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Accurate stresses in laminated piezoelectric
finite length cylinders subjected to
electro-thermo-mechanical loadings
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A mixed semi-analytical computational model is pre-
sented which accounts for the coupled electrical,
mechanical and thermal response of layered piezoelec-
tric finitely long hollow circular cylinders. Boundary
value problem (BVP) of an axisymmetric cylinder is
considered here as a two-dimensional plane strain
problem in the (r, z) plane, which is based on the
exact theory of elasticity. After assuming diaphragm-
supported end conditions in the longitudinal (z) direc-
tion, the resulting mathematical model is cast in the
form of first-order simultaneous ordinary differential
equations which are integrated through an effective
numerical integration technique by first transforming
the BVP into a set of initial value problems. New
results of finite length cylinders are generated and
presented for future reference.
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elasticity, semi-analytical methods.

THE basic shape of piezoelectric devices is a circular
cylinder which is used as a transducer, that can reflect
and receive waves from the media when it is pressurized.
Also, it converts the electrical pulses to mechanical
energy and vice versa when pressurized. This basic device
has many other useful applications like in ultrasound and
ground-penetrating radar. It is important to understand
the behaviour of such devices before they are used for
engineering design. In view of this, the present study is
focused on such cylinders which are made up of piezo-
electric materials and which have several layers in thick-
ness direction of the cylinder and polarized in radial
direction. In real life such a device is made of different
piezoelectric layered materials, which are subjected to
electrical, mechanical and thermal loads. It is also impor-
tant that such materials are orthotropic; the orthotropic
phenomenon will provide particle charging and polariz-
ing in different directions. Such a cylinder is then studied
under thermal, electrical and mechanical loads. In this
article, the following piezoelectric materials are used:
cadmium selenide, CaSe; barium titanate, BaTiO; (a
permanently polarized material) and lead zirconate titan-
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ate, PZT-5A (refs 1, 2). In addition, these materials will
produce an electric field when they change dimensions as
a result of an imposed mechanical force. Before these
devices are used in engineering design, it is important
that they are analysed accurately. Hence the present study
focuses on the analysis of piezoelectric devices using an
approach which is free from approximations. The unique-
ness of this approach is that it requires algebraic manipu-
lation of basic elasticity equations like equilibrium, strain
displacement and constitute equations. After this manipu-
lation, the mathematical model is presented as a two-
point boundary value problem (BVP) which governs the
behaviour of 2D plane strain finite length cylinder in the
(r, z) plane and is governed by six first-order simultane-
ous partial differential equations (PDES). These PDEs are
transformed into a system of coupled first-order ordinary
differential equations (ODEs) for elastostatic problem;
the behaviour of a cylinder is mathematically formulated
as a two-point BVP governed by a set of linear first-order
ODEs. This can be written mathematically by the follow-
ing equation®*.

1) = 4 0)+ ). (1)

In the domain »; < r <r,, where y(r) is an n-dimensional
vector of dependent variables; dependent variables in the
present case can be described as y = (u, w, ¢, &, 7., D,)".
Choice of dependent variables is important. The variables
which naturally appear on r = constant are chosen as
dependent variables; such variables are called intrinsic
variables. The remaining variables are described as auxil-
iary dependent variables which are dependent on intrinsic
dependent variables. A(r) is a coefficient matrix of ODEs.
p(r) is an n-dimensional vector of non-homogeneous
(loading) terms. For boundary conditions, any n/2 ele-
ments of y(r) are specified at the two termini edges;
mixed type of boundary conditions can be specified
in this formulation. Recently, Desai and Kant® have
obtained accurate stresses in thermoelastic laminated
finite length cylinders subjected to uniformly distributed
and sinusoidal loads using the above technique.

Some of the recent literature relevant for this study
is described as follows. Heyliger and Pan® obtained
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approximate solutions to the weak form of the governing
equations of equilibrium/motion; charge and magnetic
flux for laminates containing layers of potentially magneto-
electroelastic material, in which there can exist elastic
displacement fields, the electric potential (or voltage),
and the magnetic potential. The through-thickness elastic,
electric and magnetic fields of laminates composed of
elastic, piezoelectric and magnetostrictive layers are con-
sidered under static condition to determine their funda-
mental behaviour and to study the limits of simplified
plate theory in which the fields are assumed to possess a
specific type of behaviour. Kapuria er al.” presented an
exact axisymmetric piezothermoelastic solution for a
simply-supported hybrid cylindrical shell made of cross-
ply composite laminate with piezoelectric layers. Nu-
merical results for hybrid shells are presented for sinu-
soidal and central band thermal and electrical loads.
Heyliger® gave an exact three-dimensional solution of the
equations of linear piezoelectricity for the static response
of a finite length laminated piezoelectric cylinder with its
ends simply supported. Galic and Horgan® obtained ana-
lytical solution for the axisymmetric problem of an infi-
nitely long, radially polarized, radially orthotropic
piezoelectric hollow circular cylinder. Rajapakse et al.*°
presented a theoretical study of a piezoelectric annular
finite cylinder under axisymmetric loading. Ding ez al.**
obtained analytical solutions to various piezoelectric
problems such as circular plate, cylinder, cone, hollow
cone and annular plate. Wang and Zhong™ analytically
studied the problem of a finitely long circular cylindrical
two layered shell of cylindrically orthotropic piezoelec-
tric/piezomagnetic composite under pressure loading and
a uniform temperature change. The analytical solution is
obtained through the power series and the Fourier series
expansion methods. Lim and Lau® studied the electro-
mechanical behaviour of a thick, laminated actuator with
piezoelectric and isotropic laminae under externally
applied electric loading using a new two-dimensional
computational model. The model was analysed using
Timoshenko thick beam theory. Wu and Tsai'* have re-
cently presented the three-dimensional coupled analysis
of simply-supported functionally graded (FG) and piezo-
electric sandwich cylinders under electro-mechanical
loads using modified Pagano method. The modifications
in the original Pagano method were replacement of dis-
placement-based formulation with mixed formulation and a
set of complex-valued solutions of system equation was
transferred to a corresponding set of real-valued solu-
tions. A transfer matrix method is used to analyse the
effect of layers. Ying et al.™® proposed a stochastic res-
ponse analysis method for piezoelectric thick axisymmet-
ric hollow cylinders subjected to boundary stochastic
excitations based on the transformations of electric poten-
tials and displacements, the Galerkin method and the
theory of random vibration. The authors have claimed
that the proposed analysis method is applicable to hollow
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cylinders with arbitrary thickness under various non-
white stochastic excitations of inner and/or outer pre-
ssures and electric potentials. Larbi and Deu®® presented a
three-dimensional exact mixed state-space solution for
the free-vibration analysis of simply-supported arbitrarily
thick laminated piezoceramic hollow cylinders completely
filled with fluid. Saviz and Mohammadpourfard’ pre-
sented dynamic analysis for simply-supported laminated
cylindrical shell with orthotropic layers bounded with
piezoelectric layers and subjected to local ring/pinch
loads. The piezoelectric layers serve as sensors/actuators.
The governing elasticity equations are reduced to ODEs
by means of trigonometric function expansion. The re-
sulting equations are solved by Galerkin’s finite element
method in radial direction. Li er al.'® analysed an axi-
symmetric electroelastic problem of hollow radially po-
larized piezoceramic cylinders made of FG materials. For
the material properties with power-law profile, a closed-
form solution is obtained. For a general gradient varia-
tion, an analytic approach is suggested, which reduces the
problem to a Fredholm integral equation. Khdeir and
Aldraihem® formulated and developed models and ana-
lytical solutions for the static behaviour of cross-ply
smart laminated shells with piezoelectric laminae. The
models are based on a rigorous first-order shell theory.
The state-space approach is used to find exact solutions
for the static response of cross-ply spherical, cylindrical and
doubly curved shells with various boundary conditions. It
was noted here that the past literature covers the use of
state-space approach for layered media, in which use has
been made of the continuity conditions at each interface
between any two adjacent sub-layers. Also, it is seen
from the literature that accurate benchmark solutions
using exact elasticity theory are rare for finite length
cylinders under thermo-mechanical-electro loadings.

Formulation of the problem

The basic governing equations which describe the beha-
viour of a finite length thermo-electro-mechanical cylin-
der are written below.

Equilibrium equations

Two-dimensional stress equilibrium equations for finite
length cylinder in cylindrical coordinates can be written
as®® (Figure 1)

—0, 1., +0.,+2=0. (2
r r

For piezoelectric cylinder additional electrostatic charge

equilibrium equation? is written as

D, +D..+2 0, @)
r
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Strain-displacement relations

Two-dimensional strain-displacement relations in cylin-
drical coordinates are

£, =U,, +W,,.

Electric potential ¢ is defined by the following rela-
tions

Er = _¢vr ; Ez = _¢’z . (4)

Stress—displacement relations

Stresses in terms of displacement components for cylin-
drically orthotropic piezoelectric material can be cast as
follows™?

o, =Cpu, + C12 +Caw,, +end,, BT,

u
oy =Chu,, + Cyy 7+ Coaw,, + epd,, =BT,

u
0, =Chu, +Cy 7+ Cow,. + e, — ST,

7. =G(w, +u,. )+tesd z. (5)

Figure 1. Cylindrical coordinates and fundamental dependent vari-
ables in a cylinder.
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Constitutive relations for the electric field are defined as
follows

u
D, =eju,. + e, 7+ esw,, — e, + qil,

Dz = €58,; — &E33s

E.=es(w, +u,,)—&xp,. .

In the above, the parameters have the following defini-
tions. u is the radial displacement and ¢= ¢ (r) is the
electric potential. The elastic constants are Ciy, Cia, Co,
Ca3, C31 and Cs3. The piezoelectric constants are ey, eso,
e13, e15 and &1, g3 are the dielectric permitivities at con-
stant strain. Here i, £, (s and q; are stress—temperature
coefficients.

Boundary conditions

Boundary conditions in the longitudinal and radial
directions for elastic and electric fields are defined as
follows

Atz=0,/, u=0.=D,=0;
Atr=r, o =1,=¢=0,
At r =y, =1,=¢=0, (6)

where [ is the length, »; the inner radius and rq the outer
radius of a hollow cylinder. Load 7(r, z) can be repre-
sented in terms of Fourier series in general form as
follows

T(r, z)=

(")

m=1,35..

where T,, is the Fourier load coefficient which can be
determined using the orthogonality conditions, and for
sinusoidal loading, T(r, z) = To(r)sin(zz/l), Ty is the maxi-
mum intensity of temperature at z = //2.

First-order partial differential equations

Radial direction r is chosen as the preferred independent
coordinate. Six fundamental dependent variables, viz.
displacements, u and w, electric potential ¢ and the corre-
sponding stresses, o;, 7,. and D, that occur naturally on a
tangent plane »=constant, are chosen in the radial
direction. Circumferential stress oy, axial stress o, and
axial electric displacement D, are treated here as auxiliary
variables since these are found to be dependent on the
chosen fundamental variables. A set of six first-order
PDEs in independent coordinate » which involves only
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fundamental variables is obtained through algebraic
manipulation of eqs (2)-(5). These are

u Ay Ay 0 Ay 0 Ag ) u dyy
w Ay 0 A4y 0 A4y O w dy
0| 9| |4 A O Ay O Ag| ¢ o7 d31
or| o, Ay Ay 0 Ay Ags Ay || O, dy
(= A5y Asy 0 Ay Ass Asg || 7, dsy
D, dsy 0 Agz 0 Ags Agg )\ D, de

(8)

A and d are the coefficient matrices described in Appendix 1.

Basic fundamental variables

Variations of the six fundamental dependent variables
which completely satisfy the boundary conditions of simple
(diaphragm) supports at z = 0, / can then be assumed as

o, (rz)=0"' (r)sin%; r (rz)=7(r) cos%;

u(r,z) = U"(r)sin%; w(r,2) =W () COS%;

D,(r,z2)=D' (r)sin%; #(r,z) = cpf(r)sin%. 9)

First-order ordinary differential equations

Substitution of fundamental variables given in eq. (9) into
eg. (8) and simplification resulting from orthogonality
conditions of trigonometric functions lead to the follow-
ing first-order simultaneous ODEs involving amplitudes
of mixed set of fundamental variables as given below

Ul_(r) By B, 0 By 0 By
W'r)| | By O By, 0 By O
d | o) By By 0 By 0 By
dr o' (r) By By 0 By Bys Bys
' (r) Bsy Bs; 0 Bsy Bss Bsg

D' () Bg 0 Bgz 0 Bgs Bgg
Ui (i") fil
wi(r) S
| PO, ) (10)
o' (r) fu
7 (r) Jst
D[ (7”) f61
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B and f are the coefficient matrices described in
Appendix 2.

The above system of first-order simultaneous ODEs
(eq. (10)) together with the appropriate boundary condi-
tions at the inner and outer edges of the cylinder (eq. (6))
form a two-point BVP. However, a BVP in ODEs cannot
be numerically integrated as only half of the dependent
variables (three) are known at the initial edge and
numerical integration of an ODE is intrinsically an initial
value problem (IVP). It becomes necessary to transform
the problem into a set of IVPs. The initial values of the
remaining three fundamental variables must be selected
so that the complete solution satisfies the three specified
conditions at the terminal boundary. The nth (n = 6 here)-
order BVP is transformed into a set of (n/2 + 1) IVPs.
ODEs are integrated from the initial edge to the final
edge using the initial values as shown in Table 1. The
nf2 + 1 solutions given in Table 1 may be thought of as:
(i) one non-homogeneous integration which includes all
the non-homogeneous terms (e.g. loading) and the known
nl/2 quantities at the starting edge, with the unknown n/2
quantities at the starting edge set as zero; (ii) n/2 homo-
geneous integrations which are carried out by setting the
known quantities at the starting edge as zero and choos-
ing the n/2 unknown quantities at the starting edge as unit
values in succession and deleting the non-homogeneous
terms from the ODEs. The solutions at the terminal
boundary corresponding to the initial values are given in
the right side columns in Table 1. A linear combination
of the (n/2 + 1) solutions must satisfy the boundary con-
ditions at the terminal edge, i.e.

B0 Ys,l Y3,2 Y33 Xy 6
Yoor+| Yoy Yap Yag || X2 |=1Y,

YS,O Y5,l Y5,2 YS,S X3 ?5
or

Yio+Y,X;=Y, o X, =[¥ 1'(-Y,),  (11)
where i indicates the n/2 variables consistent with

the specified boundary values at the terminal edge, j re-
fers to solution number and ranges from 1 to n/2, Y; is a
vector of specified dependent variables at the terminal
boundary and X; is a vector of unknown dependent vari-
ables at the starting edge. Finally, a non-homogeneous in-
tegration with all the dependent variables known at the
starting edge is carried out to get the desired results.
Fourth-order Runge—Kutta algorithm with modifications
suggested by Gill** has been used for the numerical inte-
gration of the IVPs. Stability of the present numerical
technique is checked via convergence study by taking
different step sizes in the Runge—Kutta—Gill algorithm.
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Table 1. Conversion of boundary value problem into initial value problems

Initial boundary Terminal boundary
Integration
number u w @ o, 7 D, u w 1) o, [ D,  Load term
0 0 0 (Specified) (Specified) (Specified) 0 Y10 Y20 Y30 Yao Ys0 Yeo0 Include
1 1 0 0 0 0 0 Y1,1 Yz,l Y3_1 Y4|1 YS,l Y5‘1 Delete
2 0 1 0 0 0 0 Y]”z szz Y3’2 Y4|2 Y5,2 YGVZ Delete
3 0 0 0 0 0 1 Y113 Yzyg Y3,3 Y413 Y513 Yﬁvg Delete
Final X1 X, (Specified) (Specified) (Specified) X; Correct Correct  Known Known Known  Correct Include

integration value X;  value X, value X3
Table 2. Piezoelectric material property
PZT-5A CaSe BaTiO;

C33 =99.201 x 109

Cp =99.201 x 10°

Cy1 = 86.856 x 10°

C3, = 54.016 x 10°

Ci, = 50.778 x 10°
Ci3=50.778 x 10°
G,.=21.100 x 10°

s = 3.314 x 10° Pa K™
@ =3.314 x 10° Pa K™
a, = 3.260 x 10° Pa K™
€15 = 12.322

e13 = —7.209

e = -7.209

e = 15.118

€11 =150 x 107 F/m
g1 =700 x 107° C/m*K

Ci3 = 74.1 x 10°

Cyp =741 x 10°

Cy; = 83.6 x 10°

Cs, = 45.2 x 10°

C1, =39.3 x 10°
C13=39.3 x 10°
G,.=13.17 x 10°

a3 =0.621 x 10° Pa K™
@ =0.621 x 10° Pa K™
= 0.551 x 10° pa K™

e15 = —0.138 C/m?
e13 = —0.160

e = -0.160

e = 0.347

€11 =90.2 x 1072 F/m
g1 =-2.94 x 107 C/m*K

C33 = 150.0 x 10°

Cp = 150.0 x 10°

Cyy = 146.0 x 10°

C3, = 66.0 x 10°

C1, = 66.0 x 10°
Ci3=66.0 x 10°

G,. =44 x 10°

a3 =1.92 x 10° Pa K™
@ =192 x 10° Pa K™
a = 1.65 x 10° Pa K™
e1s = 11.4 C/m?

e13 = -4.35
e = -4.35
e = 17.5

€11 =15.04 x 10° F/m
g1 = 213.5 x 107 C/m*K

BaTiO, PzT-5A\BaTi0, P2T-54
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Figure 2. a, Number of piezoelectric material layers

tropic cylinder. b, Diaphragm supported cylinder.
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in thick ortho-
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Figure 3. Variation of radial displacement with thickness for single
and multilayer piezoelectric thick cylinders.

Numerical example

In the present work, a piezoelectric cylinder of single
layer-CaSe and combinations of piezoelectric layers
BaTiOs/PZT-5A (two layers), BaTiOs/CaSe/PZT-5A
(three layers) and BaTiOs/PZT-5A/BaTiO,/PZT-5A (four
layers) have been studied (Figure 2). Piezoelectric and
pyroelectric material properties are taken from Wang
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Table 3. Comparison of non dimensionalized results (value/10°) of present finite length cylinder with
long cylinder for three layers
u - Long u — Short ® - Long @ — Short o-Long o - Short
r cylinder cylinder cylinder cylinder cylinder cylinder
0.9 52.1700 51.9000 0.0000 0.0000 0.0000 0.0000
0.92 53.0400 52.7800 0.3899 0.3926 -0.7280 -0.7404
0.94 53.3000 53.0500 0.2880 0.3062 -0.5710 -0.5850
0.96 53.5700 53.3300 0.1723 0.2017 -0.4258 -0.4405
0.98 53.8600 53.6300 0.0428 0.0792 -0.2914 -0.3060
1 54.1500 53.9200 -0.1002 -0.0613 -0.1667 -0.1807
1.02 54.4600 54.2300 -0.2566 -0.2196 -0.0511 -0.0638
1.04 54.7700 54.5400 -0.4262 -0.3956 0.0562 0.0454
1.06 55.1000 54.8500 -0.6088 -0.5894 0.1559 0.1475
1.08 55.4300 55.1700 -0.8043 -0.8009 0.2486 0.2429
11 53.7800 53.5100 0.0000 0.0000 0.0000 0.0000
Table 4. Maximum value (value/10%) of fundamental quantities through thickness
u w 0] o, Tz D,

Thick

1 layer 46.3300 -59.4000 0.0093 0.0130 0.0524 243.9000

2 layer 50.1400 —64.5300 -1.2000 -1.4090 1.1790 -1189.0000

3 layer 55.1700 -73.1100 0.0792 -0.7404 0.5872 9.0270

4 layer 56.2500 —72.8800 0.4665 1.1510 -0.7764 -1106.0000
Thin

1 layer 44.2000 -56.3400 0.0001 0.0001 0.0005 220.8000

2 layer 48.2300 -61.5600 -0.0875 -0.1582 0.1250 -1106.0000

3 layer 54.3400 -69.5200 —-0.0798 —-0.0725 0.0570 8.3490

4 layer 54.2500 —69.0900 0.0612 0.0948 -0.0731 —998.3000

1.2x107 :

1 HR=1/ = —o—Single layer
1.0c10" R=15 v/ \ 6.0x10° —o—Two layers
8.0x10” 1 V. ] . —&—Three layer.
6.0x10* \v Sl e / \ —v— Four layers
4.0x10° / 2.0x10° / A\?< \

~ 2.0x10° 1 1
g 00k la] D—n—n—n/g;-‘-ﬁ—n o 0'0_‘ e _‘D&?D_D_ Dw_g_ 5
N -2.0x10° A & 2.0x10° ‘\ /
© -4.0x10°] — N 1 \ /
ey ><Q/A e N 40x10° L‘><o //
¥ 4 ] 0, = _3:
?'nglg,?_- " | —o-Single layer | ,\ /
'1'2"1 = o —o—Two layers 8.0x10° /O A
+1:240° C)/ —b—Three layers R o /° CaSe
-1.4x107 - —v— Four layers -1.0x107 \ .
-1.6x107 —_— 1 =
0.90 095 1.00 1.05 110 -1.2x107 1 - WR =155
r 0.90 0.95 1,00 1,05 1.10

Figure 4. Variation of normal radial stress with thickness for single
and multilayer piezoelectric thick cylinders.

and Zhong'?, which are shown in Table 2. Two #/R ratios
which cover thick and thin cylinders were studied. Uni-
form temperature distribution through thickness has
been considered. Here, Ti(r) is taken as unity for simpli-
city. The following non-dimensional parameters were
used.

O, =——
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Figure 5. Variation of electrical potential with thickness for single
and multilayer piezoelectric thick cylinders.

(12)

Shear stresses, radial normal stresses, electric potential
and radial electric displacements were obtained as a part
of the numerical analysis in the present work. It is seen
that piezoelectric material properties have significant
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effect on the stresses and displacements of finite length
cylinders. Figures 3-5 show the important quantities such
as radial displacement, radial stress and electric potential

Y, S W— & ya <
5.4x10° H——=0=—4—2 3___:____,9._._-—:::&"""" y
5.3x10° o
5.2x10° < -
o] —0O— Single layer
Sy —0— Two layers
_ 5.0x10° —&—Three layers
o — —v— Four layers
n .
N s | — 00—
S 4810 . o—9 ——O0—0——0—
4.7x10° 4
4.6x10° hR=1/50
4.5%10°
4.4x10° 4 __D———EI-—‘EI—-—CI—-—EI-—'U—-_G__'D—_G_-_
T T & T
0.990 0.995 1.000 1.005 1.010

Figure 6. Variation of radial displacement with thickness for single
and multilayer piezoelectric thin cylinders.

1.0x10° =
8.0x10°] h/R = 1/50 V/ \
6.0x10°
4.0x10" 4 \
2.0x10° 4
—_ 004—o—8—D0—0—D—0——n —O0—
™ -0 /“A/
= .2.0x10" .
n P -
N 4.0x10° - A 5
© -6.0x10° /
-8.0x10” /0
-1.0x10™ o "
P / —0— Single layer
AR \ o —0— Two layers
T O/ —4—Three layers
-1.6x10™ —v— Four layers
-1.8x10° - r : T -
0.990 0.995 1.000 1.005 1.010
r
Figure 7. Variation of radial stress with thickness for single and mul-

tilayer piezoelectric thin cylinders.

6.0x10° R = 1/50 . —0— Single layer
o 1 / \v —0—Two layers
Ly 2N —A—Three laye
2.0x10° 4 : / \v —v— Four layers
- 00+4—-o o E<D—D—D>e—o—
™ ]
=
-2.0x10°
N ] N
= <4.0x10° 4 N %<°
6.0x10" -
-8.0x10° - e
-1.0x10° - \/
-1.2x10° T T T
0.990 0.995 1.000 1.005 1.010

r

Figure 8. Variation of electrical potential with thickness for single
and multilayer piezoelectric thin cylinders.
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for all layers of piezoelectric cylinder for 4/R ratio as 1/5.
Figures 6-8 show the radial displacement, radial stress
and electric potential for all layers of piezoelectric cylinder
for A/R ratio 1/50. From these figures, it is seen that
higher values of radial stress and electric potential
develop at the inner points of the cylinder thickness.
Figures 9-11 show the comparison of results for infi-
nitely long cylinder and finite length cylinder for valida-
tion purpose. Derivations for infinitely long cylinders are
given in Appendix 3 for reference purpose. Good agree-
ment is seen in Figures 9-11 between the two formula-
tions. Table 3 presents the numerical values of such a
comparison. Table 4 shows the maximum values of all
the basic fundamental variables. Radial stress is zero at
the top and bottom surfaces of the thickness of the cylin-
der as expected, because of applied zero normal stress at
the top and bottom surfaces as boundary conditions.

5.55 -
1 —0O— Long cylinder o /cl
5.50 —O— Short cylinder
| =
5.45 -
1 ] D/;/o
x ] /a
g 5.35 Pt
TR u/o/
Y o510 o
3 U 2/0
/ hR=1/5
5.25 -
5.20 4
5.15 T T T
0.90 0.95 1.00 1.05 1.10

-

Figure 9. Comparison of radial displacement with thickness for three-
layer piezoelectric long and short, thick cylinders.

4
—0O— Long cylinder
24 —0O— Short cylinder
oé, 0
=
g 24
n
N
o -4
6 hR=1/5
-8
T I I
0.90 0.95 1.00 1.056 1.10
r
Figure 10. Comparison of radial stress with thickness for three layer-

piezoelectric long and short, thick cylinders.
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4 4
2 <
3. 01
(=]
= 2
o
n
;—'} -4+ —0O— Long cylinder
= —O— Short cylinder
-6 -
-84
¥ T ¥ T : T .
0.90 0.95 1.00 1.05 1.10
r
Figure 11. Comparison of electric potential with thickness for three-

layer piezoelectric long and short, thick cylinders.

Similar behaviour is seen for the electric potential. Even
if zero electric potential is applied at top and bottom sur-
faces, the cylinder develops some potential values
through its thickness. This is because of piezoelectric
effect considered in the material. Thus, the piezoelectric
cylinder acts as a sensor. For A/R ratio equal to 1/5, radial
stress variation in each layer is seen to be slightly non-
linear. Whereas linear variation is seen in case of (/R =
1/50) thin cylinders.

Conclusion

An attempt has been made here to analyse the piezoelec-
tric device which is subjected to electric field in addition
to elastostatic and temperature fields through exact semi-
analytical cum numerical approach, which differs from
conventional approximate finite element approach and is
also free from any assumptions in the theory. The model
is based on the solutions of a two-point BVP governed by
ODEs through thickness of the cylinder. Fourth-order
Runge—-Kutta—Gill algorithm was used for numerical in-
tegration. The results are useful when one is designing
pressurized cylinders made up of different layers of pie-
zoelectric materials which are used as transducers and
other sensing devices. This approach can be applied with
ease to thick, multilayer cylinders. The technique is con-
venient to obtain the interlaminar stresses in a natural
way, since the continuity conditions of transverse inter-
laminar stresses and displacements between the layers
(lamine interfaces) are satisfied automatically via the
numerical integration. This is an important feature of
the proposed model. Also, it involves mixed variables in
the derivations, both stresses and displacements are
obtained accurately simultaneously. Numerical results
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presented for different 4/R ratios will be useful for future
reference and should serve as benchmark results.
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Appendix 3.

Equilibrium equations

di+£(c7r—c79):0, %ﬁq =0. (A1)
dr r dr r

Strain displacement relations

8,=a—u, 89=z, Erz—d—¢.
or r dr

(A2)

The constitutive equations when specialized to cylindri-
cally orthotropic materials, polarized in the radial direc-
tion, may be written as

0, =Cué, +Cpgg —enE, - AT,
0y = Cp&, + Cpep —enpE, = BT
D, = ey +ene, +enk, +qiT . (A3)

System of simultaneous first-order differential equations
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Nomenclature

r, 6z = Cylindrical coordinates

u, v, w = Displacement components

O, Oy, Oy = Normal stress components parallel to r,
@ and z axis

T = Shearing stress in cylindrical coordi-
nates

& Eo & = Unit elongation (normal strain) compo-
nents in cylindrical coordinates

Yar = Shearing strain component in cylindrical
coordinates

Cy = Material constants for orthotropic mate-
rials

e = Piezoelectric moduli

D, = Electric displacement vector

E; = Electric field

&33 = Dielectric permittivity constants at con-
stant strain

7 = Inner radius of the cylinder

ro = Outer radius of the cylinder

/ = Length of the cylinder

u, w = Nondimensionalized displacement com-

ponents
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G,,04,0, = Nondimensionalized normal stress com-
ponents parallel to », #and z axis

T, = Nondimensionalized shearing stress in
cylindrical coordinates

7 = Nondimensionalized radius

R = Mean radius (7o + r;)/2.
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