coupling length a part of the field is periodically coupled
to the neighbouring port as an evanescent wave. For further increase in γ = 0.5,
the energy difference between the cores decreases, indicating almost equal energy
sharing between the input and cross core as shown by the dashed line of figure 1a.
This energy transmission to the neighbouring core is due to overlapping modes of
evanescent wave guided through the throughput port with the cross port. With
increase in nonlinearity value, the periodicity of the system also changes. The
equal energy exchange between the phase-matched modes occurs if the coupling
constant κ = π/2Lc. The periodic change in phase with the oscillation of energy
coupled between the two cores can be seen clearly through both figures figure 1a
and figure 1b obtained for cn and sn solution respectively. When the nonlinearity
parameter value reaches γ = 0.7 shown by the dot–dashed line, the energy difference
between the cores increases and results in detuning of the system. The change in
the periodicity further detunes the system. This increase in energy difference is
due to local index change of the photopolymer as a result of Kerr effect induced
by the resonance local excitation of the doped metal particles. This resonance
excitation of doped particles is very large and its magnitutde is greater than that
of the diffraction. As a result, the diffraction of the optical beam is overcome by the
nonlinear intensity-dependent refractive index. At this stage, the coupler becomes
active with decrease in energy sharing to the cross core. When γ increases further,
the energy difference between the cores increases due to SPR-induced self-focussing.

1030 Pramana – J. Phys., Vol. 75, No. 5, November 2010



Switching dynamics of a two-dimensional nonlinear coupler

0 20 40 60 80 100
-2

-1

0

1

2

z

U

HaL

0 20 40 60 80 100

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z

U

HbL

Figure 1. Plots show the variation of energy difference (U) of the input
optical field between the two cores of the coupler with distance (z) of eq.
(17) for various values of nonlinearity parameter γ. Figures 1a and 1b are cn
solution and sn solution respectively. Solid line indicates γ = 0.3, dashed line
indicates γ = 0.5, dot–dashed line indicates γ = 0.7 and dotted line indicates
γ = 1. Other physical parameter are κ = 0.2, G = 0.58 and m = 0.3.

This results in the decrease in energy sharing to the cross core and energy in the
cross core becomes minimum, shown by the dotted line of figure 1a for the value
corresponding to γ = 1. Thus, the coupler system gets detuned and becomes an
active device. Similarly figure 1b gives the result of the snoidal counterpart of the
periodic solution.

4. Potential well description

The switching dynamics of energy transmission through the nonlinear fibre coupler
is studied by energy evolution in each port accompanied with time-varying particle
position in potential well and in general, such a study has been made by Anderson
[13,20] and for an all-optical coupler by Paré and Florjańczyk [19]. The potential
well description of the photon transition in a potential well is described by

1
2

(
dU

dz

)2

+ Π(U) = 0. (22)

From eq. (17), the potential Π(U) for our system is obtained as

Π(U) =
[
(2κ)2

2
− Gγ

4
√

2

]
U2 +

γ2U4

64
(23)

and the above equation can be rewritten in a simplified form for our convenience
as

Π(U) = α1U
2 + α2U

4, (24)

where α1 =
[

(2κ)2

2 − Gγ

4
√

2

]
and α2 = γ2

64 . Setting the arbitrary initial condition for
the switching of the photon using eq. (17)

U(z = 0) = ±1, (25)
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Figure 2. Photon transformation with increase in nonlinearity for various
nonlinear paramater values of γ (0 > γ < 1). (a) γ = −0.3, (b) γ = 0.5, (c)
γ = 0.75, (d) γ = 0.8, (e) γ = 0.85 and (f) γ = 0.9.

dU

dz

∣∣∣∣
U=0

= 0, (26)

and the potential function is given by

Π(U = 0) = 0, (27)

dΠ
dU

∣∣∣∣
U=0

= 0, (28)

Π(U = ±1) = α1 + α2, (29)

dΠ
dU

∣∣∣∣
U=±1

= ±(2α1U + 4α2U
3). (30)
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Photon transition along the potential well described by eq. (24) for various
nonlinear parameter values is plotted for nonlinear parameter values γ < 0 to
γ > 1. For the initial condition of the particle U(z = 0) = +1, particle is at
rest and the potential is independent of the nonlinear parameter γ and height of
the well is high. By increasing the optical input power, the height of the particle
inside the well is lowered. The total energy transfer is achieved, when the particle
reaches U = −1 and matches with the one analysed by Paré and Florjańczyk [19].
The switching phenomenon of the system depends on the value of coupling constant
also. Initially, when γ = −0.5 the system shows single well potential and the photon
is subjected to travel in this potential shown by figure 2a. System shows similar
behaviour till the γ value reaches 0.5, and the time taken by the particle to reach
the position U = −1 is very short. Thus, there is an approximately equal energy
exchange between the cores at this potential shown by figures 2a and b. Thus, the
system acts as a tuned coupler.

For further increase in the input power, the anharmonicity increases and the
flattening of potential well is initiated (shown by figure 2c) for γ = 0.7. Again
increasing the nonlinearity value, there is an abrupt change in the periodic power
exchange between the cores. Further increase in nonlinearity to γ = 0.8 system has
a symmetric double well potential as shown in figure 2d. For γ = 0.85, increase in
the depth of the potential well is viewed well through figure 2e and at this potential
with negative energy, particle has to travel for a long time in a double well potential
to reach U = −1. As the γ value reaches ≈1 at γ = 0.9 shown by figure 2f the
depth of the potential is further increased. As the nonlinear parameter is increased
from negative to positive values, it induces change in the nonlinear refractive index
of the system due to excitation of SPR of the doped metal particles. Due to this
change in refractive index, phase shift is introduced in the system and the coupler
is detuned. Because of the increase in the negative potential well, it takes a long
time for the particle to reach U = −1. Thus, the optical field propagating through
the coupler is self-trapped inside the minimum energy state and the propagation
is restricted to the launching core itself. This increase in nonlinearity modifies the
energy transmission to the neighbouring core and it gradually decreases and reaches
the minimum. This describes the switching phenomenon of the optical field through
the coupler using photon transition.

5. Conclusion

In this paper, we have studied the dynamics and switching characteristics of a two-
dimensional NLDC formed in a doped photopolymer. From the CNLSEs, we arrive
at a set of first-order ordinary differential equations describing the dynamics of
NLDC using the Lagrangian variational method. This set of ordinary differential
equations is further reduced to a set of coupled equations by defining constant of
motion and periodic solutions in terms of the Jacobi’s elliptic function is obtained.
The periodicity of the coupler system for through- and cross-port is shown clearly.
From the obtained results it is shown clearly that the detuning of the coupler system
due to excitation of surface plasmon is the manifestation of nonlinearity. Increase
in nonlinearity concentrates optical beam in the local region as a result of optical
Kerr effect. As a result of these effects, the input beam through the launching
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core is self-trapped and the energy shared to the cross core becomes minimum. We
have also studied the switching dynamics of the coupler using the potential well
description of photon transition. The switching is described by photon transition
from higher to lower state through fibre core is observed clearly in the potential
plots. As a result of the increase in nonlinearity the photon is subjected to travel
in a double well potential with negative energy. Due to this negative potential the
time taken by the photon to reach U = −1 is very long. This results in switching
mechanism of the active coupler.
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