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It is known by the experience gained from the gravitational
wave detector proto-types that the interferometric output sig-
nal will be corrupted by a significant amount of non-Gaussian
noise, large part of it being essentially composed of long-term
sinusoids with slowly varying envelope (such as violin res-
onances in the suspensions, or main power harmonics) and
short-term ringdown noise (which may emanate from servo
control systems, electronics in a non-linear state, etc.). Since
non-Gaussian noise components make the detection and esti-
mation of the gravitational wave signature more difficult, a de-
noising algorithm based on adaptive filtering techniques (LMS
methods) is proposed to separate and extract them from the
stationary and Gaussian background noise. The strength of
the method is that it does not require any precise model on
the observed data : the signals are distinguished on the basis
of their autocorrelation time. We believe that the robustness
and simplicity of this method make it useful for data prepa-
ration and for the understanding of the first interferometric
data. We present the detailed structure of the algorithm and
its application to both simulated data and real data from the
LIGO 40meter proto-type.
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I. INTRODUCTION

Over the next decade, several large-scale interfero-
metric gravitational wave detectors will come on-line.
These include LIGO, composed of two Laser Interfer-
ometer Gravitational-wave Observatories situated in the
U.S. [[l], VIRGO, a French/Italian project located near
Pisa [}, GEO600, a German/British interferometer un-
der construction near Hannover [E] TAMA in Japan, a
medium-scale laser interferometer [EL and with funding
approval AIGO500, the proposed 500 meter project spon-
sored by ACIGA. There are also separate proposals for
space-based detectors which could be operational twenty-
five years from now (e.g., LISA: the Laser Interferometer
Space Antenna, a cornerstone project of the European
Space Agency [E]) In the meantime, a number of exist-
ing resonant bar detectors will have had their sensitivities
further enhanced.

The key to gravitational wave detection is the very
precise measurement of small changes in distance. For
laser interferometers, this is the distance between pairs of
mirrors hanging at either end of two long, mutually per-

pendicular vacuum chambers. Gravitational waves pass-
ing through the instrument will shorten one arm while
lengthening the other. By using an interferometer de-
sign, the relative change in length of the two arms can
be measured, thus signaling the passage of a gravitational
wave at the detector site. Long arm lengths, high laser
power, and extremely well-controlled laser stability are
essential to reach the requisite sensitivity, since the grav-
itational waves will be faint and will modify only weakly
the structure of space-time in the detector’s arms (see
e.g.. [):

Gravitational wave detectors produce an enormous vol-
ume of output (e.g., of the order of 16 MB/sec for the
LIGO instruments) consisting mainly of noise from a host
of sources both environmental and intrinsic to the appa-
ratus. Buried in this noise will be the gravitational wave
signature. Sophisticated data analysis techniques will
have to be developed to optimally extract astrophysical
data. Many of the techniques developed so far [fj-H] are
based on matched filtering and assume stationary Gaus-
sian noise.

However, the real data stream from the detectors is not
expected to satisfy the stationary and Gaussian assump-
tions. In fact, the data from the Caltech 40 meter proto-
type interferometer has the expected broadband noise
spectrum, but superposed on this are several other noise
features [fJ]; such as long-term sinusoidal disturbances
emanating from suspensions and electric main harmonics
and also transients occurring occasionally, typically due
to servo-controls instabilities or mechanical relaxation in
suspension system etc. While no precise a priori model
can be given for this noise until the detector is completed
and fully tested, matched filtering techniques cannot be
used to locate/remove these noisy signals.

This disparity between standard Gaussian assumptions
and real data characteristics poses a major problem to
the direct application of matched filtering techniques.
This is true when searching for burst sources such as
blackhole binary quasinormal ringings [E] This is also
the case for the inspiral searches in Caltech 40meter data,
where one has to introduce a veto [ﬂ] on the decision
taken with the matched filter to ensure that the detected
signal is actually the one we are looking for.

It is possible that in the future, improved experimen-
tal techniques and greater experience, will reduce or even
completely eliminate some of these nonstationary and
non-Gaussian features. Nevertheless, it will take proba-
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bly some time to reach such acceptable and high quality
of data. Therefore, it is necessary and desirable to some-
how combat this noise. Since such noise features defy
modeling, a novel approach to the problem is called for.

We propose a denoising method based on LMS adap-
tive linear prediction techniques which does not require
any precise a priori information about the noise char-
acteristics. Although our method does not pretend to
optimality, we believe that its simplicity makes it use-
ful for data preparation and for the understanding of the
first data.

In the following, we present the principles of LMS
adaptive denoising (Sect. [I), a characterization of its
behavior on a simple model of the noise from the inter-
ferometer (Sect. [II)), the precise structure of the denois-
ing algorithm (Sect. [V]) and results (Sect. []) obtained
with simulated data and also with real data taken from
the Caltech 40 meter proto-type interferometer [@]

This work here is preliminary; its goal is to explore
how effectively adaptive filtering techniques perform on
the problem we address. It is a first step towards a more
complete statistical evaluation of the algorithm.

II. METHODS
A. From hypothesis to method

We assume that the noise consists of broadband Gaus-
sian noise plus large amplitude oscillating interference
signals. The model does not include any a priori knowl-
edge of the signal such as its exact frequency or shape
of the envelope. The only assumption we make is that
its autocorrelation over a small time-lag — the time-lag
chosen greater than the decorrelation time scale of the
broadband noise — is appreciable, while for the broad-
band noise it is essentially zero. This difference can be
used to advantage to discriminate between the narrow
band interferences and the broadband noise.

The idea is to predict the current signal sample given
the previous samples of the data. This is possible, only if
the target sample shares enough information with (i.e., is
sufficiently correlated to) the previous samples. In other
words, the only predictable part of the signal is the one
whose correlation length is sufficiently large (i.e., long-
term sinusoids or ringdowns). Conversely, broadband
noise cannot be predicted, as it is not possible to guess
the next value in this way. It is this crucial underlying
idea we use to discriminate between the two noise signals.

B. Mean square linear prediction

Let us recall some standard principles to design an
optimal linear predictor. The question to address is to
optimally predict the data sample z; with a collection
of past samples x = (Tk—g—m,m = 0,1,... ,N — 1)

given the delay d > 1 (the quantity d is also referred to
as prediction depth). The prediction is obtained by lin-
early combining these data samples weighted by the N
corresponding coefﬁcientsﬂ w(™) | forming the tap-weight
vector w = (w(m),m =0,1,...,N —1)!, where the su-
perscript ‘t” denotes the transpose of the vector. There-
fore, the prediction y of xj reads,

Yk = wt:ck. (1)

The predictor is optimal in the mean square sense when
the variance of the prediction error e = xp — yi is mini-
mum. Therefore, the problem is to find the set of weight
coefficients which minimizes

Je(w) := Ele}] = B[(z) — w'zy)?], (2)

where E denotes the expectation value operator.
This leads to the minimization of the following
quadratic form

Ji(w) = a,z —2w'p, + w'Rpw, (3)

where o7 := E[z}], p; = Elzpxi] and Ry := E[z! ).
There exists only one solution wj, obtained when the
gradient of .Jj, vanishes. This situation is realized when

Rywj, = py. (4)

When the signal is stationary, Ry = R and p,, = p are
constant (independent of k). In this case, R defines the
autocorrelation matrix of the signal z; and the solution
of () is referred to as the Wiener filter.

C. Linear prediction and LMS method

Eq. ({) requires the computationally expensive inver-
sion of the matrix R;. An alternative and more efficient
solution for finding the minimum of the () consists in
starting from an arbitrary initial value wy o, and iterate
the tap-weight vector along the steepest descent direc-
tion,

Wk,n+1 = Wgn — vaJk(wk,n)v (5)
given by the gradient
Vuwdi(w) = 2(Rrw — py). (6)

For a sufficiently small gain p, the weight vectors
will eventually converge to the optimal predictor filter
wj,. This procedure requires the second order statistics
(namely Ry, and p,,) of the signal. In our case, this infor-
mation is not available and one has therefore to estimate

"We put brackets around indices of vectors and matrices in
order to distinguish them from the time index.



these quantities. Instead of estimating directly Ry and
p,, and combining them with ([f), a more efficient solu-
tion is to estimate the gradient. From the derivation of
(B), one can rewrite the gradient as

Vka(w) = —2E[6k.’1}k]. (7)

A simple and natural way to obtain an estimator of
this quantity is to omit the expectation operator :

V/w7k = —2ekwk. (8)

Because the noise perturbs this estimate, the algorithm
may iterate in a direction which does not lie along the
direction of steepest descent, thus preventing the filter
from converging to the Wiener filter. For this purpose,
we stabilize the estimation above by setting the algorithm
time index n equal to signal time index k in the Eq. (E)
The final evolution equation for the tap-weight vector
finally reads:

Wiyl = Wi + 2uepxy. (9)

At a fixed time k, the weight vector evolves along the
crude estimate of the steepest descent direction. But on a
longer duration, the direction followed by the tap-weight
vector is governed by the sum of the successive gradient
estimates obtained with different noise samples. In other
words, we have replaced an ensemble average in (ﬂ) by
a time average. It also implies that we have implicitly
called for further assumptions on the signal zj: first its
local stationarity (more precisely, the second order statis-
tics are supposed to be constant during the convergence
time of the algorithm) and second, its ergodicity.

Summarizing, the method we propose consists in lin-
early filtering the data to extract the part of the sig-
nal with a long correlation time. As illustrated with the
block diagram in Fig. m, the finite impulse response fil-
ter (given by wy) is modified at each iteration according
to the relation (f) with the final goal to minimize the
mean square error. Once the filter has converged (i.e.,
wy, is stable in time), we reject the predicted part of the
signal (corresponding to the long-term sinusoidal or the
ringdown signals) and we send the rest of the signal for
further analysis for detection.

D. Properties of the LMS method

The method we described above is referred to as adap-
tive line enhancer (ALE). Tt is a special case of the LMS
algorithm. Both, ALE and LMS algorithms have been
first introduced by Widrow and Hoff [ in the 1960’s.

The acronym LMS (Least Mean Square) designates
a general scheme to design signal processing methods
where a minimization (in a statistical sense) of a definite
positive quadratic cost function (usually related to some
mean quadratic error) is needed. Its central idea is the
use of the estimate of the gradient of this function given

in Eq. (E) The LMS technique has been extensively
used for the last 30 years in communications problems
such as echo cancellation, channel equalization, antenna
processing, etc. The main advantages to be gained by
applying the LMS technique are (i) adaptivity, (i) ro-
bustness, (#ii) simplicity.

In this context, the term “adaptivity” has two different
meanings. First, it means that the LMS technique will
automatically modify its parameters to reach for the best
setup for a problem which has not been initially precisely
defined. Second, it is also able to follow changes in the
characteristics of the data being processed in the event
that they occur. The latter property also shows that the
method is robust. In fact, this method has been proved
to be robust according to specific statistical criterion such
as the minimax criterion ]

The ALE is an adaptive prediction algorithm using the
LMS technique. We have seen that the signal is predicted
from a reference signal which is the signal itself. In some
other applications, although the same principles are ap-
plied, the reference signal can be another signal, e.g. echo
cancellation or denoising. In such cases, the quantity of
interest might not be the prediction output but the linear
filter used to compute it, e.g., deconvolution.

III. ADAPTING ALE FILTER TO CANCELING
NOISE IN GW DATA

In this section we essentially describe a model for un-
derstanding the behaviour of the ALE algorithm. The
model we assume consists of a high amplitude narrow-
band signal superposed on broadband noise. For sim-
plicity, we assume the broadband noise to be white and
Gaussian and the narrowband signals are sinusoids of
constant envelope. The results we obtain hold for more
realistic signals when the evolution of their amplitude
and/or instantaneous frequency occurs adiabatically, i.e.,
the change is small over the period of the sinusoid.

The assumption of white noise is not too restrictive
because this is equivalent to choosing the noise correla-
tion time to be zero and therefore we are free to choose
the prediction depth (i.e., the time delay between the cur-
rent predicted data sample and the reference signal to the
LMS filter) to be arbitrarily small. In a real situation,
we must fix the delay to be greater than the correlation
time of the broadband noise. We first analyze the case
of the sinusoid because it is easier to investigate and pro-
vides invaluable insights into the workings of the LMS
algorithm.

It may be remarked that the denoising of sinusoids
in white noise has been treated in the literature with
great detail (see [L34] for a review). We give here only
pertinent results (with a short proof) for introducing the
structure of the algorithm, which we present later in the
text.



A. Optimal filter

We consider the data to be of the following form,
xy := cos(27 foty, + D) + ng, (10)

where ¢ := kd, 0 := 1/fs being the sampling interval
and ® is a random phase (at the origin) with uniform
probability density function between —7 and w. The si-
nusoid has frequency fo and the units are so chosen that
it is of unit amplitude. The additive white noise nj with
variance o2 satisfies the relation,

E[nknm] = U25km7 (11)

where 0, is the Kronecker delta.

The reference signal to the adaptive filter is just the
delayed data by the amount dd, where d is the number
of time samples. We choose N weights w, = W (w
can be thought of as a column vector) for the length of
our filter, then the “reference vector” x; at the kth time
instant t; has the components zx_g—n,n =0,1,... ,N—
1. The components of the autocorrelation matrix R and
the vector p in Eq(ﬁ) are given by

R = 1/2cos(m — n)6¢ + 026pmn (12)
p'™ = 1/2cos(m + d)d¢, (13)

where (m,n) = 0,1,... ,N — 1 and d¢ = 27fyd. Note
that we have dropped the index k because the autocor-
relation R does not depend upon k, since we are dealing
with a stationary signal.

From the above expressions of R and p and solving
Eq.(H), we obtain the optimum Wiener filter

= N1 ig? cos(m + d)d¢,

m=0,1,...,N—1.
(14)

w*

where we have chosen the length of the filter to be half-
integral number of cycles for reasons of simplicity, i.e.
Né¢ = Im, where [ is an integer.

In other words, the optimum linear predictor is nothing
but a copy of the expected signal itself. The filter in Eq.
(@) is also referred to as matched filter. In our situation,
in practise, N > 02 and the term 402 can be omitted
from the amplitude of w*.

For the reasons detailed before, we propose to use the
ALE algorithm in order to find a good approximation of
w*. Starting from an arbitrary initial tap-weight vec-
tor, we iterate the weights wy, according to Eq. (f]) to
converge to w*. Once the filter is “close” enough to the
optimal solution (the word “close” will be defined later
in the text), we then say that the filter has locked on to
the signal.

B. Approach to locking

a. Continuous time approximation of the locking tra-
jectory — We may analyze the approach to locking by
deriving a difference equation for the averaged evolution
of the weights and then investigating this equation. It is
impossible to obtain the average evolution of the weights
by using the standard definition of the expectation op-
erator E because of the nonlinearity and the recursive
scheme involved in evolving the weights. We therefore
adopt the time-average over successive data points as the
operational definition of E.

Shifting the origin to w* by defining vy := wy — w*,
we may write the LMS evolution equation (f]) in the fol-
lowing form [[L5]

Uiyt — vk, = —2u(zpxh v + 2uei T, (15)

where e} := x), — w*'x, is the prediction error produced
when using the optimal filter.

During the locking phase, the filter is far apart from
the optimal location (i.e., vy has a large modulus). The
homogeneous term dominates the forcing term in the dif-
ference equation (@) which then can be approximated
by :

Vir1 — vk = —2u(TpTh)vs. (16)

In the situation where the step gain parameter pu is
chosen to be very small so that the weight coefficients are
almost constant over a given time interval, the recursivity
eventually acts as an averaging operation on both sides of
the equation above. This leads to the difference equation
which we use to describe the tap-weight trajectory in the
space of weight coefficients, we denote W :

Vi1 — Vg = —Z;LR'Uk. (17)

Let @ be the transformation which diagonalizes R.
The above difference equation is best analyzed by chang-
ing the frame in W to the principal axis

Dpp1 — Op = —2uRDy, (18)

where R := QRQ ™! = diag(A\@, ... ) AXV=D) and ¥y, :=
Quy. Eq. (@) gives decoupled difference equations for
the components f;;ﬂm), m =20,...,N — 1 of © which can
be solved given the initial weight vector f)gm) :

o\ = o™ (1 — 2uA M)k, (19)

b. Eigenvalues and eigenvectors of R — We need to
compute the eigenvalues A" of R. This can be conve-
niently implemented by splitting R into the noise part,
which is just o2 times the identity plus the signal part
which we denote by S/2, and thus,

R=0T+S/2, (20)



where ™™ := cos(m—n)d¢. It is easily verified that the
eigenvectors of R and S are identical and the eigenvalues
of R are obtained from those of S by first halving them
and then adding o2 to the result. It remains, therefore,
to compute the eigenvalues and eigenvectors of S. We do
this by observing that we can write S as follows E:

S = (' +owl)/2, (21)

where v = (1,exp(id¢),exp(2idd),... ,exp((N —
1)i06))".

Since the matrix S is real and is essentially made out
of two external products of v and , its rank equals 2 (S
has N — 2 degenerate eigendirections in VW with eigen-
value zero) with two non-zero real eigenvalues. Let v be
an eigenvector associated to one of the non-trivial eigen-
values. According to the structure of S, the vector v
can be written without loss of generality as the following
linear combination,

v = v exp(—ia) + U exp(ia), (22)

where the coefficients have been chosen to have unit mod-
ulus arbitrarily.
Using the two scalar products vTv = N and

v'v =1+ exp(2id¢) + ... +exp(2(N — 1)idp)  (23)
= [Bexpiy, (24)

where the geometric series can be summed up and mod-
ulus and phase ascertained :

_sin(Ndg)
"~ sindg (25)
5= (N = 1)é0, (26)

we obtain the effect of the matrix S on the vector v,
given by

Sv = v exp(—ia)(N + Bexp(—iy + 2ia))/2 + c.c. (27)

where c.c. denotes complex conjugate.

This expression has to be compared to the second term
of the eigenvalue equation Sv = \v, leading to two solu-
tions for «, namely, & = /2 and o = (y — 7)/2. These
yield the eigenvectors v1 and the corresponding eigen-
values A1 :

vy = vexp(—iy/2)+ vexp(iv/2), (28)
v_ = wexp(—iy/2) — ivexp(iv/2),
A = (N £5)/2. (29)
2By definition, the vectors & and zf := &' denote respec-

tively the complex conjugate and the hermitian transpose of
.

If we choose N large enough and Nd¢ = mm, where
m is an integer then the analysis becomes simpler. This
amounts to choosing the length of the filter to have half-
integral number of cycles: we have 3 = 0 and Ay = N/2.
(Geometrically, this means that the eigenvalue problem
is degenerate with respect to the two signal eigenvec-
tors: there is a two dimensional eigenspace belonging
to the eigenvalue N/2. The weights thus evolve non-
preferentially with respect to the signal eigendirections.)
Since typical cases imply generally N > 3, we will as-
sume this simplification in the rest of the paper.

In this situation, the spectrum of R

sp(R) = (A0 =XV = N/4 40> and
)\(m):0—27m22,...,N_1}7 (30)

consist of two sets of eigenvalues : the first two corre-
spond to directions in the signal space associated to “sig-
nal+noise” (or “signal”, for short) whereas the remaining
N — 2 characterize “noise” directions.

According to Eq. (E), the weight vector will converge
more rapidly in directions associated with the largest
eigenvalues, which are the signal eigenvalues. The other
noise eigenvalues are unimportant in this consideration.
The eigenvectors pertaining to the signal provide pre-
ferred directions in W: it is along these directions that
the slope of the performance surface is steep and hence
promotes faster convergence.

C. Steady state evaluation

If the step gain factor is sufficiently small, the tap-
weight coeflicients eventually converge and stabilize in a
neighbourhood of the optimal value. At this stage, the
assumptions made in obtaining the approximated evolu-
tion equation (E) do not hold anymore. In contrast with
the case of “the approach to locking”, the right hand side
of the difference equation ([L3)) is now dominated by the
forcing term :

Vg+1 — U = QMBZCB]C. (31)

Roughly speaking, the trajectory of the vector wy dur-
ing the steady state can be viewed as a random walk cen-
tered around w* lying within a region of W space whose
extent is determined by two factors, namely, p and the
intrinsic geometry of W in the vicinity of w*.

The misalignment between the actual ALE filter wy
and the optimal one w* creates an additional error in
the output. In fact, a direct calculation from Eq. (f)
shoE that the total mean square error may decomposed
as L7 :

where (7) &min 1= Jp(w*) is the minimum mean square
error arising from the fraction of the input noise which



still remains in the output, assuming that the ALE filter
has reached exact optimality and (ii) & := v}, Rvy, is the
excess mean square error (EMSE) due to the misalign-
ment between the ALE filter and the Wiener filter.

One can verify that the EMSE vanishes when reaching
optimality i.e., when v; = 0. In other words, this term
quantifies the non optimality of the current filter in use.
We can imagine £ as the square of a natural distance in
W and R as a intrinsic metric over W.

A good approximation of £, can be found for large
number of weight coeflicients for the specific case of sinu-
soidal signals with high SNRs. Using Egs. (f) and (f), we
may write &, = E[z7] — pfw*. When N — oo, a direct
calculation shows that the second term p‘w* tends to the
energy of the sinusoid, which means that the remaining
energy is that of the noise: &nin ~ o2.

We complete the characterization of the mean square
error (BY) with the evaluation of the average value of the
EMSE, which we denote by £(*Y). Firstly, noticing that
the EMSE is invariant under the principal axis transfor-
mation

N—-1 2
A(m) (f;;’”’) , (33)

and secondly, using the approximation E[o®}] &~ pu&minl

proposed in [Id] to obtain the typical value for ('D,(Cm))2
yields

N—-1
0 > A . (34)

m=0

Since the signal is of much larger amplitude than the
broadband noise, the trace of R is essentially due to the
signal eigenvalues (see Eq. Bd). Combining with the
expression of &,,;, above, this leads to :

6 ~ uNo?/2. (35)

A better estimate of £5Y) can be obtained starting with
more realistic hypotheses and using more sophisticated
approximations [[14] :

-t PO
st) ~o .
. Z—o T am o (36)

In the limit of small step size, this approximation tends
to the simpler one in Eq. (B3).

D. Convergence time

In the expression of the EMSE in Eq. (@), we separate

the sum into two parts: the first, £ ,(Cn) associated with the
noise (i.e., consisting of terms involving noise eigenvalues

and vectors), the second, 5,(65) with the signal. Because

the signal eigenvalues are much larger than those of the
noise, the sum in Eq. (BJ) is essentially dominated in

the beginning (for small k) by 5,(;). These two errors
decrease during the locking phase until reaching a steady
state value. The locking time (i.e., time at which the

steady state is reached) is defined to be that, when 5,(:)
is of the order of the total EMSE expected in the steady
state.

From Egs. ([[9), (B9) and (BJ) we obtain,

¢ = 2O (f:,ﬁo)f + AW (@S’)Q (37)

() ) (-2 e

where we have assumed N > (.

We set the starting point wo in W to be 0. It corre-
sponds to the initial value v in the eigenspace which is
given by vg = —Qw™*. The first two coordinates of vq
can be directly obtained since the first two row vectors
of @ are just the normalized signal eigenvectors of the
R matrix, leading to, for half integral wavelength filters
and N > o2,

Q

5" = \/2/N cos(dép + v/2) (39)
8" = \/2/N sin(dé¢ + v/2). (40)

These considerations yield

. 1 /LN 2k

This error must now be compared with the averaged
EMSE in Eq. (@) in order to find the time #,ck at which
€6) and €6 are equal :

In(uNo?)

2In(1 — uN/2)’ (42)

tiock A o

It is important to mention that, when the product
uN/2 tends to 1, the convergence time diverges to in-
finity meaning that the weights do not converge toward
w* anymore. In order to ensure the stability of the al-
gorithm, the parameters will have to satisfy the stability
condition 0 < uN/2 < 1. However, we have observed
in our simulations that when 1/2 < yN/2 < 1, the con-
vergence is slowed down, because of the presence of os-
cillatory terms in the gradient which do not average to
zero anymore. In practise, it is advisable to choose the
parameters so that uN/2 < 1/2.

For a sinusoid of amplitude A instead of unity as we
have considered before, the condition for stability can
be simply obtained by replacing the parameter uN/2 by
p:=uNA?/2 leading to 0 < p < 1.

We illustrate in Figs. E and H with an example the re-
sults of this Section pertaining to the approach to locking
and steady state analysis.



IV. THE ALE IN PRACTICE

In the previous Sections we have characterized the be-
haviour of the ALE in cases of interest. We will now
elaborate on how this algorithm can be adapted to the
interferometric data.

In the scheme we present here, we first decompose the
signal in p frequency subbands to which we apply the
ALE twice with different sets of parameters. In the first
stage, the parameters are tuned to best remove long-term
sinusoidal components of the noise; whereas in the second
stage, the target consists of shorter oscillatory transients.

A. Subband decomposition

Interferences such as mains power and violin mode har-
monics are distributed over a large dynamic scale (the
first harmonics are of much larger amplitude than those
of high order). But, since the interferometer noise curve
also decreases at low frequencies, their relative amplitude
as compared to the background noise power spectrum at
the same frequency remains large. Therefore, the model
introduced previously, namely that of large amplitude
sinusoidal signals embedded in broadband noise, is a rea-
sonable approximation within the relevant small band-
width of frequencies.

For this reason, we divide the frequency axis in p dis-
joint frequency subbands of the same size. The p signals
lying in each of the subbands are heterodyned and deci-
mated to the sampling frequency fP22d := f,/p.

The tiling has the advantage that, if p is sufficiently
large, we can consider the interferometer background
noise almost white within a subband, which implies that
the noise has vanishing correlation time. The prediction
depth d which has to be larger than the correlation time,
can be then simply fixed to any value greater than 1 sam-
ple period in each of the subbands.

B. Long-term sinusoid removal

Certain parts of the spectrum may not contain any
long-term periodic interferences. We apply a preliminary
test to exclude subbands which may not require the first
denoising step. The test is crudely done by estimating
the amplitude A of the sinusoid from the largest peak
of the power spectrum (Welch estimate) and comparing
it to the variance o2 of the broadband noise (also es-
timated from the power spectrum). If it is found that
A > o, we decide that there exists a long-term sinusoidal
signal of sufficient amplitude in the band which needs to
be removed, otherwise we proceed directly to the second
step.

We apply the ALE in each of the selected subbands
choosing parameters as follows:

e Number of tap-weight coefficients N

The number of tap-weight coeflicients is fixed by
prescribing an upperbound 0 < 7,ise < 1 to the
ratio between the noise power corrupting the fil-
tered output yi of the optimal filter w* and the
input noise power. Let ng = (Ng—g—m,m =
0,1,...,N —1)! be a collection of noise samples,
then the above condition reads ,

E[(w*tnk)Q] < nnoiseE[(nk)Q]v (43)

which, with the stationarity and whiteness of the
background noise ng, results in bound on the opti-
mal filter gain :

w*tw* S MNnoise- (44)

The L? norm ||w*||3 = (2/N?)(N + 3 cos(y+2d5a))
is obtained by squaring and summing the Eq. (@)
for the optimal filter. Since in typical cases § < N,
this leads to simpler expression ||w*||3 ~ 2/N.

Consequently, the number of tap-weight coefficients
N has to be chosen so that,

N Z 2/7777,01'56- (45)

Step gain parameter p

We fix the step gain parameter by imposing to the
distance of the ALE filter from optimality in the
steady state to be smaller than a given threshold
on average. As we have seen in Sect. 7 this
can be done naturally by imposing an upperbound
0 < 7sig < 1 on the excess square mean error as
compared to the signal power E, = A?/2 :

€68 < gy B (46)

Using the expression obtained in the steady state
analysis in Eq. (Bf) for the EMSE, this condition
reduces to :

< nsig/(NU2)- (47)

Generally, this equation leads to small values of u
which prevent the convergence of the ALE filter
from its initial state (i.e., all tap-weight coefficients
are fixed to 0) in a reasonable time (convergence
faster than a tenth of second, which is the duration
of the chunk of data). We solve this problem by first
applying the ALE on a sequence of training data,
the step gain parameter being set at the beginning
to a large value (for fast convergence) and decreased
gradually to the value given in Eq. (). The fil-
ter obtained after the completion of this training is
close to the objective (i.e., the Wiener filter). We
then start the longterm sinusoid removal using this
prepared filter.



We remark here that although p is small, it is non-
zero thus giving the ALE filter some flexibility of
adapting to changes (non-stationarities) in the sig-
nal such as slow drifts in frequency and amplitude
modulation. This property, however, needs to be
investigated more in detail.

C. Ringdown removal

The aim of the second step of the algorithm is to re-
move oscillatory transients (ringdowns) of large ampli-
tude. These transients are either frequency bands ex-
cited from time to time (caused by dysfunctions in the
interferometer) or relics from the previous step (when
the envelope of a long-term sinusoid possesses fast vari-
ations to which the algorithm cannot adapt or converge
to during the first step of removal).

The cleaning procedure consists in applying ALE the
second time to each of the subbands but now, the param-
eters are so adjusted that, () they select features with a
larger bandwidth than in the previous step, and (i) con-
verge rapidly onto an oscillatory noisy signal that may
appear.

e Number of tap-weight coefficients NV
The impulse response duration and frequency selec-
tivity (i.e., the filter bandwidth Af) of the transfer
function are dual in character. This follows from
the uncertainty relation. The rough approximate
relation between these quantities is given by,

N = fs/(PAf), (48)

where f; is the sampling frequency. We choose the
number of tap-weight coefficients N by imposing a
minimum bandwidth A f,,;, to the filter and using
the above equation.

e Step gain parameter p

Assuming that the ringdown can be locally approx-
imated by a sinusoid, we choose the step gain pa-
rameter by imposing a convergence time of the or-
der of a typical transient duration (i.e., tjocr = NJ).
More concretely, setting p := uNA2%/2 in the un-
normalized form of Eq. () (i.e., for arbitrary ring-
down amplitude A), we solve for

In(20%p)
P _ N, 49
21n(1 — p) (49)
Using the crude estimate A?/2 ~ ||z ||3/N for the
ringdown amplitude, the step gain parameter is fi-
nally obtained as p = p/||zx |3

Since the ringdown signals are of short duration and
can occur with large time gaps, the ALE does not need
to operate on each data segment. Accordingly, we have

added a supervision test which decides whether or not
the denoising algorithm should be applied to a given data
segment. The test consists of observing the Gaussianity
of the filtered output y; = wixk. If the input signal
x), is a zero-mean white Gaussian process of variance o2,
then the output of the filter yj shares the same charac-
teristics, except that the variance gets multiplied by the
filter gain : varyy = |wg||30%. Furthermore, under this
hypothesis, the envelope Vi = |H(y)x|?> (H denotes the
discrete Hilbert transform of yi) follows by definition
a chi-square distribution with 1 degree of freedom.

This implies that, up to an arbitrary probability Py,
the envelope ), does not exceed the threshold given be-
low:

Vi < K(Po) 2f0"|wy 307, (50)

where x(+) is the inverse function of the (unit variance)
x? cumulative distribution function (cdf).

If Eq. (B() is satisfied, we conclude that the filtered
output is essentially due to a Gaussian background noise
and we leave the input signal as it is. Otherwise, we con-
clude that the filtered output carries a ringdown signal
and decide to remove it from the input data.

The functioning of the second step of the denoising
algorithm could be interpreted as follows : it removes
from the input data, regions in the time-frequency plane
presumably associated with transients, whose support is
defined along the frequency axis by the ALE filter, and
along the time axis by the supervision criterion (f0).

After completing these two steps, we recombine the
signal in all the subbands together to retrieve a single
strain signal.

V. NUMERICAL RESULTS
A. Simulated data: test of the ringdown removal

In this section, the goal is to test how effectively the
second stage of the denoising algorithm (i.e., the ring-
down removal) described in Sect. m operates on a sim-
ple signal. The test signal is composed of three ringdown
signals (of fixed amplitude and frequency) occurring suc-
cessively in the data stream and embedded in a additive
Gaussian white noise. This model may be used to rep-
resent ringdown disturbances originating from the same
underlying physical mechanism.

3The discrete Hilbert transform y,, = H(x)n of a signal z,
is essentially obtained by cancelling its negative frequencies;
more precisely, Y (f) := 2U(f)X(f), with U(f) = 1 when
f€10,1/2] and 0 when f €] —1/2,0[ and where X(f) (and
Y (f)) denotes the Fourier transform of the corresponding sig-
nal X(f) =N ane 2™,



Each of these ringdown signals is a sinusoidal wave-
form, similar to Eq. ([Ld) (with A = 1, fo = 50 Hz and
sampling frequency fs = 200 Hz), whose support is lim-
ited in time by a Gaussian envelope :

T, = Aexp (—w(tk - tc)2/T2) cos(2m fotx + @), (51)

where three different reference times ¢, are given and the
equivalent time duration is 7' = 200ms (giving a fre-
quency bandwidth of Af ~ 1/T =5 Hz and Q := foT =~
10 cycles).

Figure E describes the application of the denoising al-
gorithm configured with d = 5 sampling periods (equal
to 25 ms) Afmin = 3 Hz, and Py = 0.01. Tt can be
seen that the algorithm operates better on the transient
encountered later in the data train than its predecessor.
The explanation is that a transient duration is too short
for the filter to reach the steady state but, when it en-
counters the next transient, the filter benefits from the
distance to w* previously covered, thus improving the
convergence towards optimality.

This can be verified with a time-frequency representa-
tion [[Ld] of the output signal such as Fig. ll, where we
have chosen the spectrogram S”[n, m] := |F/[n, m]|? de-
fined as the squared modulus of the short-time Fourier
transform :

th[n, m] = Z xnhk—n6_2winm7 (52)
k

where n € [1,2,... ,N], m €] —1/2...1/2] and hy, is an
arbitrary window (a Gaussian window here).

Notice that real time and frequency coordinates can be
retrieved through the relations : t = n/fs and f = mfs.

B. Results on Caltech 40m proto-type data

Here we have applied the algorithm to the Caltech
40meter proto-type data taken in October 1994 [EI]
This data was recorded with a sampling frequency of
fs = 9.86kHz. We have used the calibrated strain sig-
nal [@] (relative arm length measurement) for applying
our algorithm.

We tile the complete spectrum into p = 32 frequency
subbands of approximately 154 Hz each. Each subband
encounters typically one or two long-term sinusoidal in-
terferences.

We have chosen the prediction depth to be d = 5 sam-
pling periods, which corresponds to a delay of pd/ fs ~ 16
ms in real time. The correlation time of the broadband
noise is effectively smaller in each subband except at the
extremities of the spectrum where the steep slope of the
spectrum does not allow us to assume the background
noise to be locally white. It only affects the first and
last subbands which are not too important for detection
purposes.

In the first stage, we have chosen 7,05 = 0.01 (giving
N = 200 according to Eq. @)) and 7,4 = 0.01. In the

second stage of ringdown removal, the minimum filter

bandwidth has been fixed to A f,,;, = 3 Hz, which gives

a filter with N = 100 tap-weight coefficients (see Eq.

(1)) and we have set Py = 0.01 for the Gaussianity test.
We have performed two types of simulations:

e a “Caltech signal only” simulation to measure
improvements after denoising : we check firstly,
whether the frequency peaks are removed from the
noise power spectrum and secondly, whether the
noise statistics is closer to Gaussian than before
denoising,

e a “Caltech+inspiral” simulation to evaluate the
consequences of the denoising algorithm on gravi-
tational wave detection; specifically, for the case of
the inspiralling compact binary signal. The ques-
tion here is to check whether the denoising opera-
tion has removed a significant part or even whole
of the inspiral signal.

Caltech signal only — Eleven of the thirty-two fre-
quency subbands (# 1-9, 11 and 17) are selected and
sent to the first cleaning step of the algorithm. In these
subbands, we obtained the following mean values for
A~15x%x 1071 and o ~ 3.6 x 1077 (the sinusoid am-
plitude A equals approximately 1 to at most 5 times the
noise standard deviation o) leading to typical values for
the signal-to-noise ratio of about SNR = A?/(20?) =~
8.7(9.4dB) and for the step gain parameter (see Eq. (7))
of pN A% /2 = 0.04 (spanning from 0.01 to 0.14).

The complete set of subband signals is processed in
the second step. The typical noise variance estimate is
o = 1.35 x 10717 (from 4.8 x 10718 to 10716) leading
according to Eq. (1) to values of uNo? which span the
range of values from 0.07 to 104

Figure E illustrates how the algorithm operates in the
fifth frequency subband (from 617 Hz to 771 Hz) among
the p = 32 ones being processed. This frequency band
contains two power line harmonics (the 11th at 660 Hz
and the 12th at 720 Hz).

Figuresﬂ and ﬂ show respectively comparisons between
the power spectra and histograms of the signal before
and after denoising. We observe that after denoising, the
frequency peaks have been removed from the input signal
and the histogram appears much closer to the Gaussian
bell curve.

Caltech signal + inspiral waveform — The purpose
of this test is to evaluate how the cleaning operation af-
fects gravitational wave detection and in particular to
make sure whether a significant part of the gravitational
signature could be removed from data. Answering this
question by analytical means is difficult, however a quali-
tative rational in the case of inspiral binaries can be made
and verified with simulations.

The theory predicts [@] that the gravitational waves
emitted from inspiralling binaries of neutron stars are



oscillating waveforms whose frequency evolves in time in
a prescribed manner and scans the interferometer band-
width from lower end to the higher.

Their weak amplitude and short time duration within a
single subband (in the case we have considered, less than
a second) make them “invisible” to the ALE filter. The
amplitude and the duration of the gravitational wave sig-
nal are simply not large enough for the ALE coeflicients
to converge onto the gravitational wave instantaneous
frequency.

We have checked the validity of this argument by
adding to the Caltech signal the inspiralling ‘chirp’ wave-
form in the Newtonian approximation [ of two neutron
star binaries each having a mass of M = 1.4 solar masses,
and located at a distance of r = 7kpc from the Earth.

Figure E depicts a comparison of matched filter detec-
tor response on the same signal with and without de-
noising. The detector output displays a peak of the same
height and at the correct instant, showing that the clean-
ing algorithm has not removed the inspiral signal from
the data. This can be crosschecked in Fig. E showing a
zoomed view of the same signal after denoising.

VI. CONCLUDING REMARKS

The originality of the idea of the proposed denoising al-
gorithm lies in its wide applicability, so that both types of
disturbances, long-term sinusoidal and oscillatory tran-
sients (the type of noise which has been ignored till now)
can be treated. Although the question of the compu-
tational burden in applying this algorithm has not quite
been addressed here, it appears from the simplicity of the
operations involved (e.g., no requirement such as long-
term FFTs) that the total computational cost should
be within acceptable limits, so that the algorithm can
be operated in real time. Furthermore, the structure of
the algorithm already implemented with Matlab can
be easily translated into a parallel code (each processing
node can be associated with one frequency subband and
the processing can be done independently).

As part of future extensions to the present work, some
improvements to the current code might be needed : in
order to limit the finite size effects in the subband de-
composition and reconstruction, a reversible filter bank
(e.g., a Gabor transform) would be preferable than the
crude method used here.

The key idea (i.e., looking for correlation between the
current sample of the strain signal and a reference sig-
nal, namely a set of past samples) can be also extended
to investigate correlations of the detector output with
other environmental channels by simply using them as a
reference rather than the strain signal itself. Similarly to
the cross-talk removal in [@] but with adaptive methods,
such an algorithm would provide an estimation of any
poorly known (linear) transfer functions relating noise
sources to their final leaking in the detector output and
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of the environmental contamination that must be sub-
tracted from the data, if so desired.
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FIG. 1. The figure illustrates the principle of the underlying method on which the algorithm we propose is based. The
algorithm is designed to discriminate the nonstationary and non-Gaussian noise features from the broadband background noise
in interferometric gravitational wave data. This method is referred to as LMS adaptive line enhancement and its objective is

to compare the signal and its linear prediction, the predictor coefficients being adjusted by a feedback loop controlled by the
prediction error.
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FIG. 2. Applying the ALE to a sinusoidal signal: approach to locking and steady state. The figure illustrates
how the ALE performs on a test signal composed of a sinusoid (fo = 50 Hz sampled at f; = 1 kHz) corrupted by white noise
(SNR= A%/(206%) = 50(17dB)). We initialize the N = 40 tap-weight coefficients to 0, set the prediction depth d = 5 (ms)
and the step gain parameter p = 0.003. (a): the filter output signal yz (solid line) converges rapidly towards the actual noise
free sinusoidal signal (dashed line). (b): this is confirmed by observing that the “signal” EMSE ¢} defined in Eq. (@) which
decreases with time until it reaches its steady state value. For comparison, the horizontal dashed line indicates the theoretical
mean value of the total EMSE £°¢ in the steady state (see Eq. @)) We can verify that the theoretical value obtained in
Eqg. (@) for the convergence time t;,c corresponds effectively to the time instant at which & and &% are of the same order.
Finally, the two contour plots of the bottom line display the trajectory followed by the adaptive filter coefficients in the eigen

weight space : in (c), the axis are the first two eigenvectors of R namely f:,(co) and f:l(cl) (i-e., the “signal” eigenvectors) whereas

in (d) the diagram plane is given by f;;ﬂl) and 1322) (i.e., a “signal” direction vs. a “noise” direction). As proved in Sect. ,
the weight coefficients converge more rapidly along the two directions f;g)) and 13,(:) given by eigenvectors associated with the
largest eigenvalues.
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FIG. 3. Applying the ALE to a sinusoidal signal: convergence time. The figure shows the comparison between
the convergence time ;o0 obtained by simulations (solid line with '+’ associated with one noise realization) and its theoretical
value (solid line) given in Eq. (@) The test signal is a sinusoid in white Gaussian noise (see Eq. (E) with A =1, fo =50
Hz, sampled at fs = 200 Hz). The convergence time is shown as a function of o2 in (a) (we have fixed the remaining ALE
parameters to N = 200 and uNA?/2 = 0.01) and in (b) as a function of uNA?/2 (N = 200 and ¢* = 0.1). Simulations globally
confirm the results obtained in Eq. (@) except when 1/2 < uNA?/2 < 1. The reason for this discrepancy is that the difference
between the actual gradient (ﬁ) and its estimates (f) can be shown to be an oscillating term which does not average to zero any

longer when the step gain parameter approaches the critical value for stability. Therefore, in practise, we choose parameters
so that uNA?/2 < 1/2.
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FIG. 4. Applying the ALE to oscillating transients : testing the ringdown removal algorithm. The figure
depicts the results of the transient removal algorithm presented in Sect. E to a signal in (a) composed of three successive
oscillating bursts (see text for details) embedded in Gaussian white noise (SNR= A?/(20?) = 8(9dB)). In addition to the ALE,
we measure the deviations of the filtered output from Gaussianity : when its envelope (c) exceeds some threshold (dashed
line, see Eq. (@)), we decide that the filtered output is not normally distributed and, therefore contains a transient which
has to be removed (this is indicated by dots at the top of the graph). The final net effect of the operation is that of time
variant filtering of the input data. The corresponding transfer function is represented in (d) : the regions indicated with dark
colours are parts of the time-frequency plane where the data are selected and removed from the input (i.e., it corresponds to
the time-frequency “band” pass of the filter). Comparing the spectrograms [EI] (see Eq. (@) for a definition) in (b) and (f)
respectively of the input and output (e) signals, we observe that the three transients are progressively removed from the input
(dark regions represent large values of the time-frequency energy density).
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FIG. 5. Illustration of the denoising procedure on Caltech proto-type data. In the subband #5 (between 617
Hz and 771 Hz), the signal [@] (the data were taken on the October, 14th 1994, frame #2) in (a) contains two_power line
harmonics (at 660 Hz and 720 Hz), which we are seen as darkened horizontal lines in the spectrogram (see Eq. (é)) in (b).
We apply ALE the first time to suppress long-term components (c¢) with corresponding spectrogram (d). A second run (g)
supervised by the criterion (@) detailed in (e) and (f) (see the similar plots in Fig. §§, (¢) and (d) for explanation) eliminates
artefacts of shorter duration (such as fast fluctuations in the harmonic envelope). Note that the spectrogram (h) of the final
signal presents a homogeneous energy density both in time and frequency directions.
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“Caltech signal only” :

comparison between power spectra of ALE input/output signals. The figure

depicts power spectra of the Caltech 40 meter signal (top) in the operating frequency band, between 300 Hz and 1kHz and the
same signal after denoising (bottom).
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density functions of the Caltech 40 meter signal selected between 300 Hz and 1kHz (left column) and the same signal after
denoising (right column) have been estimated with histograms (top row). The bottom row shows the same histograms in special
axes where a Gaussian bell curve appears as a straight line.
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FIG. 8.

“Caltech+inspiral” signal :
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“Caltech+inspiral” signal : zoomed view after denoising. As an additional check, this diagram presents a
zoomed view at the coalescence time ¢ = 0 of the signal in Fig. E—b (whitened signal after denoising). We have superimposed
on it (in bold) the signal as it would appear in the noise free case.
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matched filter response before and after denoising. The Newtonian
approximation of a gravitational wave emitted from an inspiraling binary (each with mass 1.4 solar masses,at a distance of 7
kpc and coalescence time fixed to ¢ = 0) has been added to the Caltech interferometric proto-type data. Top row plots show
this signal (a) and its corresponding version after denoising (b) which have been selected and whitened within the frequency
band 200 Hz (i.e., the lower frequency bound of the observation window) to 1.3 kHz (i.e., the predicted frequency for the last
stable circular orbit of the binary). The matched filter technique applied to detect the inspiral waveform, shows in both cases
(e.g., without (c) and with (d) denoising) a peak at time ¢ = 0 in their detector responses (the normalization so chosen that



