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Abstract

Inspiraling compact binaries are promising sources of gravitational waves for ground and space-

based laser interferometric detectors. The time-dependent signature of these sources in the detec-

tors is a well-characterized function of a relatively small number of parameters; thus, the favored

analysis technique makes use of matched filtering and maximum likelihood methods. As the param-

eters that characterize the source model are varied so do the templates against which the detector

data are compared in the matched filter. For small variations in the parameters, the output of

the matched filter for the different templates are closely correlated. Current analysis methodol-

ogy samples the matched filter output at parameter values chosen so that the correlation between

successive samples is 97%. Correspondingly, with the additional information available with each

successive template evaluation is, in a real sense, only 3% of that already provided by the nearby

templates. The reason for such a dense coverage of parameter space is to minimize the chance that

a real signal, near the detection threshold, will be missed by the parameter space sampling. Here

we describe a straightforward and practical way of using interpolation to take advantage of the

correlation between the matched filter output associated with nearby points in the parameter space

to significantly reduce the number of matched filter evaluations without sacrificing the efficiency

with which real signals are recognized. Because the computational cost of the analysis is driven

almost exclusively the matched filter evaluations, a reduction in the number of templates evalua-

tions translates directly into an increase in computational efficiency. Because the computational

cost of the analysis is large, the increased efficiency translates also into an increase in the size of

the parameter space that can be analyzed and, thus, the science that can be accomplished with the

data. As a demonstration we compare the present “dense sampling” analysis methodology with

our proposed “interpolation” methodology, restricted to one dimension of the multi-dimensional

analysis problem. We find that the interpolated search reduces by 25% the number of filter evalua-

tions required by the dense search with 97% correlation to achieve the same efficiency of detection

for an expected false alarm probability. Generalized to the two dimensional space used in the

computationally-limited current analyses this suggests a factor of two increase in computational

efficiency; generalized to the full seven dimensional parameter space that characterizes the signal

associated with an eccentric binary system of spinning neutron stars or black holes it suggests an

order of magnitude increase in computational efficiency.
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I. INTRODUCTION

Inspiraling compact binaries of stellar mass neutron stars or black holes are among the

most important gravitational wave sources accessible to the current generation of ground-

based interferometric gravitational wave detectors [1–4]. They are also very “clean” systems,

in the sense that the gravitational wave signal arising from the inspiral depends only on

general relativity (i.e., the structure of the binary components is unimportant) and can be

calculated to great accuracy by the well-understood techniques of post-Newtonian perturba-

tion theory [5–7]. For these reasons, matched filtering and maximum likelihood techniques

are well-suited for the detection and characterization of the signal from these systems [8, 9]

and an implementation based on these methods is currently used in the analysis of data

from the LIGO and GEO detectors [10].

The gravitational wave signature of inspiral binary systems depends on a set of 15 pa-

rameters that characterize the system (i.e., component masses, orbital energy and angular

momentum at a given epoch, component spins, orientation relative to detector line of sight).

To identify an incident signal using a matched filter requires the application of a fair sampling

of filter “templates”, each defined by a unique choice of the parameters associated with the

physical system. Current implementations of matched filtering used in the analysis of gravi-

tational wave detector data involve a very dense sampling of the two-dimensional parameter

subspace corresponding to the binary component masses and assuming zero eccentricity or-

bits and no body spins[28]: the templates are spaced so closely that the correlation between

templates at neighboring points in the subspace is 97% [11, 12].

We refer to this as the “dense” search strategy. The rationale underlying the dense search

strategy is to reduce the probability that a weak signal, characterized by parameters that fall

between those sampled, will be missed by the sampling. Here we describe a straightforward

and practical way of using interpolation to take advantage of the correlation between the

matched filter output associated with nearby points in the parameter space to significantly

reduce the number of matched filter evaluations without sacrificing the efficiency with which

real signals are recognized.

We are not the first to observe the significance of the high correlation between neighboring

templates nor to consider the opportunity for and advantages of interpolation as part of

the implementation of matched filtering for the analysis of binary inspiral signals. The
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significance of the high correlation as an indication that fewer templates should be able to

recover signals with the same efficiency, was first made in [12]. Croce et al [13, 14] explored

the use of Cardinal interpolation with a truncated sinc function to estimate the value of the

matched filter output when the filter used corresponds to the actual parameters that describe

the signal. They found a sampling of parameter space that would insure the interpolated

estimate would be no less than 97% of the maximum over a five dimensional parameter space.

Their sampling and interpolation reduced by a factor of 4, compared to the dense search, the

number of templates required to search over a five dimensional parameter space. Here we

find that we can achieve the same increase in efficiency per parameter space dimension with

a simpler template spacing and a simpler and quicker to evaluate interpolation function.

Other suggestions have been made for reducing the number of matched filter evaluations

without sacrificing detection efficiency. One promising proposal involves a hierarchical search

strategy, wherein a low-threshold trigger generated by the evaluation of the matched filters

associated with a much coarser sampling of parameter space followed by (if necessary) a

higher threshold evaluation matched filters over a much finer sampling of parameter space

[15–19]. The interpolation proposal we make here is complementary in the sense that it can

be implemented together with the hierarchical strategies that have already been proposed

to further improve the computational efficiency of binary inspiral analysis.

The paper is organized as follows: In section II we describe the motivation behind our

choice of interpolating function and the difference between our choice and the choice made

in [13, 14]. In section III we describe in detail the dense and interpolated search strate-

gies, the two-dimensional template space used in current gravitational wave data analyses

for inspiraling binary neutron stars, the one-dimensional restriction that we use here to

compare the effectiveness of the interpolating search strategy, and (finally) compare the

performance of the interpolated and dense search strategies by evaluating the sensitivity of

each at fixed computational cost and the computational cost required by each to achieve the

same sensitivity.

II. INTERPOLATING IN PARAMETER SPACE

The Wiener matched filter W , corresponding to an expected signal characterized by τ ,

is a scalar-valued function of the (vector-valued) instrument data d, noise power spectral
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density Sn:

W (d|τ ) = W (τ |Sn,d). (2.1)

In our particular problem W (d|τ ) is a continuous function of τ and τ corresponds to

the parameters that characterize our binary system model: e.g., binary system component

masses, orbital energy and angular momentum, component spins, etc. Given a data set d we

wish to find an interpolating function W̃ (τ ) and a set of points τ k in the space of possible

signals such that

Wk = W̃ (τ k) = W (d|Sn, τ k). (2.2)

There are, of course, an infinite number of continuous functions W̃ (τ ) that take on the

values Wk at the τ k: the question is, how do we choose among them?

Focus attention first on the case where τ is a scalar x. One particular choice of interpolant

W̃ (d|Sn, x), which is especially important in the context of communication theory, is based

on the Whittaker Cardinal function sinc:

C(x) =
∞∑

k=−∞
Wksinc

x− xk

∆
, (2.3)

where

sinc(x) =
sin πx

πx
, (2.4)

xk = x0 + k∆. (2.5)

Shannon [20] showed that the Cardinal interpolation C(x) of W (d|Sn, x) is the unique

interpolant W̃ that (i) takes on the values Wk at the xk, (ii) has no singularities, and (iii)

and whose spectrum is limited to a bandwidth (2∆)−1. Correspondingly, if W (d|Sn, x) is

bandlimited in x and has the values Wk at the equidistant sampled points xk then W (d|Sn, x)

is equal to C(x). In the case where τ is multi-dimensional the interpolation can be performed

separately on each index: e.g., in the case of two dimensions [i.e., τ equal to (τ1, τ2)]

C(τ ) =
∞∑

j,k=−∞
Wjksinc

π

∆1

(τ1 − τ1,j) sinc
π

∆2

(τ2 − τ2,k) , (2.6)

where

τ1,j = τ1,0 + j∆1, (2.7)

τ2,k = τ2,0 + k∆2 (2.8)
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and τ1,0, τ2,0 are constants.

Cardinal interpolation using the Cardinal function sinc forms the basis of the interpolation

formula used in [13, 14]. If W (d|Sn, τ ) is bandlimited and we choose our samples of W

appropriately then we can do no better than using the Cardinal function to interpolate

values of W between the samples. In our problem, however, W (d|Sn, τ ) is not bandlimited

and we do not have an infinite number of sample points Wk; correspondingly, the Cardinal

function C(τ ) is at best an approximation to W (d|Sn, τ ). With that understanding the

Cardinal interpolation C(τ ) is not preferred and we are led to seek other approximations to

W (d|Sn, τ ) that have favorable properties.

One possibility, chosen from approximation (as opposed to interpolation) theory, is the

use of a Chebyshev polynomial expansion to approximate W (d|Sn, τ ). Without loss of

generality consider a continuous function f(x) on [−1, 1]. The Weierstrass Approximation

Theorem states that for any ε > 0 we can find a polynomial Pn of order n such that

max
x∈[−1,1]

|f(x)− Pn(x)| ≤ ε. (2.9)

The minimax polynomial approximation to W (d|Sn, x) is a natural candidate for the in-

terpolation W̃ (x). Unfortunately, finding the minimax polynomial is a very difficult process;

nevertheless an excellent approximation to the minimax polynomial does exist. Define the

error E(x|f, Pn) associated with the polynomial approximation Pn(x) by

E(x|f, Pn) ≡ f(x)− Pn(x). (2.10)

The Chebyshev Equioscillation Theorem [21] states P ∗
n is the minimax polynomial if and

only if there exist n + 2 points −1 ≤ x0 < x1 < · · · < xn+1 ≤ 1 for which

E(xk|f, P ∗
n) = (−1)kE, (2.11)

where

|E| ≡ max
x∈[−1,1]

|E(x|f, Pn)| . (2.12)

As a corollary, E(x|f, P ∗
n) vanishes for x ∈ [−1, 1] at n + 1 points x′k, with xk < x′k < xk+1.

This result, together with the Mean Value Theorem, allows us to write the error term

associated with the minimax polynomial P ∗
n as

E(x|f, P ∗
n) =

f (n+1)(ξ)

(n + 1)!

n∏

k=0

(x− x′k), (2.13)
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where ξ ∈ [−1, 1]. Correspondingly,

|E| ≤ max
x∈[−1,1]

∣∣∣∣∣
n∏

k=0

(x− x′k)

∣∣∣∣∣ max
ξ∈[−1,1]

∣∣f (n+1)(ξ)
∣∣

(n + 1)!
. (2.14)

Focus attention on the order n + 1 polynomial

Q∗
n+1(x) =

n∏

k=0

(x− x′k). (2.15)

This polynomial has leading coefficient unity. A unique property of the Chebyshev polyno-

mial Tn+1 is that, of all order n + 1 polynomials Qn+1 with leading coefficient unity,

max
x∈[−1,1]

∣∣∣∣
Tn(x)

2n−1

∣∣∣∣ ≤ max
x∈[−1,1]

|Qn+1(x)|. (2.16)

Additionally, Tn+1(x) has exactly (n + 2) extrema on [−1, 1], the value of |Tn+1(x)| at these

extrema is 1, and the extrema alternate in sign. Correspondingly, if the error term E(x|f, P ∗
n)

associated with the minimax polynomial P ∗
n were polynomial — i.e., f (n+1)(ξ) were constant

in equation 2.13 so that E(x|f, P ∗
n) was equal to Q∗

n — then by the Equioscillation Theorem

Q∗
n+1 would be equal to Tn+1 and the x′k — where the error vanishes — would be the n + 1

roots of Tn+1. This suggests that we find the order n polynomial p∗n such that

p∗n(x′k) = f(x′k) ∀ k = 0 . . . n (2.17)

where, again, the x′k are the roots of Tn+1. The polynomial p∗n is a near minimax polynomial

approximation to f(x). For this polynomial approximation Powell [22] showed that, as long

as f(x) is continuous on [−1, 1],

1 ≤ εcheb

ε0

≤ νn ≡ 1 +
1

n + 1

n∑

k=0

tan

[
(k + 1/2)π

2(n + 1)

]
. (2.18)

where

ε0 = max
x∈[−1,1]

|E(x|f, P ∗
n)| , (2.19)

εcheb = max
x∈[−1,1]

|E(x|f, p∗n)| . (2.20)

Powell also showed that νn grows slowly with n: in particular,

νn ∼ 2

π
log n. (2.21)

Somewhat tighter bounds on νn can be placed when f is also differentiable [23].
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As defined above, the near minimax polynomial p∗n is the interpolating polynomial that

agrees with f at the n+1 roots of Tn+1. Alternatively, using several properties of Chebyshev

polynomials, the Chebyshev interpolating polynomial can be expressed as a linear combina-

tion of Chebyshev polynomials:

p∗n(x) =
n∑

k=0

akTk(x)− 1

2
a0, (2.22)

where

aj =
2

n + 1

n+1∑

k=1

f(x′k)Tj(x
′
k), (2.23)

where, again, the x′k are the n + 1 roots of Tn+1.

III. COMPARISON: DENSE AND INTERPOLATED SEARCH

In this section we describe the dense and interpolating search strategy and compare their

efficiency when applied to the problem of identifying the gravitational wave signature of

coalescing neutron star systems in the LIGO detectors.

A. Two Search Strategies

The conventional search strategy used in the current analyses of LIGO, GEO and TAMA

data (cf. [10–12, 24]) begins with the placement of templates at discrete points τ k on the

parameter space τ . To choose the template locations we define the inner product of two

signals g(t) and h(t),

〈g, h〉 = 4

∫ ∞

0

df <
[

g̃(f)h̃∗(f)

Sn(f)

]
, (3.1)

where g̃(f) is the Fourier transform of g and Sn is the detector noise power spectral density.

Denoting by h(t|τ ) the signal characterized by τ the match Γ(τ j, τ k) is

Γ(τ j, τ k) =
〈h(t|τ j), h(t, τ k)〉√〈h(t|τ j), h(t, τ j)〉 〈h(t|τ k), h(t, τ k)〉

. (3.2)

By construction |Γ| ≤ 1. The templates locations are chosen so that consecutive templates

in any of the directions τj have an overlap Γ0, referred to as the “minimum match” and

typically chosen to be 97%.

With the templates placed, the dense search strategy proceeds:
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1. Evaluate the Wiener filter W (d|Sn, τ k) at each of the template locations τ k;

2. Determine the template τ j whose Wiener filter output is greatest;

3. If the filter output at τ j exceeds the given threshold, report an event with the param-

eters τ j.

We refer to this as the dense search strategy.

Following the discussion in section II we are in a position to describe an alternative

strategy, which we refer to as the interpolated search strategy. First, fix the order of the

interpolating polynomial. This determines the template locations τ k on the parameter space

τ . Then

1. Evaluate the Wiener filter W (d|Sn, τ k) at each of the template locations τ k;

2. Form the interpolating polynomial from the W (d|Sn, τ k);

3. Determine the location τ ′ where the interpolating polynomial is maximized;

4. Perform a final Wiener filter evaluation at τ ′;

5. If the final evaluation exceeds the given threshold, report an event with the parameters

τ ′.

We illustrate the interpolated search strategy using Fig. 1. In Fig. 1 we use 37 interpolat-

ing search templates, that is, we sample the ambiguity function at 37 points in the τ0 space

(the points on the dotted curve). We construct the interpolating function (the solid curve)

and find its maximum by setting its derivative to zero. In order to avoid local extrema,

we first find the approximate location of the peak of the interpolating function and then

find the zero of its derivative by successive approximation near this region. One can clearly

see that the proper value of the ambiguity function at the maximum of the interpolating

function is more than the maximum value of the interpolating function and this is what we

gain by placing a template at the maximum of the interpolating function.

B. A one-dimensional parameter space for comparative studies

We are interested in understanding the performance of the interpolated search strategy

relative to the dense search strategy, which is currently used in the analysis of data from
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FIG. 1: This figure demonstrates the interpolated search. The ambiguity function is sampled and

reconstructed over the chosen parameter space of τ0 = 13 − 17 sec (only a part of the parameter

space is shown) with the help of the Chebyshev interpolating polynomial. The approximate location

of the peak of the interpolating function is first located and the zero of the derivative is obtained

by applying successive approximations around the peak. Note that by placing a template at the

maximum of the interpolating polynomial, the match has improved over the one obtained by simply

evaluating the maximum of the interpolating polynomial.

the LIGO, GEO and TAMA detectors [10]. The current analyses focus on templates cor-

responding to binaries with circular orbits and no component spins. The corresponding

two-dimensional parameter space is spanned by the masses of the individual components.

The templates vary most rapidly, however, along the axis spanned by the so-called chirp

mass

M := µ3/5M2/5, (3.3)

where M is the system’s total mass and µ its reduced mass. The linear density of templates

needed by the dense search in the direction ∂M is approximately 100 times the linear density
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needed in the orthogonal direction. For the comparison we perform here we focus attention

on the number of template evaluations needed for binaries with equal mass components

that vary only in M. We expect that the ratio of performance, measured as the number of

templates required by the two search strategies to achieve the same search results, will be the

same in the complementary dimension and in the other dimensions that will be introduced

in future searches that accommodate component spins and orbital eccentricity.

C. Templates

The strain response of an interferometric gravitational wave detector to quadrupole for-

mula approximation gravitational waves incident from an inspiraling binary neutron star

system can be written

h(t|ta, τ0) = h0 [πf(t− ta − τ0)M]2/3 cos Φ(t− ta − τ0), (3.4a)

where

f(t|ta, τ0) :=
1

πM
(

5

256

M
τ0 + ta − t

)3/8

, (3.4b)

Φ(t|ta, τ0) := Φa + 2π

∫ ta+τ0

t

dt f(t|ta, τ0) (3.4c)

for t < ta + τ0. Here ta is the moment when the instantaneous wave frequency is equal to

fa and τ0 is the elapsed time from that moment until (in this approximation) the system

coalesces, which is directly related to the system’s chirp mass M:

τ0 =
5

256πfa

1

(πMfa)
5/3

. (3.5)

The elapsed time to coalescence τ0 is a useful surrogate for the chirp mass M: templates

equispaced in τ0 have constant cross-correlation, independent of τ0. Choosing fa equal to

40 Hz, which is commonly taken as the lower-edge of the LIGO detector bandwidth at design

sensitivity [25], τ0 ranges from approximately 43 s for a binary system consisting of two 1 M¯

compact objects to 0.15 s for a binary consisting of two 30 M¯ black holes.

It is convenient to work with the Fourier transform of the strain response of the detector.

For neutron star binaries in the LIGO or Virgo band the Fourier transform can be evaluated

to an excellent approximation using the stationary phase approximation [9]:

h̃(f) = N f−7/6 exp {i [−Φa − π/4 + Ψ(f |ta, τ0)]} , (3.6a)
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where

Φa = Φ(ta|ta, τ0), (3.6b)

Ψ(f |ta, τ0) = 2πfta + faτ0
6π

5

(
f

fa

)−5/3

. (3.6c)

The factor N is a constant amplitude.

It is important to distinguish between the nature of the parameters that characterize the

template. Changes in the parameter τ0 change the waveform shape: we term such param-

eters dynamical parameters. On the other hand, parameters such as ta or Φa translate the

waveform, but do not alter its shape: we term these kinematical parameters. In our problem

only the subspace of dynamical parameters needs to be spanned by discrete templates: the

values of the kinematic parameters for the Wiener filter with the maximum output can be

determined by other means. Correspondingly, at the level of approximation associated with

the quadrupole formula the family of templates that must be evaluated is one dimensional.

D. Dense search template placement

There are many different ways of parameterizing the template space. Choosing τ0 as a

dynamical variable has the advantage that Γ(τ0, τ
′
0) depends only on the difference τ0 − τ ′0;

consequently, in the dense search templates are spaced uniformly in τ0 [11, 12, 24]. To

determine that spacing we evaluate

H(∆τ0) = Γ(τ0, τ0 + ∆τ0), (3.7)

where now Γ has been maximized over the kinematical parameters ta and φa. This maxi-

mization can be performed in a computationally efficient manner as shown in the literature

[11]. We call H the dynamical ambiguity function or simply as the ambiguity function.

It quantifies the fractional match between the template at τ0 and the signal at τ0 + ∆τ0.

Figure 2 shows H for power spectral density specified in the initial LIGO science require-

ments [25]. The requirement that H(∆τ0) is equal to a constant for any two consecutive

templates determines the spacing ∆τ0 between templates that differ only in τ0. For our

example problem, which has just one dynamical parameter, the requirement that H(∆τ0)

is 97% (the conventional choice) for neighboring templates leads to a template spacing ∆τ0

equal to 30 ms.
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FIG. 2: Ambiguity function H plotted as a function of ∆τ0. Horizontal lines are drawn for various

matches; the dotted horizontal line is for a 97% match, which corresponds to an inter-template

separation of ∼ 30 ms.

E. Interpolated search template placement

In the dense search templates are equispaced in τ0, with the spacing between adjacent

templates — and thus the number of templates — chosen such that the dynamical ambiguity

function takes on a specified value. When presented with data an event is signaled when

the amplitude at one of these templates exceeds a threshold.

In the interpolated search, on the other hand, the domain [τmin
0 , τmax

0 ] is mapped onto

[−1, 1] and the placement and number of templates is chosen to simplify the construction

of the Chebyshev interpolating polynomial of the template output over this domain. When

presented with data the maximum value of the Chebyshev interpolating polynomial is found

and an event is signaled when the amplitude at that location exceeds a threshold.

In the interpolated search our goal is to minimize the order of the interpolating polynomial

(and, thus, the number of template evaluations) required for a given accuracy of interpo-

lation. We have some control over this through the choice of mapping from [τmin
0 , τmax

0 ] to

[−1, 1]. The linear map

τ ′ = 2
τ0 − τmin

0

τmax
0 − τmin

0

− 1, (3.8)

is the most obvious such mapping. While have not made an exhaustive search of all pos-
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FIG. 3: Normalized test signals (without noise) were injected densely at regular intervals along the

parameter space and the match obtained by the interpolated search strategy is plotted against τ0.

This figure demonstrates that the match is a (nearly) periodic function of τ0 with the period equal

to the template separation. Moreover, with just 37 + 1 interpolated search templates the minimal

match is 0.97. For the same minimal match 133 templates are needed for the usual dense search.

sible mappings; however, we have observed that better fits are possible with a lower-order

polynomial when we use the mapping

δ = − cos

[
π

τ0 − τmin
0

τmax
0 − τmin

0

]
. (3.9)

Moreover, with this mapping, the roots of the Chebyshev polynomial are equi-spaced over

the parameter range in τ0. Once we have fixed the order n of the interpolating polynomial

templates are placed at values of δ that are roots of the Tn+1(δ) and the coefficients of the

interpolating polynomial are found using equation 2.23.

In Fig. 3 we have plotted the match by placing normalized test signals (without noise)

at regular intervals of τ0. We see that the match is a (nearly) periodic function of τ0, with
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the period equal to the template separation. This suggests that the detection probability is

also periodic and this fact has been used in carrying out the simulations - the signals are

injected within one such “period” in the parameter space. Moreover, one can see that with

just 37 + 1 interpolated search templates one gets a minimal match of 0.97, whereas the

dense search requires about 133 templates to achieve the same level of minimal match. This

amounts to a factor of 3.5 over the dense search.

F. Comparison

We are interested in two, related, comparisons: first, the relative “sensitivity” of a search

carried-out with a fixed number of template evaluations using the dense search strategy

and the interpolated search strategy; second, the number of template evaluations required

by the interpolated search in order to achieve the same “sensitivity” as the dense search.

To give meaning to the “sensitivity” of these two strategies we use the Receiver Operating

Characteristic, or ROC.

The ROC is a plot of true positives as a function of the fraction of false positives for

a binary classifier system as its discrimination threshold is varied. Both the dense search

and the interpolated search are binary classifiers: i.e., they classify an interval of data d

as including a signal or not including a signal. A true positive is a classification of d as

including a signal when in fact it does; a false positive is a classification of d as including a

signal when it does not. In both of the search strategies described here the discrimination

threshold is matched filter output that must be exceeded for a data interval to be classified

as including a signal. The false positive fraction is also known as the type II, or false alarm,

error fraction and is denoted α. The fraction of true positives is also known as the detection

efficiency ε, which is one minus the type I, or false positive, error fraction (which is denoted

β). At fixed α a more sensitive search method has a greater ε. The ROC associated with

a search method no better than a toss of a (possibly loaded) coin is given by the diagonal

α = ε.

Using numerical simulations we have evaluated α and ε as a function of the detection

threshold for both the interpolated search and the dense search, for different numbers of

templates (dense search) and different interpolating polynomial order (interpolated search).

To evaluate the false positive fraction α we generate a large number of data segments,
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each 215 samples long, and each consisting of Gaussian noise whose power spectrum (as-

suming a 1024 Hz sample rate) is that specified as the initial LIGO science requirement

[25]. (The Gaussian random numbers are themselves generated using the Mersenne Twister

Pseudo Random Number Generator [26] and then filtered in the Fourier domain by scaling

the Fourier components by the square root of the PSD.) For the purpose of this comparison

we look for signals in the interval τ0 ∈ [13 s, 17 s]. Both the dense and interpolated search

methods are applied to this data. The ratio of the number of events signaled to the number

of data segments examined as a function of the threshold η is α for that threshold. Ap-

proximately 50,000 realizations of detector noise are used to evaluate α, which gives reliable

results for α greater than approximately 10−3.

To compute ε, the true positive fraction, we proceed in a similar fashion. Now, however,

with each noise instantiation we add a signal, with τ0 drawn uniformly and randomly from

the interval covered by the search: i.e., τ0 ∈ [13 s, 17 s]. In almost all cases 50, 000 realizations

of detector noise plus signal are used to evaluate the efficiency, which gives reliable results for

efficiencies greater than approximately 10−3. However, for the flat search with 40 templates

and the interpolated search with 30 templates,we have used 400, 000 realizations. The larger

number of realizations in these cases results in smoother curves.

The top panel of Fig. 4 shows the variation of α for both methods using 40 templates: i.e.,

a 100 ms template spacing for the dense search and an order 39 interpolating polynomial

in δ (cf. equation 3.9). For any threshold α is always greater for the dense search than

for the interpolated search; similarly, as shown in the center panel of Fig. 4, for any given

threshold the efficiency ε is always greater for the interpolated search than for the dense

search. Finally, the bottom panel of Fig. 4 shows the ROC for a 40 template dense search

and an order 39 interpolated search, both of which involve 40 template evaluations to decide

if a signal has been detected. Comparing both ROCs it is clear that the interpolated search

is more sensitive at any given α then the dense search. This is always true: i.e., for a fixed

number of template evaluations the interpolated search will always have a better efficiency

at a given α than the dense search, though as the number of templates grows large the

fractional difference in sensitivity will decrease.

Figure 5 and table I addresses the second of our two questions: the number of templates

evaluations required of an interpolated search to have the same sensitivity as a dense search.

Figure 5 shows the ROCs for dense searches using 140 and 160 templates, together with
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TABLE I: Number of template evaluations required to obtain the same efficiency at a false alarm

fraction of 10−3 in a dense search and an interpolated search. Note how the interpolated search is

computational more efficient for the same sensitivity.

# templates
ε at α = 10−3

Dense Interp.

40 31 0.859

50 41 0.890

60 49 0.905

80 64 0.919

100 89 0.924

140 105 0.927

160 115 0.929

the ROCs for interpolated searches using 120 and 100 templates. The interpolated search

with and order 120 interpolating polynomial is clearly as sensitive as a dense search with

160 templates, and an interpolating search with an order 100 polynomial is as sensitive as a

dense search with 140 templates. Table I shows similar pairings of the number of templates

in a dense search and the number of templates in an interpolating search necessary to achieve

the same sensitivity.

IV. CONCLUSION

We have shown that the use of near-minimax interpolating polynomials to fit the output

of matched filters to the filter parameter values can greatly improved the sensitivity of a

matched-filter based search for gravitational waves from compact binary inspiral. Using

such a polynomial to find the parameters of the signal template leading to the best match

we can reduce the computational cost of a search over a two dimensional parameter space

by a factor of two compared to the methods currently in use, without any loss of sensitivity

or discriminating power. This factor of two becomes a factor of ten when the search is over

the seven dimensional parameter space that includes not only the masses but also the spins

of the binary components.
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FIG. 4: The variation of the false and true positive fractions, α and ε with threshold η for the

dense and interpolated search methods, each making use of 40 template evaluations. The top panel

shows the false positive fraction. Note how the false positive falls much sooner for the interpolated

search than for the dense search. The bottom panel shows ε when a signal of amplitude signal to

noise 8 is present in the range τ0 ∈ [13 s, 17 s]. Note how the ε is always greater for the interpolated

search than for the dense search. For the same computational cost (determined by the number of

template evaluations) the interpolated search will always perform better than the dense search.
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FIG. 5: ROC curves for dense searches (solid curves) and interpolating searches (dashed curves).

For a given number of templates, the solid curves are ‘lower’ - less false dismissal probability for

the same false alarm - than the dotted curves in the regime of low false alarm showing that the

interpolated search performs better than the dense search for low false alarm. The bottom panel

shows analogous plot for high minimal match (fine bank) ∼ .98. Here the performance of the dense

search with 160 and 140 templates is comparable to that of the interpolated search with 120 and

100 templates respectively.
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The use of near-minimax interpolation should be considered as part of a larger strategy

that employs a multi-grid approach to determine whether a signal has been observed and, if

so, the parameters that characterize it. Since the major contribution to the computational

cost of a multi-grid search is thought to arise in the initial stage of the search the gain in

computational efficiency — and, correspondingly, the size of the parameter space that can

studied with fixed computational resources — could be substantial.
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