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THE DISTANCE BETWEEN THE EIGENVALUES
OF HERMITIAN MATRICES

RAJENDRA BHATIA

ABSTRACT. It is shown that the minmax principle of Ky Fan leads to a quick

simple derivation of a recent inequality of V. S. Sunder giving a lower bound

for the spectral distance between two Hermitian matrices. This brings out a

striking parallel between this result and an earlier known upper bound for the

spectral distance due to L. Mirsky.

Let A be a Hermitian matrix of order n and let A ¿(A) denote the vector in Rn

whose coordinates are the eigenvalues of A arranged as A[i](A) >••'•> A[n](A).

Let A(i)(A) < ■ • ■ < A(n)(A) be the increasing rearrangement of these eigenvalues

and At (A) the vector with coordinates A(j)(A), j = 1,2,..., n. The same symbols

Xi [A) and Af (A) will also denote the diagonal matrices which have as their diagonal

entries the components of the vectors Af [A) and Af (A), respectively. Let || • || denote

any unitarily invariant norm on the space of matrices. (See [4].)

This note is concerned with the following result:

THEOREM. Let A and B be Hermitian matrices. Then for every unitarily in-

variant norm we have

(1) Ul(A) - Aj (ß)|| < \\A - B\\ < \\Xt (A) - AT(5)||.

The first inequality in (1) appeared in a paper of Mirsky [4], who used a famous

result of Lidskii and Wielandt to derive it. The second is proved in a recent paper

of Sunder [5]. I give here another proof of the second inequality which has two

attractive features: It is very short and it proceeds on exactly the same lines as

the well-known proof of Lidskii, Wielandt and Mirsky for the first inequality. For

illumination, I indicate how both inequalities follow from the same principle.

It is an easy consequence of the minmax principle of Wielandt that for any choice

1 < ix < ■ ■ ■ < ik < n of k indices we have

(2) E am (A+B) < EA w w + EA w (ß)
3 = 1 3 = 1 3 = 1

for all k — 1,2,..., n, with equality holding for k = n. (See [3, p. 242].)

Writing x < y to mean that the vector x is majorised by the vector y in Rn (see

[3]), we get from inequalities (2)

(3) Xí(A + B)-Xi(B)<Xí(A).

With a change of variables, this gives

_ Xi(A)-Xl{B)<Xl(A-B).
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Now the first part of the Theorem follows using standard characterisations of ma-

jorisation together with properties of symmetric gauge functions and unitarily in-

variant norms. This is the well-known proof of Mirsky [4].

Now note that from (2) we can also conclude

(4) Xl(A + B)<Xl(A) + Xl(B).

In fact, for this conclusion the full force of (2) is not needed. It suffices to use

the special case (ix, ■ ■ ■ ,ik) = (1,... ,£) which is much easier to prove using the

minmax principle of Ky Fan [2].

Replace B by —B in (4) and note that A¿(—B) = — Af (B). This gives

Xl(A-B)<Xl(A)-Xï(B).

But this implies

(5) (\Xli](A-B)\,...,\X[n](A-B)\)

<w  (|A(1](A) - XW{B)\,..., \X[n](A) - A(n)(B)|)

where -<w stands for weak majorisation [3, p. 116].

Let S[jj {A) denote the jtb singular value of A. Let || A||fc = S[ij (A) +-h s[k] (A)

for fc = 1,2,...,n. Then (5) can be restated as ||A-ß||fc < ||Aj(A)-At(i?)||fc, k =

1,2,... ,n. So the second inequality in (1) holds for this special class of norms and

hence, by a well-known theorem of Ky Fan, for every unitarily invariant norm. (See

[4]-)
It should be remarked that Sunder's paper contains a stronger result in that it

also establishes an analogue of the second inequality in (1) for the case when A, B

and A — B are all normal. Under these conditions an analogue of the first inequality

in (1) has been established in [1].
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