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Abstract. We aim to study the nonlinear optical phenomena with ultra-broadband radiation in pho-
tonic crystal fibre (PCF). While PCFs with cores made from different glasses are well studied in
previous works, in this paper, it is planned to investigate the dynamics of nonlinear processes of
supercontinuum generation (SCG) in liquid-filled PCF (LCPCF) to understand the physical phenom-
ena of femtosecond pulse propagation, particularly, the temporal and spectral changes of the pulse
propagating through specific PCFs. Since the CS2-filled LCPCF has complex nonlinear phenomena,
we intend to analyse the role of saturable nonlinear response and slow nonlinear response on SCG
in detail. For the physical explanation, soliton fission and modulational instability techniques will be
implemented to investigate the impact of slow nonlinear response and saturable nonlinear response
respectively, in SCG process.
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1. Introduction

In recent years, intensive and different aspects of investigations of photonic crystal fibres
(PCFs) have received great deal of scientific attention because of their numerous invaluable
nonlinear applications in sensor and communication fields [1–4]. The arrangement of air
holes in the cladding region has gained more importance due to optical properties of PCF
such as high nonlinearity, high birefringence, large mode-field area, high numerical aper-
ture, ultra-flattened dispersion, adjustable zero dispersion, etc. [5–7]. Besides changing
the geometry of the PCF, an alternative method to control its transmission and polarization
properties is by filling the air holes, either completely or selectively, by various liquids
such as CS2, nitrobenzene, chloroform, water, ethanol, polymers and liquid crystals [8–
11]. Recently, liquid core PCFs (LCPCFs) consisting of liquids in the core with numerous
periodically spaced air holes in the cladding region have attracted a great deal of atten-
tion. This filling of liquids in PCF offers enormous increase in the nonlinearity value of
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the fibre with adjustable dispersion and endlessly single mode operation. Because of their
unique characteristics, various optical devices based on LCPCFs, such as zero dispersion
fibres and mode coupling-based LCPCF devices have been investigated [6,7,9,10]. The
increased interest in studying the properties of PCF is due to their potential soliton-related
applications in various nonlinear domains [4–7]. The propagation of soliton in PCFs has
been widely studied over the last decade or so. Soliton propagation in PCF having different
structures is an attractive area of research and has hence led to great deal of scientific inter-
est in both experiments and numerical simulation [12,13]. The crucial advantages of soliton
using PCF over conventional fibre are well employed in many applications such as super-
continuum generation (SCG), pulse compression, optical switching, fibre laser, parametric
amplifier, modulational instability (MI) etc. [3,6,14–16]. Even though several exciting
research works have been carried out in PCF for various applications, generating broadband
sources using SCG techniques finds many applications in the modern technological world
[4,5]. The supercontinuum (SC) process is the intense ultra-fast broadband high coherent
pulses spanning over few octaves, that has emerged as the technology of choice for future
generation of broadband sources [4,5]. With the rapid advancement in PCF technology,
SCG gains momentum and evolves as one of the most elegant and dramatic effect in optics
with a wide range of potential applications in various fields such as frequency metrology,
biomedical sensors, optical coherence tomography, wavelength division multiplexing, etc.
[3–5].

SCG in a PCF was discovered by Ranka et al [17] as a means to generate a broad spec-
trum with two octave width at unprecedentedly low input pulse energies. Since then it
has attracted extensive attention for both its fundamental and application aspects which
were mainly motivated by its nonlinear applications in many research fields. Already lots
of work were done on SCG in PCF in all pump regimes ranging from continuous wave,
nanosecond, picosecond to femtosecond over the last decade [4,5]. For instance, in the
femtosecond regime, when injecting 350 fs pulses using Yb3+-doped fibre laser operating
around 1060 nm, Price et al observed SCG over 400–1700 nm in PCF has a length of
7 m [18]. In parallel with these impressive results using femtosecond sources, there has
been extensive interest in generating broadband SC by low-power picosecond and even
nanosecond pulses. Thus, Nikolov et al generated a broad SC in a PCF using picosec-
ond pulses and showed that the efficiency is significantly improved by proper dispersion
design profile ensures that the Stokes and anti-Stokes bands generated by four-wave mixing
directly from the pump to broaden, resulting in 800-nm-wide SC sources [19]. By using
Yb3+-doped fibre amplifier in a master oscillator power fibre amplifier at 1065 nm, Avod-
khin et al generated SC of 1065–1375 nm wavelength range with high-power CW fibre
sources using 100 m long PCF [20]. In addition to pulse duration, the effects of the input
pulse parameters, such as pulse energy, peak power and central wavelength, on the SCG
in PCF are subjects of high interest and have been thoroughly investigated in recent years
[3–5].

SCG is typically achieved by two mechanisms, namely, soliton fission and MI [21,22].
The soliton fission leads to the generation of ultra-broadband spectrum, wherein pulse
breaking arises mainly due to higher-order effects of soliton-related dynamics such as
higher-order linear dispersion terms and nonlinear Raman scattering. The latter is the MI-
induced SCG (MI-SCG), one of the fascinating manifestations of MI, which can achieve
ultra-broadband spectrum [22,23]. The four-wave mixing (FWM) mechanism is actually
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responsible for controlled MI process that allows manipulation and enhancement of the
SCG process. Early investigations of MI-SCG were realized through conventional fibre in
the region of low dispersion regime to enhance the broadband spectrum; later the idea has
been effectively adopted to achieve the same in PCF. The fastest of such nonlinearities, the
Kerr electronic nonlinearity, is responsible for the usual self-phase modulation, formation
of the solitons in the anomalous regime, and is the basic mechanism for spectral broadening
in many situations [4]. The second type of nonlinearity, the Raman nonlinearity, arises due
to the excitation of the vibrational and rotational levels of the molecule and is responsible
e.g. for the generation of Stokes and anti-Stokes bands and for the soliton self-frequency
shift. Indeed, the broadening of the spectrum due to the Kerr nonlinearity is well known
and has been thoroughly described. The same can be, to a certain extent, said about the
Raman contribution to the nonlinearity. But, the nonlinearity of liquids (e.g. CS2) often
shows a complex temporal behaviour represented by the superposition of a fast electronic
contribution and a delayed rotational and intermolecular contribution with a picosecond
response time [21,22]. Because of the complex temporal behaviour of LCPCF, there are
possibilities of new interesting properties of SCG. In particular, a third distinct type of non-
linearity – reorientational nonlinearity and saturable nonlinearity – comes into play [21,22].
Thus, the main objective of this paper is to investigate the dynamical behaviour of SCG in
LCPCF, filled with CS2 liquid in the core. In particular, it is planned to study novel phys-
ical phenomena related to the temporal and spectral changes of pulse propagating through
specific PCFs such as LCPCF by the influence of saturable nonlinearity and reorientational
nonlinearity.

2. Reorientational nonlinearity

The background mechanism of slow nonlinear response due to reorientational nonlinearity
is the reorientation of the liquid molecules with a significant dipole moment in the electric
field, which happens on typically 0.1 to 1 ps scale [21]. Therefore, this nonlinearity can be
described as slow or retarded, since the modification of the refractive index depends on the
field not only at the intensity at the given moment but also on the past. Such a slow nonlin-
ear response plays an important role in the highly nonlinear materials such as nitrobenzene,
chlorobenzene, chloroform and methylene chloride [24,25]. Note that this nonlinearity is
different from Raman effect in terms of both the background mechanism and the mathe-
matical description: the response function of the retarded nonlinearity is non-oscillating
contrary to the response function of the Raman effect. For certain liquids, the retarded
(reorientational) contribution to the nonlinearity can constitute as much as 90% of the total
nonlinearity. This retarded nonlinearity can influence the soliton dynamics and therefore
it plays an important role in the generation of SC. Besides that, other nonlinearity types,
such as plasma-induced phase modulation, two-photon absorption, or thermal effects can
lead to change in the properties of the material, but they can be neglected in this study for
the considered intensities, material and time-scales. Raman effect can also be neglected
in CS2. Since the nonlinearity of CS2-filled LCPCF is 100 times larger than that of silica
core PCF [21,22], the nonlinearity induced by the reorientational contribution in the subpi-
cosecond regime plays a notable role in the dynamics. Sato et al [26,27] had investigated
the propagation dynamics and pulse compression in a fibre with CS2 core. However, the
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basic aspects of the influence of slow nonlinearity on the soliton dynamics and the SCG
have not been systematically studied. The slow nonlinear response induces pulse break-
ing in the presence of higher-order soliton dynamics which can subsequently expedite the
soliton fission in CS2-filled PCF. The retarded nonlinear response of the Kerr nonlinearity
in liquids can modify the SCG mechanism and the coherence properties of the white light,
which makes the study of SCG in LCPCF interesting from the fundamental point of view.

3. Theoretical model with reorientational nonlinearity

To study the influence of slow nonlinearity on the soliton propagation and stability as well
as on the SCG in the case of the LCPCF, we consider a fibre with a cross-section consisting
of a triangular lattice of circular air holes in fused silica, with 1.5 μm pitch and 1.3 μm hole
diameter. One of the holes is filled with the CS2 liquid, forming the core of the fibre. The
schematic diagram of the liquid core PCF is shown in figure 1. In many realistic situations,
as detailed in refs [26,27], the nonlinear response of the material to the ultra-short pulse
field includes not only electronic contribution, but also reorientational contribution. Hence
the total nonlinearity can be expressed as the sum of fast Kerr nonlinearity induced by elec-
tronic contribution and slow nonlinearity induced by reorientational contribution, which
is typically described by the response function with exponential decay in time. Reorienta-
tional nonlinearity cannot be described as simply another form of Kerr nonlinearity. Indeed,
the term which describes it in the equation is a completely different one. The dispersion to
the third order, fast nonlinearity (Kerr-type) and reorientational nonlinearity are included
in the model. In this case, to understand the dynamics of ultra-short pulse propagation in
the presence of slow nonlinear response in LCPCF, we have used the modified nonlinear
Schrödinger equation of the following form [28]:

∂U

∂z
+

3∑

n=2

βn
in−1

n!
∂nU

∂tn
= iγ |U |2U + iγ2μU

∫ ∞

0
exp(−τμ)|U (t−τ)|2dτ,

(1)

Figure 1. Schematic diagram of the liquid-core PCF with air hole diameter d and pitch
�. The core is filled with CS2 and has a diameter equal to the size of the air hole.
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where U is the slowly varying envelope of the wave, z is the longitudinal coordinate and
t is the time in the moving reference frame. The parameters βn are the n(=2,3)th order
dispersion coefficient, while the parameters γ and γ2 describe the fast and reorientational
nonlinearity and μ is the decay rate of the slow nonlinear polarization. To investigate
the pulse propagation in PCF, we have numerically solved eq. (1) using split-step Fourier
method (SSFM). The fibre parameters are evaluated using the fully vectorial effective index
method (FVEIM) [29] which is a widely used numerical technique that provides a propaga-
tion constant of the guided modes in PCF, with the wavelength dependence of the refractive
index of CS2 included in the dispersion calculation. The wavelength dependence of the
refractive index of CS2 is given by [8]

nCS2(λ) = 1.580826 + 1.52389 × 10−2 × λ−2 + 4.8578 × 10−4 × λ−4

−8.2863 × 10−5 × λ−6 + 1.4619 × 10−5 × λ−8, (2)

where λ is the wavelength in μm. The Kerr nonlinear coefficient γ is calculated using the
formula γ = n2ω0/cAeff, where c is the velocity of light. Numerically, the effective area,
Aeff, can be calculated as in ref. [26].

The effect of reorientational nonlinearity will be small for short pulses (below 50 fs),
since the response does not have sufficient time to accumulate. On the other hand, for long
pulses above several picoseconds duration, the effect of the reorientational nonlinearity will
be indistinguishable from that of Kerr nonlinearity, at least at the initial stage of propaga-
tion. Therefore we have chosen 200-fs sech-shaped input pulse with central wavelength at
1200 nm. The fibre parameters are β2 = −0.109 ps2/m and β3 = 2.1 × 10−4 ps2/m, as
calculated by our dispersion model, and the CS2-filled core is characterized by γ = 34.61
W−1 m−1, γ2 = 6γ and μ = 10 ps−1 for LCPCF. We have neglected self-steepening since
its effect is negligible to the perturbing effect of the third-order dispersion and retarded
nonlinearity. Higher-order effects do not play a significant role, since the shape of the
function β3 is quite linear in the considered spectral range for our pulse parameters, and the
corresponding higher-order dispersion coefficients are small.

4. SCG with reorientational nonlinearity

Inclusion of both fast and slow nonlinearities, as illustrated by figures 2 and 3, signifi-
cantly changes the evolution of the single soliton. The retarded nonlinearity introduces the
time-dependent phase shift which, contrary to the Kerr-type nonlinearity, has a nonzero
derivative at the pulse peak. This leads to the shift of the pulse spectrum towards longer
wavelengths, as visible in figure 2. Nevertheless, the soliton remains stable as a whole,
despite the rapid change of its central frequency and amplitude. The reduction of ampli-
tude, as shown in figure 2, occurs because the soliton sheds parts of its energy during the
non-adiabatic frequency-shifting process and leaves behind a trace of relic radiation clearly
seen in figure 2. This radiation should be distinguished from the non-solitonic radiation
emitted by a soliton at the phase-matched position in the presence of third-order disper-
sion contribution; rather, it can be compared to the relic radiation emitted at the first stage
of propagation in the case of unperturbed NLS equation, when the soliton number of the
input pulse is a non-integer. Thus, we can conclude that the presence of the reorientational
nonlinearity significantly changes the soliton dynamics, leading to a red-shift of the soliton
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Figure 2. Fundamental soliton propagation of CS2-filled LCPCF including slow non-
linearity (solid line). The solid line represents pulse evolution with slow nonlinearity
where the decay constant μ = 10 ps−1 and slow nonlinearity γ2 = 6γ0. The dashed line
represents soliton propagation in the absence of slow nonlinearity.

spectrum for the considered parameters, as well as to the emission of a dispersive wave seen
as a pedestal in the temporal shape. Such a change of the dynamics cannot be described
by perturbative treatment due to strong influence of the slow nonlinearity. However, the
stability of the soliton is not jeopardized by the slow nonlinearity.
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Figure 3. The stimulated spectral broadening of the 200 fs FWHM pulse in LCPCF
without slow nonlinearity (dashed line) and with slow nonlinearity (solid line).
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Figure 4. The evolution of seventh-order soliton spectral broadening through LCPCF
in the absence of slow nonlinearity.

Let us now shift our attention to the input pulse with large soliton number. In figures 4
and 5, the spectra are shown for the input pulse with the soliton number of 7. It can be
seen that the input pulse splits into several solitons, which manifest themselves as stable
peaks in the temporal shape. Hence, we conclude that the solitons remain stable even if
they are subjected to a combined disturbing action of slow nonlinearity and the presence
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Figure 5. The evolution of seventh-order soliton spectral broadening through LCPCF
in the presence of slow nonlinearity.
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of other solitons. For the shortest sub-100-fs solitons, after fission, the dynamics is in fact
dominated by the fast component.

Comparison of the spectral broadening in the presence and absence of the slow nonlin-
earity, which is given in figure 5, shows that the slow nonlinearity has a significant influence
on the spectral broadening. For our parameters the spectrum of higher-order soliton, which
is observed in the absence of slow nonlinearity, is not broad enough to seed the generation
of the non-solitonic radiation. Therefore, the spectrum remains quite narrow, below one
octave. In contrast, generation of a distinct peak of non-solitonic radiation by the soliton
frequency shift and one-octave-broad spectrum is predicted when the slow nonlinearity is
included.

As discussed in the previous section, the nonlinear response of CS2 to the ultrashort pulse
does not solely depend on the Kerr nonlinearity. But for the more realistic cases it includes
the additional nonlinear effects like Raman response, reorientation contribution etc., in
LCPCFs. Since the contribution of reorientational nonlinearity in SCG through CS2-filled
LCPCF have already been studied in the previous section, our investigation aimed at yet
another type of nonlinear response, the so-called saturable nonlinearity. Hence the total
nonlinearity can be expressed as the cumulative effect of both Kerr nonlinearity and the
saturable nonlinearity. Thus, to analyse the dynamics of the ultra-short pulse propagation
in LCPCFs in the presence of saturbale nonlinear response, the NLS equation needs to be
modified.

5. Saturable nonlinear response

The detailed physical aspects of SCG can be interpreted by means of two mechanisms,
namely, soliton fission and MI, as we already discussed. For ultra-short pulses typically in
the femtosecond regime, higher-order dispersion and higher-order nonlinear effects such as
third-order dispersion, fourth-order dispersion, Raman effect, self-steepening are measured
as they play an increasingly important role in the spectral broadening process [4,5]. The
Kerr nonlinearity is considered as the decisive agent in most of the common nonlinear
phenomena such as self-phase modulation, the significant contender of many of the spectral
broadening process observed in various domains. It is noteworthy that Kerr nonlinearity
can only predict the nonlinear response of the medium for low input power. But in reality,
for higher input power, higher-order nonlinear susceptibilities will inevitably come into
play and eventually will saturate the nonlinear response of the medium [30]. Thus, at higher
peak power, Kerr nonlinearity is not solely going to predict the associated nonlinear effects,
but requires higher-order saturation effect to give a clear picture about the evolution of the
SC spectrum. For instance, Kong et al [31] had investigated the quintic nonlinearity of the
liquid CS2, and it is apparent from their prediction that the quintic nonlinearity plays a vital
role in the femtosecond regime. Since this quintic nonlinearity tends to saturate, one can
expect a rich variety of information about the impact of saturation in the SCG mechanism
and the subsequent influence on the coherence of the spectrum using LCPCF. The scenario
that has not been addressed yet to our knowledge and thus seed the motivation is that
‘what would happen to SCG if the light propagates in LCPCF with saturable nonlinear
response?’ Since most of the above investigations have used soliton fission for inducing
SCG, we pursue another possibility of SCG using MI.
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6. Theoretical model

To understand the mechanisms leading to the SCG, wave propagation in a single-mode
fibre with higher-order dispersion and saturable nonlinearity (SNL) may be described by
the following modified nonlinear Schrödinger equation [30]:

∂U

∂z
+

4∑

n=2

βn
in−1

n!
∂nU

∂tn
− iγ |U |2

1 + 	|U |2 U = 0, (3)

where 	 = 1/Ps is the saturation parameter and Ps is the saturation power. In order to
study the influence of SNL on the MI-SCG for LCPCF, we consider a fibre with a cross-
section consisting of a triangular lattice of circular air holes in fused silica, with 1.8 μm
and 1.44 μm as the pitch and hole diameter values respectively. To investigate the pulse
propagation in PCF, we have numerically solved eq. (3) using SSFM with the initial enve-
lope of the soliton at z = 0 given by U (0, t) = √

P0 sech(t). Numerical simulations are
carried out for the input pulse at the central wavelength λ0 = 1.06 μm and a pulse width
of 30 fs. The fibre parameters are β2 = −0.00041 ps2/m, β3 = 0.00078 ps3/m and β4 =
1.6 ×10−7 ps4/m and the nonlinearity value is γ = 13.75 W−1 m−1 for LCPCF.

7. MI-induced SCG in LCPCF

Before investigating MI-SCG in LCPCF, it is customary to switch off the effect of SNL
for the better understanding of the MI spectrum. For the MI-SCG analysis, we have con-
sidered the amplitude perturbed soliton pulse with a peak power P0 = 400 W. Figure 6
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Figure 6. The SCG through MI of 30 fs pulse width in CS2-filled LCPCF at 1.04
μm. The fibre parameters are β2 = −0.00041 ps2/m, β3 = 0.00078 ps3/m and β4 =
1.6 ×10−7 ps4/m and the nonlinearity γ0 = 13.75 W−1 m−1. The propagation length
L = 0.8 cm.
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depicts the MI-SCG spectrum for a propagation distance of L = 0.8 cm. It is observed
that the pulse gets modulated due to noise perturbation which is signified by the emergence
of the spectral side bands at the initial stage of propagation due to MI process, followed
by further spectral broadening and the appearance of soliton structure on the long wave-
length edge of the spectrum after 0.5 cm. This implies that, from the beginning, MI acts
directly on the high-order soliton which leads to the generation of Stokes and anti-Stokes
components. Because of perturbation such as higher-order dispersion and/or noise, the
dynamics departs from the recurrent behaviour and results in pulse breaking. The fascinat-
ing point to observe from figure 6 is that the Stokes components emerge at shorter distance
of pulse propagation with low power, overwhelming of the fact that nonlinear and disper-
sion values of CS2-filled LCPCF are very large in comparison to the ordinary solid-core
PCF. It is also evident from figure 6 that the pulse does not experience a notable asym-
metric spectral broadening, which reflects the negligible role of higher-order effects in the
chosen parameter region which is in agreement with Demircan and Bandelow [23]. The
evolution of such primary spectral side bands at the initial stage of propagation will be
accompanied by the emergence of secondary side bands after a distance z = 0.25 cm. Then
the subsequent spectral broadening accomplished through FWM seeded by phase matching
explosively excites new frequencies and thus broadens the spectrum. Thus, one can achieve
a broad spectrum, typically SC, at a relatively short distance of propagation using low input
power in LCPCF when compared to silica-core PCF. Simultaneously, we have also anal-
ysed the evolution of MI dynamics in time domain from figure 7. It is obvious from figure 7
that, as there is no phase matching between linear and nonlinear effects at the beginning,
pulse breaking is limited at the initial stage. But for a relatively higher distance, typically
z = 0.5 cm and above, the required phase matching can be satisfactorily achieved and thus
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Figure 7. The pulse propagation through CS2-filled LCPCF. The fibre parameters are
β2 = −0.00041 ps2/m, β3 = 0.00078 ps3/m and β4 = 1.6 ×10−7 ps4/m and the
nonlinearity γ0 = 13.75 W−1 m−1. The propagation length L = 0.8 cm.
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the pulse breaking starts due to the formation of ripples in the temporal intensity profile.
These ripples get spread out with further propagation thus covering the whole spectrum,
resulting in the fine structure of SC spectrum.

8. MI-SCG in the presence of saturable nonlinearity

Now in this context, we shift our attention towards the prime objective of the work, the
effect of SNL in the MI spectrum. Considering the PCF structure as in the preceding
section, we begin to explore the effect of SNL in the SC spectrum. The process of MI
leading to SC can be understood by the weak perturbation of the steady-state solution. The
steady-state solution of eq. (3) can be written as [30]

Us = √
P0 exp[iφ(z)], (4)

where P0 is the input pump power and φ is the nonlinear phase shift which can be
defined as

φ(z) = γ P0z

1 + 	P0
. (5)

The linear stability of the steady state can be examined by introducing a perturbed field
of the following form:

U = (
√

P0 + q(z, t)) exp[iφ(z)], (6)

where |q|2 � P0. For the perturbation, we assume the following ansatz with frequency
detuning from the pump �:

q(z, t) = u(z) exp(−i�t) + v(z) exp(i�t), (7)

where u(z) and v(z) are the complex perturbation amplitudes corresponding to the anti-
Stokes and Stokes side bands, respectively. By substituting eqs (6) and (7) in eq. (3),
and collecting the linear terms in u(z) and v(z), we obtain the following equation for the
perturbed field:

dY

dz
= i MY =

(
D(�) + γ̃ γ̃ P0

−γ̃ P0 −D(�) − γ̃

)
, (8)

where

Y =
(

u(z)
v(z)

)
, (9)

D(�) ≡ β2
�2

2
− β3

�3

6
+ β4

�4

24
, (10)

D̃(�) ≡ β2
�2

2
+ β3

�3

6
+ β4

�4

24
, (11)
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γ̃ ≡ γ /(1 + 	P0)
2, (12)

Q ≡ 1 + 	P0. (13)

The eigenvalues of the stability matrix M determine the wavenumber K of the perturba-
tion. MI occurs when K possesses a non-zero imaginary part. The eigenvalues of M are
given by the following dispersion relation:

K 2 + [D̃(�) − D(�)]K − γ P0

Q2
[D̃(�) + D(�)] − D̃(�)D(�) = 0, (14)

which can be rewritten after simple algebraic manipulations as

K = −β3
�3

6
±

√(
γ̃ P0 + β2

�2

2
+ β4

�4

24

)2

− γ̃ 2 P2
0 . (15)

The gain spectrum is given by

G(�) = 2 Im(K ) = 4

√

γ̃ 2 P2
0 −

(
γ̃ P0 + β2

�2

2
+ β4

�4

24

)2

. (16)

It is quite interesting to observe that, as in the case of unsaturated nonlinearity, the third-
order dispersion is insignificant and does not play any role in the gain of the spectrum. The
equation offers a rich variety of information which can be efficiently exploited in many
ways.

For large negative β2 values, the higher-order dispersion effects are relatively negligible.
In this dispersion domain the SNL leads to critical modulational frequency as

�c =
[

4γ P0

|β2|(1 + 	P0)2

]1/2

.

In the typical operating condition of unsaturated PCF, the required phase matching to
acquire MI is achieved through the compensation of second-order dispersion with Kerr
nonlinearity. Quite interestingly, in LCPCF, the incorporation of SNL of the medium
encounters additional phase shift to achieve the phase matching. Such a condition leads to
behaviours that qualitatively differ depending on the magnitude of dispersion and saturation
power, thus emphasizing the sensitivity of MI towards the saturation power and dispersion
on the MI spectrum. Since the MI bandwidth increases as 	 decreases, the effect of MI can
be very strong for high saturation power. In the vicinity of near zero-dispersion regime,
the fourth-order dispersion enters inevitably into play. Hence in the fourth-order dispersion
dominant system, the critical modulational frequency is given by

�opt =
[

48γ P0

|β4|(1 + 	P0)2

]1/2

.

For 	 = 0, it is noteworthy that the MI gain and critical frequencies coincide exactly with
the case of unsaturated nonlinearity as discussed in ref. [23]. Since the focus of the paper
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is to investigate the influence of SNL, we have considered the PCF parameter with large β2

value. Although the higher-order dispersion coefficients are momentous in PCF, the role of
sixth-order dispersion is literally insignificant for MI for our further investigations in the
given PCF structure. Hence we limit ourselves upto fourth-order dispersion. In order to
investigate the dynamical behaviour of the MI process under SNL, we consider the same
PCF parameters as in the preceding section.

From our numerical simulation, we have obtained the results as depicted in figures 8
and 9 which show the effect of SNL for fixed saturation power Ps = 2000 W. By including
SNL, the evolution of the MI significantly changes as illustrated in figure 8. As per the
critical frequency condition, due to the saturation effects, the phase matching can only be
achieved at longer distance in comparison to that of the unsaturated nonlinearity. Thus,
the SNL certainly suppresses the MI process as illustrated in figure 8. Hence, the spectral
broadening can only be obtained at longer distance when compared to unsaturated fibre.
The corresponding dynamics of pulse breaking in time domain is portrayed in figure 9.
Since the phase matching between linear and nonlinear effects is influenced by the SNL, the
pulse breaking can only be achieved at comparatively longer distance than the unsaturated
LCPCF. For a better insight into the picture of MI-SCG, we have investigated the evolution
of MI for various saturation powers as in figure 10. In the operating conditions of saturated
nonlinearity, the optical modulational frequency not only varies with the input power of
pulse but also with saturation power as illustrated in figure 10. It is observed that the
evolution of MI in LCPCF is certainly suppressed by the decreasing saturation powers,
which means that while increasing the SNL the MI-SCG gets suppressed. Figure 11 depicts
spectral evolution of MI-SCG in the presence of SNL with different saturation powers.
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Figure 8. The MI-SCG with saturable nonlinearity for 30 fs of pulse width in
CS2-filled LCPCF at 1.04 μm. β2 = −0.00041 ps2/m, β3 = 0.00078 ps3/m and
β4 = 1.6 × 10−7 ps4/m and the nonlinearity γ0 = 13.75 W−1 m−1 with saturable
power Ps = 2000 W. The propagation length L = 0.8 cm.
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Figure 9. The pulse propagation through CS2-filled LCPCF with saturable nonlinear-
ity. The fibre parameters are β2 = −0.00041 ps2/m, β3 = 0.00078 ps3/m and β4 =
1.6 × 10−7 ps4/m and the nonlinearity γ0 = 13.75 W−1 m−1 with saturable power
Ps = 2000 W. The propagation length L = 0.8 cm.

It is obvious from figure 11 that the saturable LCPCF also shows flat spectrum, where
the spectral density at the peak varies merely less than 10 dB over a bandwidth of 800–
1500 nm. It is also observed that the spectral broadening quantitatively gets suppressed
with decrease in the saturation power.
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Figure 10. The evolution of MI phenomena for 30 fs pulse in LCPCF with different
saturable powers.
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Figure 11. SCG using MI for different saturation powers.

9. Conclusion

We have theoretically investigated the nonlinear propagation of femtosecond pulses in
LCPCF filled with CS2. First, the effect of slow nonlinearity due to reorientational contri-
bution of liquid molecules on broadband SCG in the femtosecond regime has been studied
using appropriately modified nonlinear Schrödinger equation. We show that the response of
the slow nonlinearity not only enhances broadening of the pulse and changes the dynamics
of the generated solitons, but also increases coherence of the pulse. Finally, we theoretically
investigate the SCG on the basis of MI in LCPCF with CS2-filled central core to study the
effect of saturable nonlinearity on SCG. We also compare the MI-induced spectral broad-
ening with SCG obtained by soliton fission. The quality of the pulse broadening has been
analysed by calculating the coherence of the SC pulse through numerical simulation. It is
evident from the numerical simulation that the response of the saturable nonlinearity sup-
presses the broadening of the pulse. Also it has been observed that the MI-induced SCG
in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when
compared to unsaturated medium.
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