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A mixed semi-analytical computational model is pre-
sented which accounts for the coupled electrical,  
mechanical and thermal response of layered piezoelec-
tric finitely long hollow circular cylinders. Boundary 
value problem (BVP) of an axisymmetric cylinder is 
considered here as a two-dimensional plane strain 
problem in the (r, z) plane, which is based on the  
exact theory of elasticity. After assuming diaphragm-
supported end conditions in the longitudinal (z) direc-
tion, the resulting mathematical model is cast in the 
form of first-order simultaneous ordinary differential 
equations which are integrated through an effective 
numerical integration technique by first transforming 
the BVP into a set of initial value problems. New  
results of finite length cylinders are generated and 
presented for future reference. 
 
Keywords: Cylinders, layered materials, piezothermo-
elasticity, semi-analytical methods. 
 
THE basic shape of piezoelectric devices is a circular  
cylinder which is used as a transducer, that can reflect 
and receive waves from the media when it is pressurized. 
Also, it converts the electrical pulses to mechanical  
energy and vice versa when pressurized. This basic device 
has many other useful applications like in ultrasound and 
ground-penetrating radar. It is important to understand 
the behaviour of such devices before they are used for 
engineering design. In view of this, the present study is 
focused on such cylinders which are made up of piezo-
electric materials and which have several layers in thick-
ness direction of the cylinder and polarized in radial 
direction. In real life such a device is made of different 
piezoelectric layered materials, which are subjected to 
electrical, mechanical and thermal loads. It is also impor-
tant that such materials are orthotropic; the orthotropic 
phenomenon will provide particle charging and polariz-
ing in different directions. Such a cylinder is then studied 
under thermal, electrical and mechanical loads. In this  
article, the following piezoelectric materials are used: 
cadmium selenide, CaSe; barium titanate, BaTiO3 (a 
permanently polarized material) and lead zirconate titan-

ate, PZT-5A (refs 1, 2). In addition, these materials will 
produce an electric field when they change dimensions as 
a result of an imposed mechanical force. Before these  
devices are used in engineering design, it is important 
that they are analysed accurately. Hence the present study  
focuses on the analysis of piezoelectric devices using an 
approach which is free from approximations. The unique-
ness of this approach is that it requires algebraic manipu-
lation of basic elasticity equations like equilibrium, strain 
displacement and constitute equations. After this manipu-
lation, the mathematical model is presented as a two-
point boundary value problem (BVP) which governs the 
behaviour of 2D plane strain finite length cylinder in the 
(r, z) plane and is governed by six first-order simultane-
ous partial differential equations (PDEs). These PDEs are 
transformed into a system of coupled first-order ordinary 
differential equations (ODEs) for elastostatic problem; 
the behaviour of a cylinder is mathematically formulated 
as a two-point BVP governed by a set of linear first-order 
ODEs. This can be written mathematically by the follow-
ing equation3,4. 
 

 d ( ) ( ) ( ) ( ).
d

y r A r y r p r
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= +  (1) 

 
In the domain r1 ≤ r ≤ r2, where y(r) is an n-dimensional 
vector of dependent variables; dependent variables in the 
present case can be described as y = (u, w, φ, σr, τrz, Dr)t. 
Choice of dependent variables is important. The variables 
which naturally appear on r = constant are chosen as  
dependent variables; such variables are called intrinsic 
variables. The remaining variables are described as auxil-
iary dependent variables which are dependent on intrinsic 
dependent variables. A(r) is a coefficient matrix of ODEs. 
p(r) is an n-dimensional vector of non-homogeneous 
(loading) terms. For boundary conditions, any n/2 ele-
ments of y(r) are specified at the two termini edges; 
mixed type of boundary conditions can be specified  
in this formulation. Recently, Desai and Kant5 have  
obtained accurate stresses in thermoelastic laminated  
finite length cylinders subjected to uniformly distributed 
and sinusoidal loads using the above technique. 
 Some of the recent literature relevant for this study  
is described as follows. Heyliger and Pan6 obtained  
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approximate solutions to the weak form of the governing 
equations of equilibrium/motion; charge and magnetic 
flux for laminates containing layers of potentially magneto-
electroelastic material, in which there can exist elastic 
displacement fields, the electric potential (or voltage), 
and the magnetic potential. The through-thickness elastic, 
electric and magnetic fields of laminates composed of 
elastic, piezoelectric and magnetostrictive layers are con-
sidered under static condition to determine their funda-
mental behaviour and to study the limits of simplified 
plate theory in which the fields are assumed to possess a 
specific type of behaviour. Kapuria et al.7 presented an 
exact axisymmetric piezothermoelastic solution for a 
simply-supported hybrid cylindrical shell made of cross-
ply composite laminate with piezoelectric layers. Nu-
merical results for hybrid shells are presented for sinu-
soidal and central band thermal and electrical loads. 
Heyliger8 gave an exact three-dimensional solution of the 
equations of linear piezoelectricity for the static response 
of a finite length laminated piezoelectric cylinder with its 
ends simply supported. Galic and Horgan9 obtained ana-
lytical solution for the axisymmetric problem of an infi-
nitely long, radially polarized, radially orthotropic 
piezoelectric hollow circular cylinder. Rajapakse et al.10 
presented a theoretical study of a piezoelectric annular  
finite cylinder under axisymmetric loading. Ding et al.11 
obtained analytical solutions to various piezoelectric 
problems such as circular plate, cylinder, cone, hollow 
cone and annular plate. Wang and Zhong12 analytically 
studied the problem of a finitely long circular cylindrical 
two layered shell of cylindrically orthotropic piezoelec-
tric/piezomagnetic composite under pressure loading and 
a uniform temperature change. The analytical solution is 
obtained through the power series and the Fourier series 
expansion methods. Lim and Lau13 studied the electro-
mechanical behaviour of a thick, laminated actuator with 
piezoelectric and isotropic laminae under externally  
applied electric loading using a new two-dimensional 
computational model. The model was analysed using  
Timoshenko thick beam theory. Wu and Tsai14 have re-
cently presented the three-dimensional coupled analysis 
of simply-supported functionally graded (FG) and piezo-
electric sandwich cylinders under electro-mechanical 
loads using modified Pagano method. The modifications 
in the original Pagano method were replacement of dis-
placement-based formulation with mixed formulation and a 
set of complex-valued solutions of system equation was 
transferred to a corresponding set of real-valued solu-
tions. A transfer matrix method is used to analyse the  
effect of layers. Ying et al.15 proposed a stochastic res-
ponse analysis method for piezoelectric thick axisymmet-
ric hollow cylinders subjected to boundary stochastic 
excitations based on the transformations of electric poten-
tials and displacements, the Galerkin method and the  
theory of random vibration. The authors have claimed 
that the proposed analysis method is applicable to hollow 

cylinders with arbitrary thickness under various non-
white stochastic excitations of inner and/or outer pre-
ssures and electric potentials. Larbi and Deu16 presented a 
three-dimensional exact mixed state-space solution for 
the free-vibration analysis of simply-supported arbitrarily 
thick laminated piezoceramic hollow cylinders completely 
filled with fluid. Saviz and Mohammadpourfard17 pre-
sented dynamic analysis for simply-supported laminated 
cylindrical shell with orthotropic layers bounded with 
piezoelectric layers and subjected to local ring/pinch 
loads. The piezoelectric layers serve as sensors/actuators. 
The governing elasticity equations are reduced to ODEs 
by means of trigonometric function expansion. The re-
sulting equations are solved by Galerkin’s finite element 
method in radial direction. Li et al.18 analysed an axi-
symmetric electroelastic problem of hollow radially po-
larized piezoceramic cylinders made of FG materials. For 
the material properties with power-law profile, a closed-
form solution is obtained. For a general gradient varia-
tion, an analytic approach is suggested, which reduces the 
problem to a Fredholm integral equation. Khdeir and 
Aldraihem19 formulated and developed models and ana-
lytical solutions for the static behaviour of cross-ply 
smart laminated shells with piezoelectric laminae. The 
models are based on a rigorous first-order shell theory. 
The state-space approach is used to find exact solutions 
for the static response of cross-ply spherical, cylindrical and 
doubly curved shells with various boundary conditions. It 
was noted here that the past literature covers the use of 
state-space approach for layered media, in which use has 
been made of the continuity conditions at each interface 
between any two adjacent sub-layers. Also, it is seen 
from the literature that accurate benchmark solutions  
using exact elasticity theory are rare for finite length  
cylinders under thermo-mechanical-electro loadings. 

Formulation of the problem 

The basic governing equations which describe the beha-
viour of a finite length thermo-electro-mechanical cylin-
der are written below. 

Equilibrium equations 

Two-dimensional stress equilibrium equations for finite 
length cylinder in cylindrical coordinates can be written 
as20 (Figure 1) 
 

 , , 0,r
r r rz z r

θσ σ
σ τ

−
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rz r z r r
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For piezoelectric cylinder additional electrostatic charge 
equilibrium equation2 is written as 
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Strain-displacement relations 

Two-dimensional strain-displacement relations in cylin-
drical coordinates are 
 

 , ;r ruε =  ;u
rθε =  , ;z zwε =  , , .rz z ru wε = +  

 
Electric potential φ is defined by the following rela- 
tions 
 
 , ;r rE φ= −  , .z zE φ= −  (4) 

Stress–displacement relations 

Stresses in terms of displacement components for cylin-
drically orthotropic piezoelectric material can be cast as 
follows1,2 
 

 11 r 12 13 11 1, , , ,r z r
uC u C C w e T
r

σ φ β= + + + −  

 21 22 23 12 2, , , ,r z r
uC u C C w e T
rθσ φ β= + + + −  

 31 32 33 13 3, , , ,z r z r
uC u C C w e T
r

σ φ β= + + + −  

 15( , , ) , .rz r zG w u e zτ φ= + +  (5) 
 
 
 

 
 

Figure 1. Cylindrical coordinates and fundamental dependent vari-
ables in a cylinder. 

Constitutive relations for the electric field are defined as 
follows 

 11 12 13 11 1, , , ,r r z r
uD e u e e w q T
r

ε φ= + + − +  

 
 15 33,z rzD e ε ε= −  
 
 15 33= ( , , ) , .z r z zE e w u ε φ+ −  
 
In the above, the parameters have the following defini-
tions. u is the radial displacement and φ = φ (r) is the 
electric potential. The elastic constants are C11, C12, C22, 
C23, C31 and C33. The piezoelectric constants are e11, e12, 
e13, e15 and ε11, ε33 are the dielectric permitivities at con-
stant strain. Here β1, β2, β3 and q1 are stress–temperature 
coefficients. 

Boundary conditions 

Boundary conditions in the longitudinal and radial  
directions for elastic and electric fields are defined as  
follows 
 
 At z = 0, l, u = σz = Dz = 0; 
 
 At r = ri, σr = τrz = φ = 0, 
 
 At r = r0, σr = τrz = φ = 0, (6) 
 
where l is the length, ri the inner radius and r0 the outer 
radius of a hollow cylinder. Load T(r, z) can be repre-
sented in terms of Fourier series in general form as  
follows 
 

 
1,3,5..

( ,  ) ( )sin ,
N

m
m

m zT r z T r
l
π

=
= ∑  (7) 

 
where Tm is the Fourier load coefficient which can be  
determined using the orthogonality conditions, and for  
sinusoidal loading, T(r, z) = T0(r)sin(πz/l), T0 is the maxi-
mum intensity of temperature at z = l/2. 

First-order partial differential equations 

Radial direction r is chosen as the preferred independent 
coordinate. Six fundamental dependent variables, viz. 
displacements, u and w, electric potential ϕ and the corre-
sponding stresses, σr, τrz and Dr that occur naturally on a 
tangent plane r = constant, are chosen in the radial  
direction. Circumferential stress σθ, axial stress σz and 
axial electric displacement Dz are treated here as auxiliary 
variables since these are found to be dependent on the 
chosen fundamental variables. A set of six first-order 
PDEs in independent coordinate r which involves only 
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fundamental variables is obtained through algebraic  
manipulation of eqs (2)–(5). These are 
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  (8) 
 
A and d are the coefficient matrices described in Appendix 1. 

Basic fundamental variables 

Variations of the six fundamental dependent variables 
which completely satisfy the boundary conditions of simple 
(diaphragm) supports at z = 0, l can then be assumed as 

 ( , ) ( )sin ;i
r

zr z r
l
πσ σ=  ( , ) ( ) cos ;i

rz
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l
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First-order ordinary differential equations 

Substitution of fundamental variables given in eq. (9) into 
eq. (8) and simplification resulting from orthogonality 
conditions of trigonometric functions lead to the follow-
ing first-order simultaneous ODEs involving amplitudes 
of mixed set of fundamental variables as given below 
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B and f are the coefficient matrices described in  
Appendix 2. 
 The above system of first-order simultaneous ODEs 
(eq. (10)) together with the appropriate boundary condi-
tions at the inner and outer edges of the cylinder (eq. (6)) 
form a two-point BVP. However, a BVP in ODEs cannot 
be numerically integrated as only half of the dependent 
variables (three) are known at the initial edge and  
numerical integration of an ODE is intrinsically an initial 
value problem (IVP). It becomes necessary to transform 
the problem into a set of IVPs. The initial values of the 
remaining three fundamental variables must be selected 
so that the complete solution satisfies the three specified 
conditions at the terminal boundary. The nth (n = 6 here)-
order BVP is transformed into a set of (n/2 + 1) IVPs. 
ODEs are integrated from the initial edge to the final 
edge using the initial values as shown in Table 1. The 
n/2 + 1 solutions given in Table 1 may be thought of as: 
(i) one non-homogeneous integration which includes all 
the non-homogeneous terms (e.g. loading) and the known 
n/2 quantities at the starting edge, with the unknown n/2 
quantities at the starting edge set as zero; (ii) n/2 homo-
geneous integrations which are carried out by setting the 
known quantities at the starting edge as zero and choos-
ing the n/2 unknown quantities at the starting edge as unit 
values in succession and deleting the non-homogeneous 
terms from the ODEs. The solutions at the terminal 
boundary corresponding to the initial values are given in 
the right side columns in Table 1. A linear combination 
of the (n/2 + 1) solutions must satisfy the boundary con-
ditions at the terminal edge, i.e. 
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or 
 
 1

,0 , , ,0or  [ ] ( ),i i j j i j i j i iY Y X Y X Y Y Y−+ = = −  (11) 
 
where i indicates the n/2 variables consistent with  
the specified boundary values at the terminal edge, j re-
fers to solution number and ranges from 1 to n/2, iY  is a 
vector of specified dependent variables at the terminal 
boundary and Xj is a vector of unknown dependent vari-
ables at the starting edge. Finally, a non-homogeneous in-
tegration with all the dependent variables known at the 
starting edge is carried out to get the desired results. 
Fourth-order Runge–Kutta algorithm with modifications 
suggested by Gill21 has been used for the numerical inte-
gration of the IVPs. Stability of the present numerical 
technique is checked via convergence study by taking  
different step sizes in the Runge–Kutta–Gill algorithm. 
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Table 1. Conversion of boundary value problem into initial value problems 

 Initial boundary  Terminal boundary 
Integration 
number u w φ σr τrz Dr u w φ σr τrz Dr Load term 
 

0 0 0 (Specified) (Specified) (Specified) 0 Y1,0 Y2,0 Y3,0 Y4,0 Y5,0 Y6,0 Include 
1 1 0 0 0 0 0 Y1,1 Y2,1 Y3,1 Y4,1 Y5,1 Y6,1 Delete 
2 0 1 0 0 0 0 Y1,2 Y2,2 Y3,2 Y4,2 Y5,2 Y6,2 Delete 
3 0 0 0 0 0 1 Y1,3 Y2,3 Y3,3 Y4,3 Y5,3 Y6,3 Delete 
Final X1 X2 (Specified) (Specified) (Specified) X3 Correct Correct Known Known Known Correct Include 
 integration       value X1 value X2    value X3  

 
Table 2. Piezoelectric material property 

PZT-5A CaSe BaTiO3 
 

C33 = 99.201 × 109 C33 = 74.1 × 109 C33 = 150.0 × 109 
C22 = 99.201 × 109 C22 = 74.1 × 109 C22 = 150.0 × 109 
C11 = 86.856 × 109 C11 = 83.6 × 109 C11 = 146.0 × 109 
C32 = 54.016 × 109 C32 = 45.2 × 109 C32 = 66.0 × 109 
C12 = 50.778 × 109 C12 = 39.3 × 109 C12 = 66.0 × 109 
C13 = 50.778 × 109 C13 = 39.3 × 109 C13 = 66.0 × 109 
Grz = 21.100 × 109 Grz = 13.17 × 109 Grz = 44 × 109 
α3 = 3.314 × 105 Pa K–1 α3 = 0.621 × 106 Pa K–1 α3 = 1.92 × 106 Pa K–1 
α2 = 3.314 × 105 Pa K–1 α2 = 0.621 × 106 Pa K–1 α2 = 1.92 × 106 Pa K–1 
α1 = 3.260 × 105 Pa K–1 α1 = 0.551 × 106 Pa K–1 α1 = 1.65 × 106 Pa K–1 
e15 = 12.322 e15 = –0.138 C/m2 e15 = 11.4 C/m2 
e13 = –7.209 e13 = –0.160 e13 = –4.35 
e12 = –7.209 e12 = –0.160 e12 = –4.35 
e11 = 15.118 e11 = 0.347 e11 = 17.5 
∈11 = 150 × 10–10 F/m ∈11 = 90.2 × 10–12 F/m ∈11 = 15.04 × 10–9 F/m 
q1 = 700 × 10–6 C/m2K q1 = –2.94 × 10–6 C/m2K q1 = 213.5 × 10–6 C/m2K 

 

 
 

Figure 2. a, Number of piezoelectric material layers in thick ortho-
tropic cylinder. b, Diaphragm supported cylinder. 

 
 

Figure 3. Variation of radial displacement with thickness for single 
and multilayer piezoelectric thick cylinders. 

Numerical example 

In the present work, a piezoelectric cylinder of single 
layer-CaSe and combinations of piezoelectric layers  
BaTiO3/PZT-5A (two layers), BaTiO3/CaSe/PZT-5A 
(three layers) and BaTiO3/PZT-5A/BaTiO3/PZT-5A (four 
layers) have been studied (Figure 2). Piezoelectric and 
pyroelectric material properties are taken from Wang
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Table 3. Comparison of non dimensionalized results (value/106) of present finite length cylinder with  
 long cylinder for three layers 

 u – Long u – Short Φ – Long Φ – Short σ – Long σ – Short 
r cylinder cylinder cylinder cylinder cylinder cylinder 
 

0.9 52.1700 51.9000 0.0000 0.0000 0.0000 0.0000 
0.92 53.0400 52.7800 0.3899 0.3926 –0.7280 –0.7404 
0.94 53.3000 53.0500 0.2880 0.3062 –0.5710 –0.5850 
0.96 53.5700 53.3300 0.1723 0.2017 –0.4258 –0.4405 
0.98 53.8600 53.6300 0.0428 0.0792 –0.2914 –0.3060 
1 54.1500 53.9200 –0.1002 –0.0613 –0.1667 –0.1807 
1.02 54.4600 54.2300 –0.2566 –0.2196 –0.0511 –0.0638 
1.04 54.7700 54.5400 –0.4262 –0.3956 0.0562 0.0454 
1.06 55.1000 54.8500 –0.6088 –0.5894 0.1559 0.1475 
1.08 55.4300 55.1700 –0.8043 –0.8009 0.2486 0.2429 
1.1 53.7800 53.5100 0.0000 0.0000 0.0000 0.0000 

 
Table 4. Maximum value (value/106) of fundamental quantities through thickness 

 u w Φ σr τrz Dr 
 

Thick 
 1 layer 46.3300 –59.4000 0.0093 0.0130 0.0524 243.9000 
 2 layer 50.1400 –64.5300 –1.2000 –1.4090 1.1790 –1189.0000 
 3 layer 55.1700 –73.1100 0.0792 –0.7404 0.5872 9.0270 
 4 layer 56.2500 –72.8800 0.4665 1.1510 –0.7764 –1106.0000 

Thin 
 1 layer 44.2000 –56.3400 0.0001 0.0001 0.0005 220.8000 
 2 layer 48.2300 –61.5600 –0.0875 –0.1582 0.1250 –1106.0000 
 3 layer 54.3400 –69.5200 –0.0798 –0.0725 0.0570 8.3490 
 4 layer 54.2500 –69.0900 0.0612 0.0948 –0.0731 –998.3000 

 

 
 

Figure 4. Variation of normal radial stress with thickness for single 
and multilayer piezoelectric thick cylinders. 
 
and Zhong12, which are shown in Table 2. Two h/R ratios 
which cover thick and thin cylinders were studied. Uni-
form temperature distribution through thickness has  
been considered. Here, T1(r) is taken as unity for simpli-
city. The following non-dimensional parameters were 
used. 
 

 11

11 11
,  ,r
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Figure 5. Variation of electrical potential with thickness for single 
and multilayer piezoelectric thick cylinders. 
 
 

  
11
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Shear stresses, radial normal stresses, electric potential 
and radial electric displacements were obtained as a part 
of the numerical analysis in the present work. It is seen 
that piezoelectric material properties have significant  
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effect on the stresses and displacements of finite length 
cylinders. Figures 3–5 show the important quantities such 
as radial displacement, radial stress and electric potential 
 

 
 

Figure 6. Variation of radial displacement with thickness for single 
and multilayer piezoelectric thin cylinders. 

 

 
 

Figure 7. Variation of radial stress with thickness for single and mul-
tilayer piezoelectric thin cylinders. 

 

 
 

Figure 8. Variation of electrical potential with thickness for single 
and multilayer piezoelectric thin cylinders. 

for all layers of piezoelectric cylinder for h/R ratio as 1/5. 
Figures 6–8 show the radial displacement, radial stress 
and electric potential for all layers of piezoelectric cylinder 
for h/R ratio 1/50. From these figures, it is seen that 
higher values of radial stress and electric potential  
develop at the inner points of the cylinder thickness.  
Figures 9–11 show the comparison of results for infi-
nitely long cylinder and finite length cylinder for valida-
tion purpose. Derivations for infinitely long cylinders are 
given in Appendix 3 for reference purpose. Good agree-
ment is seen in Figures 9–11 between the two formula-
tions. Table 3 presents the numerical values of such a 
comparison. Table 4 shows the maximum values of all 
the basic fundamental variables. Radial stress is zero at 
the top and bottom surfaces of the thickness of the cylin-
der as expected, because of applied zero normal stress at 
the top and bottom surfaces as boundary conditions. 
 

 
 

Figure 9. Comparison of radial displacement with thickness for three-
layer piezoelectric long and short, thick cylinders. 

 
 

 
 

Figure 10. Comparison of radial stress with thickness for three layer-
piezoelectric long and short, thick cylinders. 
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Figure 11. Comparison of electric potential with thickness for three-
layer piezoelectric long and short, thick cylinders. 
 
 
 
Similar behaviour is seen for the electric potential. Even 
if zero electric potential is applied at top and bottom sur-
faces, the cylinder develops some potential values 
through its thickness. This is because of piezoelectric  
effect considered in the material. Thus, the piezoelectric 
cylinder acts as a sensor. For h/R ratio equal to 1/5, radial 
stress variation in each layer is seen to be slightly non-
linear. Whereas linear variation is seen in case of (h/R = 
1/50) thin cylinders. 

Conclusion 

An attempt has been made here to analyse the piezoelec-
tric device which is subjected to electric field in addition 
to elastostatic and temperature fields through exact semi-
analytical cum numerical approach, which differs from 
conventional approximate finite element approach and is 
also free from any assumptions in the theory. The model 
is based on the solutions of a two-point BVP governed by 
ODEs through thickness of the cylinder. Fourth-order 
Runge–Kutta–Gill algorithm was used for numerical in-
tegration. The results are useful when one is designing 
pressurized cylinders made up of different layers of pie-
zoelectric materials which are used as transducers and 
other sensing devices. This approach can be applied with 
ease to thick, multilayer cylinders. The technique is con-
venient to obtain the interlaminar stresses in a natural 
way, since the continuity conditions of transverse inter-
laminar stresses and displacements between the layers 
(lamine interfaces) are satisfied automatically via the 
numerical integration. This is an important feature of  
the proposed model. Also, it involves mixed variables in 
the derivations, both stresses and displacements are  
obtained accurately simultaneously. Numerical results 

presented for different h/R ratios will be useful for future 
reference and should serve as benchmark results. 
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Equilibrium equations 
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Strain displacement relations  
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The constitutive equations when specialized to cylindri-
cally orthotropic materials, polarized in the radial direc-
tion, may be written as 
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System of simultaneous first-order differential equations 
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Nomenclature 

r, θ, z = Cylindrical coordinates 
u, v, w = Displacement components 
σr, σθ, σz = Normal stress components parallel to r,  
    θ  and z axis 
τzr = Shearing stress in cylindrical coordi- 
    nates 
εr, εθ, εz = Unit elongation (normal strain) compo- 
    nents in cylindrical coordinates 
γzr = Shearing strain component in cylindrical  
    coordinates 
Cij = Material constants for orthotropic mate- 
    rials 
eij = Piezoelectric moduli 
Dm = Electric displacement vector 
Ek = Electric field 
ε33 = Dielectric permittivity constants at con- 
    stant strain 
ri = Inner radius of the cylinder 
r0 = Outer radius of the cylinder 
l = Length of the cylinder 

,u w  = Nondimensionalized displacement com- 
    ponents 
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, ,r zθσ σ σ  = Nondimensionalized normal stress com- 
    ponents parallel to r, θ and z axis 

rzτ  = Nondimensionalized shearing stress in  
    cylindrical coordinates 
r  = Nondimensionalized radius 
R = Mean radius (r0 + ri)/2. 
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