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ANALYSIS OF SPECTRAL VARIATION AND SOME INEQUALITIES
BY
RAJENDRA BHATIA!

ABSTRACT. A geometric method, based on a decomposition of the space of complex
matrices, is employed to study the variation of the spectrum of a matrix. When
adapted to special cases, this leads to some classical inequalities as well as some new
ones. As an example of the latter, we show that if U, V are unitary matrices and X is
a skew-Hermitian matrix such that UV~ ! = exp K, then for every unitary-invariant
norm the distance between the eigenvalues of U and those of V is bounded by || K ||
This generalises two earlier results which used particular unitary-invariant norms.

1. Introduction. Let M(n) be the space of all n X n (complex) matrices. An
element A of M(n) will also be thought of as a linear operator on the space C". A
norm || - || on M(n) is said to be unitary-invariant if || All = |[UAV || for any two
unitary matrices U and V. Two important examples of such norms are the Banach
norm || - || g, which is the usual supremum norm of an operator acting on C”, and
the Frobenius norm || - || , defined as || 4|l p = (tr A*A4)'/?, where, tr denotes the
trace of a matrix.

We denote by Eig 4 the unordered n-tuple consisting of the eigenvalues of 4, each
counted as many times as its multiplicity. Let D(A) be a diagonal matrix whose
diagonal entries are the elements of Eig A. For any norm on M(n) define

l(Eig 4, Eig B)l| = m;n ID(A) — WD(B)W™!|

where the minimum is taken over all permutation matrices W. We can think of
Eig A4 as an element of C"/S,, where S,, is the group of permutations on n symbols.
Then ||/(Eig 4, Eig B)I| defines a distance between Eig 4 and Eig B in this space.

A natural question of considerable interest and importance is: If 4 and B are close
to each other in the norm || - |I, then how close are Eig A and Eig B in the above
distance?

If A, B are Hermitian matrices, we have for all unitary-invariant norms the
inequality

(1) l(Eig 4, Eig B)ll < ll4 — BIl.
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324 RAJENDRA BHATIA

For the Banach norm this is a consequence of the Courant-Fischer-Weyl min-max
principle. (See [17].) A generalisation of this principle due to Wielandt [18] leads to
the conclusion that (1) holds for all unitary-invariant norms. This fact is stated
explicitly, as such, by Mirsky [12].

Hoffman and Wielandt [11] proved that the inequality (1) is also satisfied when A4
and B are any two normal matrices and the norm is the Frobenius norm. It has been
conjectured (see, e.g., [12]), but not yet established, that this would be true for other
unitary-invariant norms as well.

Let U, V be unitary matrices and let K be a skew-Hermitian matrix such that
UV~ ! = exp K. Then from the theorem of Hoffman and Wielandt cited above, it
follows that

(2) I(Eig U, Eig V)l < I KIl,

if the norm is the Frobenius norm. In [14] Parthasarathy showed that (2) also holds
for the Banach norm.

For arbitrary matrices, results on this question have been obtained by Ostrowski
[13], Henrici [10] and, recently, by Mukherjea, Friedland and this author in [3] and
[4].

This note has two objects. First, a geometric method for studying this problem is
introduced, which is substantially different in approach from the ones hitherto
employed. Then this method is used to obtain some inequalities. We show that (2)
holds not only for the Banach and the Frobenius norms as stated above, but also for
other unitary-invariant norms. We obtain a new proof of (1) for Hermitian matrices
as well. This unified approach is likely to lead to some other results. We give, at the
end, an adumbration of the possibilities as well as the attendant difficulties.

2. Unitary-invariant norms. Comprehensive surveys of the theory of unitary-in-
variant norms have been provided by Schatten [15], Mirsky [12], and Gohberg and
Krein [9]. Some facts pertinent to our needs are briefly summarised here.

Let (A4*A4)'/? denote the positive square root of the positive matrix A*4. The
eigenvalues of this matrix are called the singular values of A or the S-numbers of A.
We write these numbers as

51(4) > 5,(4) > -+ > 5,(4) >0,
It was shown by von Neumann [16] that every unitary-invariant norm arises as a
“symmetric gauge function” of these numbers. Special examples of such functions

are the sums of the first k of these numbers. These lead to the Ky Fan k-norms,
defined as

k
l4ll,= 2 s5;(4), k=12,...,n.
j=1

In the sequel, a k-norm shall always mean one of these norms. These norms occupy a
distinguished position among the unitary-invariant norms. It was shown by Ky Fan
[8] that an inequality of the type || 4|l < || B, where 4 and B are two matrices, holds
for all unitary-invariant norms if it holds for these special norms. (See [9, p. 72].) For
k = 1, the k-norm is simply the Banach norm || - || g.
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ANALYSIS OF SPECTRAL VARIATION 325

Another important class of unitary-invariant norms is the class of Schatten
p-norms defined as

lAll, = { 2 (s,(A))"}W.

j=1

For p = 2 this just gives the Frobenius norm || - || . We remark that the Frobenius
norm is the norm associated with an inner product on M(n) defined as (A4, B)=
tr B*A. This makes M(n) a Hilbert space. Also, note that if 4 is the matrix with
entries (a;;), 1 <i,j <n, then we have [ 4l = (, ;| a;; )"/~

Let P, P,,...,P, be a complete family of mutually orthogonal orthoprojectors in
C”. Define an operator € on M(n) as

e(4) = 3 PAP.
i=1

(In [9] this is called the diagonal-cell operator. Davis calls it the pinching of A by the
P,. In [5] he studies the properties of such operators and in [6] and [7] he obtains,
among other things, lower bounds for the distance between the eigenvalues of two
Hermitian matrices A and B in terms of the pinching operator corresponding to the
spectral subspaces of A.) For any 4 in M(n), C(A) is a block diagonal matrix
consisting of r diagonal blocks whose sizes are the ranks of the projections P,. It is
the matrix obtained from A4 by replacing the entries outside these blocks by zeroes.
In particular, this means that ||C(A)ll < || 4|l r. With the Banach norm, M(n)
becomes a C*-algebra and € is then a completely positive map and, hence, attains its
norm at the identity matrix. (See, e.g., [1].) Thus ||C|l 5 = 1 and hence [|C(A)ll z <
Il A1l 5. More generally, we have [9, Theorem 5.1, Chapter II]

K k
glsj(@(A)) < glsj(A), k=1,2,...,n.

In other words, the inequality

(3) Ie(4)ll < Il A4l
holds for all k-norms and hence, for all unitary-invariant norms.
If P,,..., P, are chosen to be the one-dimensional projections corresponding to the

standard orthonormal basis for C”, then the corresponding pinching operator takes
a matrix 4 = (a,;) to the matrix diag 4 whose diagonal entries are a;; and the rest of
whose entries are zero. So, the inequality (3) yields, in particular,

(4) lidiag Al < || Al

for all unitary-invariant norms.

Let A4 and B be two commuting matrices, i.e., let [4, B] = AB — BA = 0. Then
there exists a unitary matrix U such that UAU™! = T(4) and UBU™! = T(B),
where T(A) and T(B) are upper triangular matrices. If D(A4) and D(B) are the
diagonal parts of T(A4) and T(B) respectively, then the inequality (4) implies

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



326 RAJENDRA BHATIA

[ID(A) — D(B)Il < IT(A) — T(B)|l. Hence, we have for all unitary-invariant norms
the inequality

(5) ll(Big 4, Eig B)I < l4 — Bll, if[4, B] = 0.

3. A decomposition of M(n). Some elementary notions of differential geometry
will be used in this section. The text we refer to is [2].

Let GL(n) be the multiplicative group of all n X n invertible matrices. This is a
Lie group and has a natural adjoint action on its Lie algebra M(n). This action is
defined as 4 —» gAg~! for A € M(n), g € GL(n). The orbit of A under this action is
the set

O, = {gdg ': g € GL(n)}.
In other words, O, is the set of all matrices similar to A. This set is a smooth
submanifold of the manifold M(n). The tangent space to O, at the point 4 will be
denoted by T,0,. This is a linear subspace of M(n). Let Z(A) denote the com-
mutant of A in M(n), i.e.,, Z(A) = {X € M(n): [4, X] = 0}. The following proposi-
tion identifies 7,0, and its complement in the space M(n).

PROPOSITION 3.1. Let M(n) be the Hilbert space of n X n matrices with the inner
product (A, B)= tr B*A. Then, for every A € M(n), we have

T,0, = span{[4, X]: X € M(n)},  (T,0,)" =2Z(4%),
where L denotes the orthogonal complement of a subspace.

ProOF. Every differentiable curve in O, which passes through 4 can be written,
locally, as A(¢) = exp(tX)Aexp(-tX) for some X € M(n). Tangent vectors to O, at
A are obtained by differentiating such curves at 0:

(d/dt)|,=oM\(t) = XA — AX = [ X, A].
The space T,0, is precisely the span of these tangent vectors.
To prove the second part, note that B € (7,0,)" if and only if for all X € M(n)
we have
0=([4, X], B)=tr B¥(AX — XA)
= tr(B*4 — AB*)X = ([ B*, A], X*).
This is possible if and only if [ B*, A] = 0, i.e., if and only if B € Z(A4*). U
REMARK. We will be considering M(n) with other unitary-invariant norms too.

With any of these norms it is a Banach space. We will write the above decomposition
as
(6) M(n) = T,0, ® Z(4*),
with the understanding that the symbol © denotes an orthogonal direct sum when
we are thinking of M(n) as a Hilbert space with the Frobenius inner product, and it
denotes an ordinary vector space direct sum otherwise.

Recall that a matrix A is normal if and only if Z(A4) = Z(A4*). In this case we can
write
(7) M(n) = T,0, ® Z(A) if A is normal.
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Since similar matrices have identical spectra, we have
(8) i(Eig 4,Eig B) =0 if B€ O,.

Relations (5), (7) and (8) suggest that the variation of the spectrum of a normal
matrix can be estimated componentwise along two complementary directions. To
make this idea precise we use the following lemma.

LEMMA 3.2. Let X be a Banach space and let ¢ be a real-valued function of class C'
on X. Let y: [0,1] > X be a piecewise C' curve. Suppose the following conditions are
satisfied:

@) ¥(0) = xo, Y(1) = x, and ¢(x,) = 0.

(ii) For every t in [0, 1], the space X (which is also the tangent space T, X in our
notation) splits into a direct sum X = T\ ® T3 in such a way that

) —
o =0 forallvV € T),

VP < [|[vP]  forall v® € T2).

(Here v and v@¢ are thought of as the directional derivatives of ¢ in these two
directions.)

Let P, P® denote the complementary projections in X onto the spaces T\}) and
T respectively. Let y'(t) denote the derivative of y at t. Then we have,

(1)
L p@yr
o(x)) < [1PDy(:)ll dr.
0

PROOF. We have
o(x1) = [Y()(@)dr = [ (BOv(D)(9) ds + [ (PP (1))
<0+ [IPPY(1)ll ae
0

by the hypothesis (ii). O

REMARK. The statement of this lemma remains valid if ¢ is C' on a dense open
subset G of X and v is a piecewise C' curve which intersects the complement of G
only at a finite number of points. In such a case we say that ¢ is generically C' and y
is a curve adapted to ¢.

Let (a,,...,a,) be a fixed point in C” and let (x,,...,x,) be any arbitrary point in
C”". Let o be an element of the permutation group S,. Arrange the numbers
| x; — a4y | in a descending order of magnitude and let this new enumeration of
these numbers be | x{ — a, )|, i =1,2,...,n. Let

k
fk(xl""’xn) = fgg igl | x; — a;(i)l .
For k =1,2,...,n, these are well-defined functions on C”". These functions are
invariant under the action of S, on C” and hence they are well defined on the
quotient space C"/S,. These functions are differentiable except at the set F of points
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which satisfy either of the two conditions:

(1) There exists a permutation ¢ such that the numbers | x; — a, ;| are not all
distinct.

(2) The minimum in the definition of f, is attained at two different permutations.

It is clear that the set F is a nowhere dense closed subset of C”. So the functions f,
are generically C'.

Now let 4, be a fixed matrix with eigenvalues a,,...,a, and let

o,(4) = II(Eig 4,, Eig 4)ll ;.

By the definition of the k-norms and by the above comments these functions are
generically C'. (Matrices whose eigenvalues constitute n-tuples which belong to the

set F mentioned above form a closed nowhere dense subset of M(n). Outside this set
the ¢, are C' functions.) With this knowledge, we can prove

THEOREM 3.3. Let M(n) be the space of matrices with any of the k-norms || - ||. Let
A: [0, 1] = M(n) be a piecewise C' curve with the following properties:

(i) A(t) is normal forall0 <t < 1,

(ii) A©) = Ao, A(1) = 4,,

(iii) A(¢) is adapted to the generically C' function (A) = ||(Eig A4,, Eig A)Il.

Let PV and P® denote the complementary projection operators in M(n) correspond-
ing to the direct sum decomposition M(n) = T, O, ® Z( A(t)). Then

1
9) ll(Eig A,, Eig 4,)ll </0 | P@A(¢)Il dt <f0‘||A'(z)|| dr,

where A'(t) denotes the derivative of A(t).

PrOOF. We apply Lemma 3.2 to the Banach space M(n), the function ¢(A4) and
the curve 4(?). Let T{)) = Ty ,O4y» Tith = Z(A(2)). Choose and fix a point s in
[0, 1]. For every B € Oy, we have ¢(B) = ¢(A(s)). Hence, the derivative of @ in
the direction of O is zero, i.e.,

vDp =0 for all vV € T{),.
For A € M(n), define y(A) = |I(Eig A(s), Eig 4)ll, and put
h(A) = 9(A(s)) + ¢(A4) = II(Eig 4,, Eig 4(s))Il + |I(Eig A(s), Eig A)Il.
Note that p(A(s)) = h(A(s)) and ¢(A4) < h(A) for all 4 in M(n). Hence,
vPp < v@h  forallv® € TQ,.

(In fact, this last inequality holds for the derivative in any direction and so, in
particular, for the direction T(?),.) But since, for a fixed s, p(A(s)) is constant, we
have v®@h = v@y for all v® € T{2). Now recall that T,J)) = Z( A(s)) and hence we
have, from the inequality (5), that

0@y < llo@| for all o® € 7).

So we have 0@ < ||v@ || for all v® € T(2)). Since s was any arbitrary point in [0, 1],
we obtain, from Lemma 3.2, the inequality

1
o(4)) < [NBPA(2)ll dr.
0
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This proves the first inequality in (9). To prove the second one we claim that
| P@BIl < | BI, for all B € M(n). Indeed, P® is the projection on Z( A(¢)) along
the complementary space T,,JO,. Since A(¢) is normal and U Z(A)U ' =
Z(UA(t)U™") for every unitary U, we can assume, without loss of generality, that
A(t) is diagonal. Then Z( A(¢)) consists of block-diagonal matrices and P®B is just
the pinching of B by the spectral projections of A(¢). Our claim, therefore, follows
from the inequality (3). This proves the theorem completely. O

We deduce some explicit estimates as corollaries. First note that inequalities of the
type (1) and (2) would be valid for all matrices if they hold on a dense subset. By
perturbing the matrix 4 by a small amount, if necessary, we may assume that A4 lies
in the set on which ¢ is C'. In the next few paragraphs we will make this assumption
without mentioning it. In the same way, for the sake of brevity, a curve passing
through A4, will mean a curve adapted to the function ¢(A4) = ||(Eig 4,, Eig 4)Il.

COROLLARY 3.4. Let Ay, A, be Hermitian matrices. Then for all unitary-invariant
norms, we have

(10) l(Eig 4,, Eig A))ll <14, — 4]l

Proor. The curve A(t) = A, + t(A, — A,) satisfies the conditions of the theorem.
Note that A’(t) = 4, — A,. So, the inequality (10) holds for all the k-norms and
hence, it holds for all unitary-invariant norms. [

COROLLARY 3.5. Let U,, U, be unitary matrices and let K be a skew-Hermitian
matrix such that UU; ' = exp K. Then for all unitary-invariant norms, we have

(11) l(Eig Uy, EigU)Il < IIK Il

ProOF. The curve U(t) = (exp tK ), joins U, and U, and satisfies the conditions
of the theorem. We have U’(¢) = K(exp tK)U, and hence |U'(¢)ll = || K || for every
unitary-invariant norm. As before, the conclusion follows. [

REMARK. The last inequality in (9) is strict whenever the Lebesgue measure of the
set {t: IIPPA'(¢)Il < | A’(1)Il} is positive. When the Frobenius norm is being used
this condition is equivalent to saying that P{V4’(¢) # 0 on a set of positive Lebesgue
measure. Thus, for the Frobenius norm, the inequality (10) is strict whenever
[A4y, 4,1 # 0 and the inequality (11) is strict whenever [U},, U;] # 0.

COROLLARY 3.6. Let A, and A, be normal matrices such that [ A}, A] is skew-
Hermitian, i.e. Ay — A, is also normal. Then for all unitary-invariant norms, we have

II(Big Ao, Eig 4,)ll < 14, — 4, .

ProOF. Under the hypothesis, it is easy to see that the path 4, + 1(A4, — A,) lies
entirely within the set of normal matrices. The proof is then the same as that of
Corollary 3.4. O

REMARKS. The above corollaries give some old and some new inequalities.
However, an answer to whether the inequality of Corollary 3.6 is true for all normal
matrices still eludes us. The problem is that of finding a “good” path linking two
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normal matrices. The “obvious” path does not quite work. Nevertheless, the follow-
ing calculation is instructive. Let A, and 4, be normal matrices. Then we can write
A; = UD,U"", where U, are unitary and D, are diagonal matrices for i = 0, 1. Again,
let K be a skew-Hermitian matrix such that U\U; ' = exp K, and let U(z) =
exp(tK)U,. Let D(¢t) = D, + (D, — D,). Then the path A(z) = U(¢+)D(2)U(z)~"
connects 4, and A,. Differentiation leads to the equation A’(t) = [K, A(¢?)] +
U(t)(D, — Dy)U(¢)~". 1t is interesting to note that the first component lies in the
subspace T,,O,(,,- Hence,

I P24 (1)l < 1U(2)(Dy — Do) U(2)” 'l = 1D, — Dy .

This, however, merely leads to the tautological inequality [|(Eig 4, Eig 4,)ll < || D,
— Dyl

Finally, we remark that it is conceivable, though not yet clear, that this method
could be applied to nonnormal matrices as well. Of course, in this case, the
decomposition (7) is no longer valid. But we could go back to (6) and split Z(A*)
into two further components, Z(A) N Z(A*) and its complement. In the first of
these components the estimate (5) is still applicable; in the second, one has weaker
but explicit estimates derived in [3] and [4]. How to combine these is a problem that
needs further investigation.
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Ramanathan and V. S. Sunder for helpful comments.

NOTE ADDED IN PROOF. Consider the following example. Let

a=(1 ol =5 o)

Then ||(Eig A4, Eig B)ll = ||4 — B|l, in all Schatten p-norms for 1 < p < 2. Thus in
these norms the inequality (1) breaks down as one steps beyond Hermitian to
normal, or even to unitary, matrices. In view of this, Corollaries 3.5 and 3.6 of this
paper assume added significance. They might be the best results to expect if all
unitary invariant norms are simultaneously involved.
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