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Abstract

Inspiraling compact binaries are promising sources of gravitational waves for ground and space-
based laser interferometric detectors. The time-dependent signature of these sources in the detec-
tors is a well-characterized function of a relatively small number of parameters; thus, the favored
analysis technique makes use of matched filtering and maximum likelihood methods. As the param-
eters that characterize the source model are varied so do the templates against which the detector
data are compared in the matched filter. For small variations in the parameters, the output of
the matched filter for the different templates are closely correlated. Current analysis methodol-
ogy samples the matched filter output at parameter values chosen so that the correlation between
successive samples is 97%. Correspondingly, with the additional information available with each
successive template evaluation is, in a real sense, only 3% of that already provided by the nearby
templates. The reason for such a dense coverage of parameter space is to minimize the chance that
a real signal, near the detection threshold, will be missed by the parameter space sampling. Here
we describe a straightforward and practical way of using interpolation to take advantage of the
correlation between the matched filter output associated with nearby points in the parameter space
to significantly reduce the number of matched filter evaluations without sacrificing the efficiency
with which real signals are recognized. Because the computational cost of the analysis is driven
almost exclusively the matched filter evaluations, a reduction in the number of templates evalua-
tions translates directly into an increase in computational efficiency. Because the computational
cost of the analysis is large, the increased efficiency translates also into an increase in the size of
the parameter space that can be analyzed and, thus, the science that can be accomplished with the
data. As a demonstration we compare the present “dense sampling” analysis methodology with
our proposed “interpolation” methodology, restricted to one dimension of the multi-dimensional
analysis problem. We find that the interpolated search reduces by 25% the number of filter evalua-
tions required by the dense search with 97% correlation to achieve the same efficiency of detection
for an expected false alarm probability. Generalized to the two dimensional space used in the
computationally-limited current analyses this suggests a factor of two increase in computational
efficiency; generalized to the full seven dimensional parameter space that characterizes the signal
associated with an eccentric binary system of spinning neutron stars or black holes it suggests an

order of magnitude increase in computational efficiency.
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I. INTRODUCTION

Inspiraling compact binaries of stellar mass neutron stars or black holes are among the
most important gravitational wave sources accessible to the current generation of ground-
based interferometric gravitational wave detectors [1-4]. They are also very “clean” systems,
in the sense that the gravitational wave signal arising from the inspiral depends only on
general relativity (i.e., the structure of the binary components is unimportant) and can be
calculated to great accuracy by the well-understood techniques of post-Newtonian perturba-
tion theory [5-7]. For these reasons, matched filtering and maximum likelihood techniques
are well-suited for the detection and characterization of the signal from these systems [8, 9]
and an implementation based on these methods is currently used in the analysis of data
from the LIGO and GEO detectors [10].

The gravitational wave signature of inspiral binary systems depends on a set of 15 pa-
rameters that characterize the system (i.e., component masses, orbital energy and angular
momentum at a given epoch, component spins, orientation relative to detector line of sight).
To identify an incident signal using a matched filter requires the application of a fair sampling
of filter “templates”, each defined by a unique choice of the parameters associated with the
physical system. Current implementations of matched filtering used in the analysis of gravi-
tational wave detector data involve a very dense sampling of the two-dimensional parameter
subspace corresponding to the binary component masses and assuming zero eccentricity or-
bits and no body spins|28]: the templates are spaced so closely that the correlation between
templates at neighboring points in the subspace is 97% [11, 12].

We refer to this as the “dense” search strategy. The rationale underlying the dense search
strategy is to reduce the probability that a weak signal, characterized by parameters that fall
between those sampled, will be missed by the sampling. Here we describe a straightforward
and practical way of using interpolation to take advantage of the correlation between the
matched filter output associated with nearby points in the parameter space to significantly
reduce the number of matched filter evaluations without sacrificing the efficiency with which
real signals are recognized.

We are not the first to observe the significance of the high correlation between neighboring
templates nor to consider the opportunity for and advantages of interpolation as part of

the implementation of matched filtering for the analysis of binary inspiral signals. The



significance of the high correlation as an indication that fewer templates should be able to
recover signals with the same efficiency, was first made in [12]. Croce et al [13, 14] explored
the use of Cardinal interpolation with a truncated sinc function to estimate the value of the
matched filter output when the filter used corresponds to the actual parameters that describe
the signal. They found a sampling of parameter space that would insure the interpolated
estimate would be no less than 97% of the maximum over a five dimensional parameter space.
Their sampling and interpolation reduced by a factor of 4, compared to the dense search, the
number of templates required to search over a five dimensional parameter space. Here we
find that we can achieve the same increase in efficiency per parameter space dimension with
a simpler template spacing and a simpler and quicker to evaluate interpolation function.

Other suggestions have been made for reducing the number of matched filter evaluations
without sacrificing detection efficiency. One promising proposal involves a hierarchical search
strategy, wherein a low-threshold trigger generated by the evaluation of the matched filters
associated with a much coarser sampling of parameter space followed by (if necessary) a
higher threshold evaluation matched filters over a much finer sampling of parameter space
[15-19]. The interpolation proposal we make here is complementary in the sense that it can
be implemented together with the hierarchical strategies that have already been proposed
to further improve the computational efficiency of binary inspiral analysis.

The paper is organized as follows: In section II we describe the motivation behind our
choice of interpolating function and the difference between our choice and the choice made
in [13, 14]. In section III we describe in detail the dense and interpolated search strate-
gies, the two-dimensional template space used in current gravitational wave data analyses
for inspiraling binary neutron stars, the one-dimensional restriction that we use here to
compare the effectiveness of the interpolating search strategy, and (finally) compare the
performance of the interpolated and dense search strategies by evaluating the sensitivity of
each at fixed computational cost and the computational cost required by each to achieve the

same sensitivity.

II. INTERPOLATING IN PARAMETER SPACE

The Wiener matched filter W, corresponding to an expected signal characterized by T,

is a scalar-valued function of the (vector-valued) instrument data d, noise power spectral



density S,,:
W(d|r) = W(r|S,,d). (2.1)

In our particular problem W (d|r) is a continuous function of 7 and 7 corresponds to
the parameters that characterize our binary system model: e.g., binary system component
masses, orbital energy and angular momentum, component spins, etc. Given a data set d we
wish to find an interpolating function W(T) and a set of points 7, in the space of possible

signals such that

There are, of course, an infinite number of continuous functions W(T) that take on the
values W), at the 7j: the question is, how do we choose among them?

Focus attention first on the case where 7 is a scalar . One particular choice of interpolant
W(d|5n, x), which is especially important in the context of communication theory, is based

on the Whittaker Cardinal function sinc:

> . X — T
= 2.
C(x) kg_oo Wisinc N (2.3)
where
sinc(z) = smmc’ (2.4)
e

Shannon [20] showed that the Cardinal interpolation C(z) of W(d|S,,z) is the unique
interpolant 1 that (i) takes on the values Wj, at the xy, (ii) has no singularities, and (iii)
and whose spectrum is limited to a bandwidth (2A)~!. Correspondingly, if W (d|S,, z) is
bandlimited in x and has the values W}, at the equidistant sampled points z, then W (d|S,,, x)
is equal to C'(x). In the case where 7 is multi-dimensional the interpolation can be performed

separately on each index: e.g., in the case of two dimensions [i.e., T equal to (71, 72)]

> . ™ . ™
C(T) = j kzzoo ijSIHCA—l (7'1 — 7'17]') SHICA—2 (TQ — 7_2,k) y (26)
where
7'1,]' = T1,0 +jA1, (27)
Tok = Ta0 + kA (2.8)



and 7y, T2, are constants.

Cardinal interpolation using the Cardinal function sinc forms the basis of the interpolation
formula used in [13, 14]. If W (d|S,,T) is bandlimited and we choose our samples of W
appropriately then we can do no better than using the Cardinal function to interpolate
values of W between the samples. In our problem, however, W (d|S,, 7) is not bandlimited
and we do not have an infinite number of sample points W}; correspondingly, the Cardinal
function C(7) is at best an approximation to W(d|S,, ). With that understanding the
Cardinal interpolation C(7) is not preferred and we are led to seek other approximations to
W (d|S,, ) that have favorable properties.

One possibility, chosen from approximation (as opposed to interpolation) theory, is the
use of a Chebyshev polynomial expansion to approximate W(d|S,, 7). Without loss of
generality consider a continuous function f(x) on [—1,1]. The Weierstrass Approximation

Theorem states that for any € > 0 we can find a polynomial P, of order n such that

max |f(x) — P,(z)| <e. (2.9)

ze[—1,1] -
The minimax polynomial approximation to W (d|S,,, z) is a natural candidate for the in-
terpolation W(x) Unfortunately, finding the minimax polynomial is a very difficult process;
nevertheless an excellent approximation to the minimax polynomial does exist. Define the

error E(z|f, P,) associated with the polynomial approximation P,(z) by
E(z|f, P,) = f(x) — Pu(x). (2.10)

The Chebyshev Equioscillation Theorem [21] states P} is the minimax polynomial if and

only if there exist n + 2 points —1 < zg < 1 < -+ < xp41 < 1 for which

E(xylf, Py) = (=1)"E, (2.11)
where
|E| = max |E(x|f, P,)|. (2.12)
z€[—1,1]

As a corollary, E(x|f, Py) vanishes for x € [—1,1] at n + 1 points z}, with z) < 2} < Tg41.
This result, together with the Mean Value Theorem, allows us to write the error term
associated with the minimax polynomial P as

(1) (g
Bl P = 5 T = o), (213



where ¢ € [—1,1]. Correspondingly,

|E| < max
z€[—-1,1]

max (2.14)

Focus attention on the order n 4+ 1 polynomial

n

O | [CA (2.15)

k=0
This polynomial has leading coefficient unity. A unique property of the Chebyshev polyno-
mial 7},,4 is that, of all order n + 1 polynomials @),,.; with leading coefficient unity,

Ty (x)

max
2n—1

z€[—-1,1]

< max} |Qni1 (). (2.16)

ze[-1,1

Additionally, 7,1 (x) has exactly (n + 2) extrema on [—1, 1], the value of |T},,1(z)| at these
extrema is 1, and the extrema alternate in sign. Correspondingly, if the error term E(x|f, P})
associated with the minimax polynomial P* were polynomial — i.e., f("*1(¢) were constant
in equation 2.13 so that E(x|f, P¥) was equal to @} — then by the Equioscillation Theorem
@}, would be equal to T;,;; and the xj, — where the error vanishes — would be the n + 1

roots of T},.1. This suggests that we find the order n polynomial p} such that
pi(zy) = f(z},) Vk=0...n (2.17)

where, again, the zj are the roots of T},11. The polynomial p}, is a near minimaz polynomial
approximation to f(z). For this polynomial approximation Powell [22] showed that, as long

as f(x) is continuous on [—1, 1],

€cheb - (k+1/2)m
1< <y,=1 t ~— L. 2.18
=T =V +n+1§an[2(n+1) (2.18)
where

c = max |B(alf, P, (2.19)

z€[—1,1]
€heb = max |E(z|f,py)|. (2.20)

z€[—1,1]

Powell also showed that v,, grows slowly with n: in particular,
2
v, ~ — logn. (2.21)
T
Somewhat tighter bounds on v, can be placed when f is also differentiable [23].
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As defined above, the near minimax polynomial p; is the interpolating polynomial that
agrees with f at the n+1 roots of T;, 1. Alternatively, using several properties of Chebyshev
polynomials, the Chebyshev interpolating polynomial can be expressed as a linear combina-

tion of Chebyshev polynomials:

n

1
pi(x) =Y aTi(x) — a0, (2.22)
k=0
where
2 n+1
aj = —— ; EACH (2.23)

where, again, the x} are the n + 1 roots of T}, 4;.

III. COMPARISON: DENSE AND INTERPOLATED SEARCH

In this section we describe the dense and interpolating search strategy and compare their
efficiency when applied to the problem of identifying the gravitational wave signature of

coalescing neutron star systems in the LIGO detectors.

A. Two Search Strategies

The conventional search strategy used in the current analyses of LIGO, GEO and TAMA
data (cf. [10-12, 24]) begins with the placement of templates at discrete points 7 on the

parameter space 7. To choose the template locations we define the inner product of two

(g, h) :4/O°Odf3% [M] (3.1)

signals ¢(t) and h(t),

Sn(f)

where g(f) is the Fourier transform of g and S,, is the detector noise power spectral density.
Denoting by h(t|T) the signal characterized by 7 the match I'(7;, ) is

(hit|,), bt 7)) |
VR ) it 7)) (RETa), BT )

By construction |[I'| < 1. The templates locations are chosen so that consecutive templates

(T, 7)) =

(3.2)

in any of the directions 7; have an overlap I'y, referred to as the “minimum match” and
typically chosen to be 97%.
With the templates placed, the dense search strategy proceeds:

9



1. Evaluate the Wiener filter W (d|S,, 7x) at each of the template locations 7;
2. Determine the template 7; whose Wiener filter output is greatest;

3. If the filter output at 7; exceeds the given threshold, report an event with the param-

eters T;.

We refer to this as the dense search strategy.

Following the discussion in section II we are in a position to describe an alternative
strategy, which we refer to as the interpolated search strategy. First, fix the order of the
interpolating polynomial. This determines the template locations 7, on the parameter space

7. Then

1. Evaluate the Wiener filter W (d|S,, 7x) at each of the template locations 7;
2. Form the interpolating polynomial from the W (d|S,, Tx);

3. Determine the location 7" where the interpolating polynomial is maximized;
4. Perform a final Wiener filter evaluation at 7/;

5. If the final evaluation exceeds the given threshold, report an event with the parameters

T

We illustrate the interpolated search strategy using Fig. 1. In Fig. 1 we use 37 interpolat-
ing search templates, that is, we sample the ambiguity function at 37 points in the 7y space
(the points on the dotted curve). We construct the interpolating function (the solid curve)
and find its maximum by setting its derivative to zero. In order to avoid local extrema,
we first find the approximate location of the peak of the interpolating function and then
find the zero of its derivative by successive approximation near this region. One can clearly
see that the proper value of the ambiguity function at the maximum of the interpolating
function is more than the maximum value of the interpolating function and this is what we

gain by placing a template at the maximum of the interpolating function.

B. A one-dimensional parameter space for comparative studies

We are interested in understanding the performance of the interpolated search strategy

relative to the dense search strategy, which is currently used in the analysis of data from
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Demonstration of interpolated search using Chebyshev polynomials with
37 templates over the range 1,=13-17sec and a test signal placed at 14sec
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FIG. 1: This figure demonstrates the interpolated search. The ambiguity function is sampled and
reconstructed over the chosen parameter space of 79 = 13 — 17 sec (only a part of the parameter
space is shown) with the help of the Chebyshev interpolating polynomial. The approximate location
of the peak of the interpolating function is first located and the zero of the derivative is obtained
by applying successive approximations around the peak. Note that by placing a template at the
maximum of the interpolating polynomial, the match has improved over the one obtained by simply

evaluating the maximum of the interpolating polynomial.

the LIGO, GEO and TAMA detectors [10]. The current analyses focus on templates cor-
responding to binaries with circular orbits and no component spins. The corresponding
two-dimensional parameter space is spanned by the masses of the individual components.
The templates vary most rapidly, however, along the axis spanned by the so-called chirp

mass

M = 1P M, (3.3)

where M is the system’s total mass and p its reduced mass. The linear density of templates

needed by the dense search in the direction dp, is approximately 100 times the linear density
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needed in the orthogonal direction. For the comparison we perform here we focus attention
on the number of template evaluations needed for binaries with equal mass components
that vary only in M. We expect that the ratio of performance, measured as the number of
templates required by the two search strategies to achieve the same search results, will be the
same in the complementary dimension and in the other dimensions that will be introduced

in future searches that accommodate component spins and orbital eccentricity.

C. Templates

The strain response of an interferometric gravitational wave detector to quadrupole for-
mula approximation gravitational waves incident from an inspiraling binary neutron star

system can be written

h(t|ta, 7o) = ho [T f(t —t, — TO)M]2/3 cos ®(t —t, — 1), (3.4a)
where
1 (5 M 3/8

tte, ) = —— () 4b
J(tlta:m0) = 5 (256To+ta—t) (3-4b)

ta+70
O(t|ty, 70) == P, + 27?/ dt f(t|ta, m0) (3.4c)

¢

for t < t, + 1. Here t, is the moment when the instantaneous wave frequency is equal to
fo and 7y is the elapsed time from that moment until (in this approximation) the system
coalesces, which is directly related to the system’s chirp mass M:
5 1
o= 2567 f, (WMfa)S/B.

The elapsed time to coalescence 7 is a useful surrogate for the chirp mass M: templates

(3.5)

equispaced in 7y have constant cross-correlation, independent of 75. Choosing f, equal to
40 Hz, which is commonly taken as the lower-edge of the LIGO detector bandwidth at design
sensitivity [25], 7o ranges from approximately 43 s for a binary system consisting of two 1 M,
compact objects to 0.15 s for a binary consisting of two 30 M black holes.

It is convenient to work with the Fourier transform of the strain response of the detector.
For neutron star binaries in the LIGO or Virgo band the Fourier transform can be evaluated

to an excellent approximation using the stationary phase approximation [9]:
h(f) = Nf77%exp {i[~®, — m/4+ V(fta, 70)]} (3.6a)
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where

O, = P(ty|ta,10), (3.6Db)
or [ f

—-5/3
qj(flta?TO) = 27Tfta + fa7—0€ (f_) . (36C)

The factor NV is a constant amplitude.

It is important to distinguish between the nature of the parameters that characterize the
template. Changes in the parameter 7y change the waveform shape: we term such param-
eters dynamical parameters. On the other hand, parameters such as t, or ®, translate the
waveform, but do not alter its shape: we term these kinematical parameters. In our problem
only the subspace of dynamical parameters needs to be spanned by discrete templates: the
values of the kinematic parameters for the Wiener filter with the maximum output can be
determined by other means. Correspondingly, at the level of approximation associated with

the quadrupole formula the family of templates that must be evaluated is one dimensional.

D. Dense search template placement

There are many different ways of parameterizing the template space. Choosing 7y as a
dynamical variable has the advantage that I'(, 7)) depends only on the difference 7y — 7¢;
consequently, in the dense search templates are spaced uniformly in 75 [11, 12, 24]. To

determine that spacing we evaluate
H(AT{)) = F(Tg, To + AT()), (37)

where now I has been maximized over the kinematical parameters ¢, and ¢,. This maxi-
mization can be performed in a computationally efficient manner as shown in the literature
[11]. We call H the dynamical ambiguity function or simply as the ambiguity function.
It quantifies the fractional match between the template at 7y and the signal at 79 + Arp.
Figure 2 shows H for power spectral density specified in the initial LIGO science require-
ments [25]. The requirement that H(A7y) is equal to a constant for any two consecutive
templates determines the spacing A7y between templates that differ only in 7. For our
example problem, which has just one dynamical parameter, the requirement that H(Arg)
is 97% (the conventional choice) for neighboring templates leads to a template spacing A7

equal to 30 ms.
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Ambiguity function for Newtonian chirp using LIGO-I SRD with f=40Hz, f,=512Hz

30ms
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FIG. 2: Ambiguity function H plotted as a function of A7y. Horizontal lines are drawn for various
matches; the dotted horizontal line is for a 97% match, which corresponds to an inter-template

separation of ~ 30 ms.
E. Interpolated search template placement

In the dense search templates are equispaced in 7y, with the spacing between adjacent
templates — and thus the number of templates — chosen such that the dynamical ambiguity
function takes on a specified value. When presented with data an event is signaled when
the amplitude at one of these templates exceeds a threshold.

In the interpolated search, on the other hand, the domain [r{"™ 73%%*] is mapped onto
[—1,1] and the placement and number of templates is chosen to simplify the construction
of the Chebyshev interpolating polynomial of the template output over this domain. When
presented with data the maximum value of the Chebyshev interpolating polynomial is found
and an event is signaled when the amplitude at that location exceeds a threshold.

In the interpolated search our goal is to minimize the order of the interpolating polynomial
(and, thus, the number of template evaluations) required for a given accuracy of interpo-

lation. We have some control over this through the choice of mapping from [7f"", 70%%] to

[—1,1]. The linear map

To — 7_1rnin
P=2-0 0 __ (3.8)
gmax __ -min
0 0

is the most obvious such mapping. While have not made an exhaustive search of all pos-
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Performance of the Interpolated Search scheme in terms of Minimal Match
for LIGO-1 SRD with 37 templates

105 T | | [ |
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Estimated maximum of ambiguity function
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Signal 1,

FIG. 3: Normalized test signals (without noise) were injected densely at regular intervals along the
parameter space and the match obtained by the interpolated search strategy is plotted against 7.
This figure demonstrates that the match is a (nearly) periodic function of 7y with the period equal
to the template separation. Moreover, with just 37 + 1 interpolated search templates the minimal

match is 0.97. For the same minimal match 133 templates are needed for the usual dense search.

sible mappings; however, we have observed that better fits are possible with a lower-order

polynomial when we use the mapping

min
To — Ty
6:—COS WTOmin . (39)
To — —To

Moreover, with this mapping, the roots of the Chebyshev polynomial are equi-spaced over
the parameter range in 75. Once we have fixed the order n of the interpolating polynomial
templates are placed at values of § that are roots of the 7,,1(d) and the coefficients of the
interpolating polynomial are found using equation 2.23.

In Fig. 3 we have plotted the match by placing normalized test signals (without noise)

at regular intervals of 7. We see that the match is a (nearly) periodic function of 7y, with
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the period equal to the template separation. This suggests that the detection probability is
also periodic and this fact has been used in carrying out the simulations - the signals are
injected within one such “period” in the parameter space. Moreover, one can see that with
just 37 + 1 interpolated search templates one gets a minimal match of 0.97, whereas the
dense search requires about 133 templates to achieve the same level of minimal match. This

amounts to a factor of 3.5 over the dense search.

F. Comparison

We are interested in two, related, comparisons: first, the relative “sensitivity” of a search
carried-out with a fixed number of template evaluations using the dense search strategy
and the interpolated search strategy; second, the number of template evaluations required
by the interpolated search in order to achieve the same “sensitivity” as the dense search.
To give meaning to the “sensitivity” of these two strategies we use the Receiver Operating
Characteristic, or ROC.

The ROC is a plot of true positives as a function of the fraction of false positives for
a binary classifier system as its discrimination threshold is varied. Both the dense search
and the interpolated search are binary classifiers: i.e., they classify an interval of data d
as including a signal or not including a signal. A true positive is a classification of d as
including a signal when in fact it does; a false positive is a classification of d as including a
signal when it does not. In both of the search strategies described here the discrimination
threshold is matched filter output that must be exceeded for a data interval to be classified
as including a signal. The false positive fraction is also known as the type II, or false alarm,
error fraction and is denoted . The fraction of true positives is also known as the detection
efficiency €, which is one minus the type I, or false positive, error fraction (which is denoted
B). At fixed o a more sensitive search method has a greater e. The ROC associated with
a search method no better than a toss of a (possibly loaded) coin is given by the diagonal
a =€

Using numerical simulations we have evaluated « and € as a function of the detection
threshold for both the interpolated search and the dense search, for different numbers of
templates (dense search) and different interpolating polynomial order (interpolated search).

To evaluate the false positive fraction o we generate a large number of data segments,
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each 2'% samples long, and each consisting of Gaussian noise whose power spectrum (as-
suming a 1024 Hz sample rate) is that specified as the initial LIGO science requirement
[25]. (The Gaussian random numbers are themselves generated using the Mersenne Twister
Pseudo Random Number Generator [26] and then filtered in the Fourier domain by scaling
the Fourier components by the square root of the PSD.) For the purpose of this comparison
we look for signals in the interval 75 € [13s,17s]. Both the dense and interpolated search
methods are applied to this data. The ratio of the number of events signaled to the number
of data segments examined as a function of the threshold 7 is a for that threshold. Ap-
proximately 50,000 realizations of detector noise are used to evaluate o, which gives reliable
results for o greater than approximately 1073,

To compute €, the true positive fraction, we proceed in a similar fashion. Now, however,
with each noise instantiation we add a signal, with 7y drawn uniformly and randomly from
the interval covered by the search: i.e., 79 € [13s,17s]. In almost all cases 50, 000 realizations
of detector noise plus signal are used to evaluate the efficiency, which gives reliable results for
efficiencies greater than approximately 10~3. However, for the flat search with 40 templates
and the interpolated search with 30 templates,we have used 400, 000 realizations. The larger
number of realizations in these cases results in smoother curves.

The top panel of Fig. 4 shows the variation of a for both methods using 40 templates: i.e.,
a 100 ms template spacing for the dense search and an order 39 interpolating polynomial
in § (cf. equation 3.9). For any threshold « is always greater for the dense search than
for the interpolated search; similarly, as shown in the center panel of Fig. 4, for any given
threshold the efficiency € is always greater for the interpolated search than for the dense
search. Finally, the bottom panel of Fig. 4 shows the ROC for a 40 template dense search
and an order 39 interpolated search, both of which involve 40 template evaluations to decide
if a signal has been detected. Comparing both ROCs it is clear that the interpolated search
is more sensitive at any given « then the dense search. This is always true: i.e., for a fixed
number of template evaluations the interpolated search will always have a better efficiency
at a given « than the dense search, though as the number of templates grows large the
fractional difference in sensitivity will decrease.

Figure 5 and table I addresses the second of our two questions: the number of templates
evaluations required of an interpolated search to have the same sensitivity as a dense search.

Figure 5 shows the ROCs for dense searches using 140 and 160 templates, together with
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TABLE I: Number of template evaluations required to obtain the same efficiency at a false alarm
fraction of 1072 in a dense search and an interpolated search. Note how the interpolated search is

computational more efficient for the same sensitivity.

# templates
eat a =103

Dense|Interp.

40 31 0.859
50 41 0.890
60 49 0.905
80 64 0.919
100 89 0.924
140 105 0.927

160 115 0.929

the ROCs for interpolated searches using 120 and 100 templates. The interpolated search
with and order 120 interpolating polynomial is clearly as sensitive as a dense search with
160 templates, and an interpolating search with an order 100 polynomial is as sensitive as a
dense search with 140 templates. Table I shows similar pairings of the number of templates
in a dense search and the number of templates in an interpolating search necessary to achieve

the same sensitivity.

IV. CONCLUSION

We have shown that the use of near-minimax interpolating polynomials to fit the output
of matched filters to the filter parameter values can greatly improved the sensitivity of a
matched-filter based search for gravitational waves from compact binary inspiral. Using
such a polynomial to find the parameters of the signal template leading to the best match
we can reduce the computational cost of a search over a two dimensional parameter space
by a factor of two compared to the methods currently in use, without any loss of sensitivity
or discriminating power. This factor of two becomes a factor of ten when the search is over
the seven dimensional parameter space that includes not only the masses but also the spins

of the binary components.
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Comparison between false alarm probability vs. threshold curves
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Comparison between false dismissal probability vs. threshold curves
for injected SNR=8
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FIG. 4: The variation of the false and true positive fractions, a and e with threshold n for the
dense and interpolated search methods, each making use of 40 template evaluations. The top panel
shows the false positive fraction. Note how the false positive falls much sooner for the interpolated
search than for the dense search. The bottom panel shows € when a signal of amplitude signal to
noise 8 is present in the range 7y € [13s,17s]. Note how the € is always greater for the interpolated
search than for the dense search. For the same computational cost (determined by the number of

template evaluations) the interpolated search will always perform better than the dense search.
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FA vs FD probability curves for SNR=8 with coarse bank of templates
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FIG. 5: ROC curves for dense searches (solid curves) and interpolating searches (dashed curves).
For a given number of templates, the solid curves are ‘lower’ - less false dismissal probability for
the same false alarm - than the dotted curves in the regime of low false alarm showing that the
interpolated search performs better than the dense search for low false alarm. The bottom panel
shows analogous plot for high minimal match (fine bank) ~ .98. Here the performance of the dense
search with 160 and 140 templates is comparable to that of the interpolated search with 120 and

100 templates respectively.
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The use of near-minimax interpolation should be considered as part of a larger strategy
that employs a multi-grid approach to determine whether a signal has been observed and, if
so, the parameters that characterize it. Since the major contribution to the computational
cost of a multi-grid search is thought to arise in the initial stage of the search the gain in
computational efficiency — and, correspondingly, the size of the parameter space that can

studied with fixed computational resources — could be substantial.
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