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Data processing in remote sensing
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Abstract. A brief overview of pattern recognition and image processing with special emphasis
on the first topic and its application to remote sensing is presented. Some of the recent areas of
work in pattern recognition are also highlighted.
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1. Introduction

Modern remote-sensor systems collect vast quantities of data. Such a flow of data
creates data-management problems which have their impact in data transmission,
storage and retrieval, inputand output, image processing and pattern recognition. The
increasing spatial and spectral resolution of satellites aggravates this problem. For
example LANDSAT-4 thematic mapper transmits nearly 10 times more information than
LANDSAT-2 & 3 on a per unit area basis.

2. Data storage and retrieval

Remote-sensor technology appears to be overwhelmed by its own information
‘explosion. For this information to be useful, it must be organised and stored in a
manner that allows a convenient and orderly search. The information capacity of an
image is an index for storage requirements. Image compression and compaction is
necessary for storage. ‘Compression’ reduces the original image to a simpler image.
Compaction schemes encode data in an efficient manner on the basis of statistical
redundancy present in the data.

3. Image processing and pattern recognition

Image processing can be classified as follows: (a) image restoration (b) noise
abatement (c) image enhancement (d) image analysis.

3.1 Image restoration

Image restoration involves the removal of systematic degradations ‘due to de-
tector/scanner/satellite systems.
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3.2 Noise abatement

Some types of noise in an image are completely predictable or can be directly deleted.
However most types of noises are statistical in character, and can be predicted only ona
probabilistic basis. It is still possibie to reduce the effects of such noise by properly-
designed image processing operations.

3.3 Image enhancement

Image enhancement refers to such operations as the selective increase of contrast,
delineation and for accentuation of edges and similar alterations.

3.4 Image analysis

Image analysis is the process of segmentation of the image using techniques like
thresholding, edge detection, texture analysis, template matching and tracking
(Rosenfeld & Kak 1976). These techniques make use of the statistical details like

histograms, etc. The next logical step after segmentation is the image classification or
pattern recognition.

3.5 Pattern classification

Pattern classification can be defined as the assignment of a point in the feature space
(e.g. a remotely sensed ‘pixel’ characterized by its reflectances in different spectral
bands) to a proper pattern class. The techniques used to solve pattern classification
problems can be grouped into two general categories, namely, the decision theoretic (or
statistical) and the syntactic categories. In the statistical approach, a set of features are
extracted from the patterns and recognition is achieved by partitioning the feature
space. In the syntactic approach each pattern class is characterised by several
subpatterns and a relationship between these.

Another classification of pattern recognition techniques is supervised and un-
supervised methods. In the supervised method certain number of training samples are
available for each class; these are used to ‘train’ the classifier. The unsupervised method
is akin to learning without a teacher. The decision theoretic methods can again be
divided into parametric and non-parametric methods. In parametric methods each
pattern class is characterized by a statistical distribution which in turn is dependent on

certain number of ‘parameters’. The non-parametric methods do not assume any such
distribution.

3.5a Non-parametric methods (Fu 1980): (i) Linear discriminant functions:

Let X = Fxl”

Xa \

xNJ




Data processing in remote sensing 137

be the feature vector. Let Q,,Q,, . . . ,, be the mclasses. The problem is to assign X to
the proper . A linear discriminant function is a linear combination of x;s. The decision
boundary between the regions ; and Q; is in the form of

N
D;(x)—D;(x) = Z Wi+ Wy 1 =0,

k=1

where W’s are constants determined from the training samples. A sample x is assigned
to class W, if

D;(x)> D;(x), ¥, j#i.

3.5b Minimum distance classifier One of the important types of linear classifiers is the
minimum distance classifier. Here distances between sample points and prototype
training samples are used for classification. Suppose that m reference vectors Ry,
R, ..., R, are given for the m classes. The minimum distance classifier assigns the
input sample X to class Q; if |

|X —R;|is the minimum, where | | represents the distance defined as
\X—Ril = [(X_Ri)T(X—Ri)]llz'

3.5¢ Nearest neighbour classifier Here there is a set of reference vectors for each class
and the input sample is assigned to that class to which the nearest reference neighbour
belongs. The nearest neighbour classifier has received considerable attention in the
literature. It has been shown that for the infinite sample case the asymptotic error of the
nearest neighbour classifier will not be greater than twice the Bayes’ error.

 3.5d K-nearest neighbour rule Here the input sample is assigned to that class to which
a majority of its k neighbours belong, '

3.5¢ Edited nearest neighbour rule Here the training reference vectors are themselves
classified using the nearest neighbour rule and those vectors which are misclassified are
removed from the training set. ’

3.5f Polynomial discriminant functions An rth order polynomial discriminant function
can be expressed as '

Dy(X) = W fy (X)+ W, o (X)+ . + W i (X)+ W1y,
where f; (X) is of the form
xﬁ:ngz.,.xﬁi"forkl;...,ki::l,..‘.,Nandnl,nz,...,h,==Oand 1.

3.5g Training of linear classifiers In a linear classifier the constants W, ..., Wy,
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have to be evaluated using the training samples. This process can be illustrated using
a two-class classifier. Let

_x1-1

when X is the feature vector. Let Ty and T, be two classes. Then the problem is to find a
vector W such that

YTW>0 for YeTy,
and YTW<0 for YeT,.

If the output of the classifier is erroneous then a new W' is calculated as W’ = W+a Y
where « is a positive number.

3.5h Parametric classifiers: Bayes’ classifier One of the most widely used parametric
classifiers is the Bayes’ classifier. In parametric classification, a probability density
function is assumed and the parameters of that distribution are estimated. Let
Xiyeovnn Xy be random variables where x; is the noisy measurement of the ith feature.
Let p(x/Q;) be the conditional probablhty density function of class jand P(Q;)is the a
priori probabihty of class Q;. The task of the classifier is to assign the input sample such
that the probability of misrecognition is minimized.
The Bayes’ decision rule is that

X ~Q,
if P(Q)p(x|Q) = P(Q)p(x|Q;), ¥

Assuming Gaussian distribution with mean vector M; and covariance matrix K;

p(X|Q) = Wexp[ —HX -M)K 1 (X - M),

then the decision boundary between classes i and Jj becomes

p((n'; HUX = M)TKT (X~ M) = (X - MK (X = M))]

= 0.

The above rule is also referred to as the maximum likelihood classification estimation

rule (MLE). The MLE has been very popular for classifying remotely-sensed data. Even
hardwired MLE processors have been built as part of data analysis systems.
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3.6 Sequential classification

When the cost of feature measurements is taken into account and if the features are
measured sequentially, it makes sense to use these features sequentially so that the
average number of features used is minimal. Also the computational burden increases
with the number of features. So sequential methods can be used in situations where
there are a large number of features. (For example the multispectral scanner has 11
channels). Consider the 2-class problem. Wald’s sequential probability ratio test (SPRT)
computes at the nth stage the ratio

I = Py (X]€0)/Pa(X|02)

where p,(X/€,;) is the conditional density for class i using the first n features. 1, is
compared with two stopping boundaries 4 and B. If 1, 2 4, X~ Q,, if 4, < B;
X ~ Q,. If neither of the inequalities is true, then the next feature is included and the
process is repeated. The two stopping boundaries are related to the error probabilities;

A= (1 —121)/112,
and B=1,/1-13),

where J;; is the probability of deciding X ~ Q; when actually X ~ €;. For the m class
(m > 2) situation the generalized SprT is used. ‘

3.7 Clustering (Diday et al 1980)

The basic idea behind clustering is that, when a certain number of objects are scattered

“over a certain dimensional space, using a distance measure, it is possible to identify
subgroups among these objects such that the objects belonging to a subgroup are
‘closer’ to themselves than to the members of other subgroups. These subgroups are
called clusters. The distance measure used plays a central role in identifying the clusters.
The following are some of the common distance measures used.

(i) Minkowsky metric

i=1

n A
d (X, xq)=[ Y |xi,~—xq,-|"‘]

(i) Quadratic metric:

-

d(xi, Xq) = (Xi —'Xq)TQ(Xi '“Xq)

where Q is a nxn positive definite matrix.
(iii) Mahalanobis metric

ds (X, X,) = (detW)' /7 (X, "Xq)T_lW_l(Xi"Xq)

where W is the covariance matrix.
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3.7a Binary distance measures: (Fu 1980). If the features are binary (presence or
absence) then the following distance measures are used

Russel & Rao d, (X;, X,) = a/(a+b+c+e),
‘Jaccard & Needham d, (X;, X,) = a/la+b+c),

Dice ds (X;, X,) =a/(2a+b+c),

Sokal & Sneath d, (X;, X,) = a/[a+2(b+¢)],

where a = no. of occurrence of x;; = 1 and x,; = 1; b = no. of occurrence of x; = 0,
and x,; = 1; ¢ = no. of occurrence of x;; = 1, and x,; = 0; e = no. of occurrence of
x;; = 0and x,; = 0.

A cluster P is said to be homogeneous if

X;, X;eP; and X, ¢ P,

=d(X, Xj) < d(X;, X)) 24 (X, Xj) < d(Xj: X5).

The general idea in clustering'is to have some representation of each of k clusters and
from the knowledge of these, to identify the objects. The well-known 1sopATA algorithm
is explained by an example given below.

Y A

> X
Figure 1. 1SODATA example ‘
Problem: Use 1s0DATA to classify the 9 samples (figure 1) into two clusters

The sample coordinates are

1. -(11,2) 6 —(35,15)
2. —(113,27) 7. ~(43,2:5)
3. -(19,23) 8. —(45,16)
4.-(3,22) 9. —(53,24)
5. —(2:8,12)

Assume points 5 and 6 as the potential cluster centres (seed points).
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Assign points 1, 2, 3, 5 to point 5 since 5 is closer to these than 6
Similarly assign 4, 6, 7, 8,9 to 6

New seed points:  Centroid of 1, 2, 3, 5 and centroid of 4, 6, 7,8,9
These are (1-8, 2:05) and (41, 2:03) respectively.

Reassign the points to these seed points
1,2,3,4,5 are assigned to (1-8,2:05) and 6, 7, 8, 9 are.assigned to (4-1, 2:05)
The new seedpoints are centroids of (1, 2, 3, 4, 5) and (6, 7, 8, 9) = (2:02, 2-08), (4-4, 2)

The new assignments are (1, 2, 3, 4, 5)and (6, 7, 8, 9) which are the same as the previous
assignments. So the two clusters are (1, 2, 3, 4, S)and (6, 7, 8, 9).

The clustering scheme of Narendra & Goldberg (1977) starts first by computing a .
multi-dimensional histogram of the data. This is actually a data compression step
because it tries to find out the distinct intensity vectors in the feature space. Therefore,
instead of clustering all the available vectors in the feature space, only the distinct
vectors are clustered. The frequency of occurrence of a particular intensity vector in the
histogram is taken as density estimate and uses the valley seeking clustering algorithm
of Koontze et al (1976) to cluster these distinct clusters.

Also the occurrences of frequencies can be used to obtain the stable maxima and
stable minima in the distribution. Majumder et al (1981) have shown how to use these
maxima and minima in defining the boundaries of clusters for one-dimensional data
set.

3.8 Per field classification and estimating mixture densities using dependent feature trees

A recent development in classification is the use of fields (geographically contiguous

pixels) rather than individual pixels. Here a group of pixels are classified by computing
their density function and evaluating the distance between this function and the other
class density functions. Here the underlying assumption is that all the pixels in that
group (= field) belong to one class. If this assumption is valid then per field
classification gives higher accuracy than per pixel classification.

A fundamental problem in unsupervised parametric classification is the estimation of
the parameters (means, covariances etc. if the distribution is Gaussian) of the different
classes from a combined mixture density of all the classes. Suppose the dimensionality
of the data is n then for each class n(n + 3)/2 parameters have to be estimated. Recently
Chittineni (1982) has shown that if in each class we can assume that there is a tree-like
relationship (i.e. each feature depends at most on one other feature) then the number of
parameters to be estimated is only (3n — 1) per class. This result is a vast improvement
and promises to be of far-reaching importance in estimating mixture densities.

3.9 Learning with imperfectly labelled patterns

Learning with an imperfect teacher has attracted considerable attention in the
literature. Whitney & Dwyers (1966) obtained error bounds in a two-class situation on
the performance of a nearest neighbour rule with an imperfect teacher. Kashyap &
Blaydon (1966) proposed an iterative training procedure for a two-class case. Gimlin &
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- Ferrell (1974) studied the correction of labels using a nearest neighbour procedure,
Chittineni (1979) considered the problem of learning with imperfectly labelled patterns.
He considers the following model:

Let Q and Q be the perfect and imperfect training set (a label is a class designate)
labels, respectively; each of which takes values of 1, 2,...... M*® where M is the
number of classes. Let p(Q =) and p(X |Q =1i) be the a priori and conditional
densities of class i. §;; = PQ=i/Q = NiLji=12..... M are the probabilities of the
imperfections. For the two-class case it can be shown that

1
5;1;322 —P12h21
1

and p(Q=ilX) = g i [Bp@=i|X)—Bup@ =7]X)]4,) = 1,2.
i #j

PQ=i)=

[BiPQ=0-BuPQ=p]ij=1,2i¢]

when the mislabelling is symmetric, the Bayes’ error can be shown to be

1 ~ 1
P = a+i(1--__-),
[28-1]7" 7 [2p—1]

where P, is the Bayes’ error with mislabelling.

3.10 Texture

Textural properties may play an increasingly important role in analysing remotely-
sensed data. While visual texture is a difficult concept to define it is commonly said to
involve the repetitive occurrence of local patterns in the given region (Rosenfeld et al

1980). Texture can be defined by describing local patterns and the rules of their
arrangement. . )

Power spectrum analysis. The power spectrum gives information regarding the local
patterns. The power spectrum at (x, y) is given by | F (4, v)|* = F (u, v) F *(u, v) where

0

Fu,v) = J‘J exp[ —2nj (ux +vy)] f(x, y)dxdy

= Fourier Transform of f(x, y). ‘
If the arrangement of local patterns over the regiorj is periodic with period (1, v, ), then
the power spectrum will have a high value at (S/uo, 8/vy) where s is the diameter of the

region. Thus if the patterns are closely spaced the high values of the power spectrum
will be spread out far from the region. Rosenfeld et al (1980) suggests that

2n

Fi(r)= f |F (4, v)|*d0 and

0

¢
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F,(0) = j |F (u, v)‘[zdr
0
can be used as ‘indices’ of texture.

3.11 Local property statistics

The directional difference of averages taken over adjacent non-overlapping neighbour-
hoods is another index of texture. Let A"(x, y) denote the average of gray levels

(f(x, yys) in a neighbourhood of radius r centred at (x, y); then a difference of non-
overlapping A’s in direction 6 is defined by

D"9(x, y) = AV (x +rcos §, y + rsin )

— A" (x —rcos B, y —rsin 6).

If the texture is fine-grained D will have high values for small values of r.

Joint gray level statistics: Joint frequency distribution of gray levels at various
separations is another index of texture.

3.12 Reduction in the number of bands

The newer satellites have increasing number of spectral bands (for example LANDSATS 2
& 3 had 4 bands while LANDsAT-4 has 7 bands). While all these bands are required for
different applications it is reasonable to suppose that a subset/combination of them
would suffice for anyone field of application. The optimum way of selecting linear
combinations of these bands so that the number of such combinations necessary to give
amajor percentage of the total information is much less than the total number of bands,
is called the Karhunen-Loeve transformation or principal components transform-
ation. This transformation involves the following steps:

Step 1: Obtain the covariance matrix of the pattern samples

Step 2. Obtain the eigenvalues and eigenvectors of this matrix

Step 3: Choose the k(k < N = number of bands) eigenvectors corresponding to the
k largest eigenvalues and form a transformation matrix.

Step 4. Transform the N-dimensional pattern vectors into k-dimensional vectors by
using the transformation matrix.

In practice it is usually found that the first two principal components account for nearly
959 of the information.

4. State of Indian efforts in data processing in remote sensing

Indian scientists and engineers working in different academic institutions in India have
made significant contributions in the fields of pattern recognition and image processing

(£ngg. Sci)4 .
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in the last two decades. The Indian Institutes of Technology (uts), Indian Institute of
Science (nsc), Indian Standards Institution (1s1), etc., have a sound base in the theory
and applications of pattern recognition techniques. The setting up of NRsa and the
commencement of remote sensing activity at ur, Bombay (in addition to the existing
RSA at sac) gave a fillip to this work. The supervised classification techniques like the
maximum likelihood estimation and nonparametric techniques like 1SODATA have
become operational and are used in a routine manner in India. Techniques like fuzzy
and syntactic classification are still in an experimental stage in this country. The
position regarding data storage, creation of data bases, integration of different kinds of
remotely-sensed data, etc., is not entirely satisfactory. Considerable work needs to be
done in these areas in this country.

5. Conclusions

Digital data processing remote sensing has the advantage of speed and statistical
analysis. While the standard processing includes error corrections and supervised
classifications, special image processing has become a common feature for better image
interpretation. Karhuan-Loeve transformation helps to a great extent the data
reduction.
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