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The Sign Convention for Quadrature Parkinson Arrows 
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Time series analysis, which is basic to modem geophysical data processing, involves a choice 
between working with a time dependence of e +i'øt or e -i'øt. In published work the choice made is 
sometimes not explicitly stated, leaving ambiguity in the interpretation of complex quantities with 
quadrature parts. Parkinson arrows are used in geomagnetic induction studies to summarize 
anomalous vertical magnetic fluctuations at different observing stations and to indicate regions of high 
electrical conductivity. Such arrows are now regularly computed as real and quadrature pairs. The 
general convention is often adopted of 'reversing' a calculated real arrow so that it will point toward a 
conductivity increase, but for quadrature arrows the practice between various published papers has 
generally not been so consistent. The present paper demonstrates that consistent practice for reversing 
or not reversing quadrature Parkinson arrows is possible when the initial convention for time 
dependence is taken into account. A reversal practice is determined for interpretation in terms of a 
simple channeling model. A related matter is the definition of phase. Phase values are also generally 
ambiguous unless the time dependence used (e -i•øt or e +i•øt) is stated. 

INTRODUCTION Xr = •r (3) 

The spectral analysis of a time series of geophysical data 
involves the following steps: (1) the specification that time 
dependence shall be according to either e -iø•t or e +iø•t, where 
t denotes time, to denotes angular frequency, and i denotes 
-11/2, (2) the determination of a time-independent function 
which is complex with real (or in phase) and quadrature (or 
out of phase) parts, and (3) the understanding that the actual 
time series is given by the real part of its complex spectral 
representation. 

Thus the component fo•(t) at frequency to of a function f(t) 
may be written as 

fo,(t) = xe -iø•t 

Xq = --% (4) 

so that the sign of a quadrature coefficient changes if the time 
dependence specified changes between e -iø•t and e +iø•t. This 
dependence in the sign of a quadrature coefficient upon the 
time dependence initially specified may have far-reaching 
effects in the interpretation of quadrature coefficients them- 
selves and of any other parameters derived from them. 

THE BASIC EQUATION 

A Parkinson arrow as used in geomagnetic induction 
studies is based on an empirical fit of observed magnetic 
fluctuation data to an equation such as 

where X = Xr q- iXq, so that Z=AX+ BY (5) 

fo•(t) = (Xr q- ixq)(cos tot - i sin tot) 

-- (Xr COS tot + Xq sin tot) + i(x q cos tot - Xr sin tot) 

= Xr cos tot + Xq sin tot (1) 

taking only the real part of the right-hand side. 
Alternatively, fo•(t) may be written as 

f•(t) = •te +iø•t 

where • = ½r + i½q, SO that 

fo•(t) = (½r + i%)(cos tot + i sin tot) 

= (½r cos tot - ½q sin tot) + i(½q cos tot + ½r sin tot) 

= ½r cos tot- ½q sin tot (2) 

upon taking only the real part of the right-hand side. Because 
(1) and (2) hold over all t, 

where X, Y, and Z are the components of the magnetic 
fluctuation field in the usual observatory coordinates and A 
and B are constants, depending ideally only upon the local 
electrical conductivity structure of the earth. All the quanti- 
ties in (5) are frequency-dependent and complex, in that they 
may have real and quadrature components. 

The general question of induction arrow representation 
has been recently reviewed by Gregori and Lanzerotti [ 1980] 
(see also o9nes [1981]). These authors discuss also (5) above, 
pointing out its early statement by Rikitake and Yokoyama 
[1953], Schmucker [1964], and Everett and Hyndman [1967]. 
Denoting the real and quadrature components of X by Xr and 
Xq, so that 

X=Xr+ 

and similarly for Y, Z, A, and B, then (5) may be expanded 
into its real and quadrature parts as 
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Zr = ArXr - AqXq + BrYr- BqYq 

Zq = ArXq + AqXr + BrYq + BqYr 

(6) 

(7) 
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Fig. 1. Plan view of simple channeling model. 

Traditionally, in-phase response arrows are formed with a 
component Ar north and Br east and are then reversed to 
conform with Parkinson's [1962] convention. The question 
is: Should quadrature response arrows, formed with Aq 
north and Bq east, be reversed or not? 

It can be seen by inspection of (6) and (7) that changing the 
signs of all Xq, Yq, and Zq data values will change the signs of 
the Aq and Bq coefficients which these data values generate. 
Thus the signs of the Aq and Bq coefficients determined by 
any ensemble of X, Y, and Z data observations, and the 
direction of a quadrature Parkinson arrow thus formed with 
a component Aq north and Bq east, will depend, as shown in 
the introduction, on the specification of time dependence 
initially made in the necessary time series analysis. 

Therefore whether a quadrature Parkinson arrow should 
or should not be plotted reversed in direction will depend 
upon the convention taken for time dependence in the time 
series analysis process. 

A NOTE ON THE PHYSICS INVOLVED 

It is now appropriate to consider the physics involved in 
electromagnetic induction in the earth. There are many 
diagrams in the literature (most based on simple models of 
very high electrical conductivity) which demonstrate that an 
in-phase arrow formed with a component Ar north and Br 
east must be reversed in direction to point toward a good 
electrical conductor or the high electrical conductivity side 
of a conductivity contrast (see, for example, Gregori and 
Lanzerotti [1980, Figure 1]). Such models are qualitatively 
simple to visualize, because the vertical fluctuation compo- 
nent Z involved is entirely in phase with the horizontal 
fluctuation component (X, Y) with which it is associated, and 
so both components may be pictured as part of the same 
continuous magnetic flux line. 

The quadrature case is more difficult to visualize because 
of the quarter-cycle (i.e., rr/2) phase difference between an 
anomalous vertical-component fluctuation and its associated 
quadrature horizontal-component fluctuation, which means 
that both components cannot be represented by the same 
continuous magnetic flux line. In considering a simple induc- 

tion model for quadrature arrow considerations, therefore, 
use will be made of a basic theoretical result (derived, for 
example, by Cagniard [1953, equations 1 and 5]) concerning 
electromagnetic induction at the surface of a uniform half 
space. The result is that the phase of the surface magnetic 
field is retarded by an angle of rr/4 with respect to that of the 
telluric field, where the electric field E is taken positive in 
the horizontal x direction, the magnetic field Y positive in the 
horizontal y direction, and x, y, and z form a right-handed 
system with z positive vertically downward. This phase 
relationship, to form the basis of a simple model to be 
discussed in the next section, is shown in Figure 2 below. 

Cases more complicated than the case of a uniform half 
space are often solved individually; for example, $chmucker 
[1970, p. 23] quotes the result that superficial eddy currents 
have a marked phase lead relative to the horizontal magnetic 
fields inducing them and gives an example [$chmucker, 
1970, p. 78, Figure 35c] where the anomalous vertical field 
fluctuations have a phase lead of 70 ø relative to the inducing 
regional horizontal variations. 

ARROWS FOR A SIMPLE CHANNELING MODEL 

Imagine now a situation where near-surface electric cur- 
rents are channeled and concentrated as shown in Figure 1. 
On a regional basis the currents obey the result that the 
telluric voltages lead by rr/4 the magnetic field variations 
which induce them. In Figure 1 an electric current flowing 
north associated with and in phase with positive E causes in 
area I an upward Z field, which is negative by definition. In 
area II the same electric current causes a downward or 

positive Z field. The relative phases of the signals are as 
shown in Figure 2, where the E signal with a phase lead of 

Y 

Er 

Eq 

I 

I 

II 

II 

- 'r/' - Tr/2 0 'r/'/:> 'r/' 3'r/'/:> • 5W'/Z 

(t) 

Fig. 2. Relative phases of the waveforms for the channeling 
model of Figure 1. Amplitude scales are arbitrary. Z • and Z II denote 
the vertical fluctuation signals for areas I and II, respectively, and 
the subscripts r and q denote real and quadrature components. 
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•r/4 is decomposed into a real (or in phase) component Er and 
a quadrature component Eq. 

Inspection of Figure 2 indicates the signs which would be 
determined for the real and quadrature parts of the coeffi- 
cients A and B of (5) for observing sites in areas I and II of 
Figure 1. For simplicity, assume the model is such that A = 0 
at both sites, so that (6) and (7) simplify to 

Zr = BrYr (8) 

Zq = BeYr (9) 

as the phase zero is defined to make Ye zero. The two 
possible time dependences, e -i•øt and e +i•øt, must be consid- 
ered separately. 

First consider a site in area I. 

Case 1: Time Dependence e -i•øt 

Using the notation given in the introduction, for area I the 
signal Zr I will give a negative value for Xr (as Zr I is of the 
form -cos wt rather than + cos wt). Thus the Br value (which 
by equation (8) links Zr and Yr) will for area I be negative, 
and an arrow formed with component Br to the east will 
point westward. Thus such an arrow should be reversed to 
point to the line of current channeling, consistent with the 
tradition for in-phase Parkinson arrows, as expected. 

The Zq I waveform for area I (being of form +sin •ot) will 
give a positive value for Xq. Thus the Bq value for area I will 
be positive, and an arrow formed with component Bq to the 
east will point eastward: toward the line of channeling, 
unreversed. 

Case 2: Time Dependence e +i•øt 

With this time dependence the Zr I value for •r is still 
negative, and the Zq I waveform is now negative also. It thus 
follows that both Br and Bq arrows should be reversed to 
point toward the line of channeling. 

Area H 

Area II may be considered similarly, and thus the summa- 
ry of results in Table 1 compiled. 

Table 1 thus shows that an in-phase arrow, formed with 
cod•ponents Ar north and Br east, should be reversed to 
point toward the line of channeling of the model of Figure 1, 
independent of which time dependence is used. A quadra- 
ture arrow, however, with components Aq north and Bq east, 
will point toward the line of channeling unreversed for a time 
dependence of e -i'øt but must be reversed to point toward 
the line of channeling for a time dependence of e +i•øt. 

Induction models more complicated than the case in 
Figure 1 may need to be solved individually for rules 
concerning them to be determined regarding the reversal of 
quadrature arrows. However, the case in point demonstrates 
that care with time dependence is always necessary. 

THE ASSOCIATED DEFINITION OF PHASE 

Given spectral representations of data as specified in the 
introduction, it is customary to define a phase angle as being 
the arc tangent of the quotient of a quadrature coefficient 
divided by a real coefficient. 

From equation (1), for time dependence e -i'øt, a phase 
angle 0 may thus be defined as 

0 = arctan (Xq/Xr) (10) 

which, taking the respective signs of Xq and Xr into account, 
defines 0 over a range of 2•r; though if the respective signs of 
Xe and Xr are ignored, 0 is defined only over a range of •r. 
From equation (2), for time dependence e +i'øt, a phase angle 
• may be defined as 

•b = arctan (½q/½r) (11) 

where again taking the respective signs of ½q and ½r into 
account, •b is defined over a range of 2•r; otherwise over •r. 
Corresponding .to (10) and (11), the two phase angles 0 and •b 
are not equal, but for the same function f•(t) they have a 
relationship which from (3) and (4) can be seen to be 

O+ qb = 2n•r 

when the respective signs of X•, Xr, ½q, and ½r are taken into 
account to determine the quadrant of an arc tangent, and 

TABLE 1. Summary of Results for Areas I and II in Figure 1, Concerning Rules for Reversing (or 
Not Reversing) Real and Quadrature Parkinson Arrows 

Area 

I and II I I II II 

Signal Y 
Waveform in Figure 2 cos •ot 

For e -ia•t analysis 
Sign of X component 
Component and direction 

of computed B 
Direction of conductor 

Action for arrow to point 
towards conductor 

For e +ia•t analysis 
Sign of ½ component 
Component and direction 

of computed B 
Direction of conductor 

Action for arrow to point 
towards conductor 

-cos wt sin wt cos wt -sin wt 

Xr positive Xr negative Xq positive 
Br west Bq east 

Xr positive Xq negative 
Br east Bq west 

east east west west 

reverse do not reverse* reverse do not reverse* 

4•r positive 4•r negative 4•e negative 
Br west B e west 

½r positive 4•q positive 
Br east Bq east 

east east west west 

reverse reverse* reverse reverse* 

*Cases where 'reversing' or 'not reversing' depends upon time dependence used. 
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0 

-47r -$7rK,-27r -7rkx 0 4•' • 

-4• 

Fig. 3. Relationships between the two phase angles 0 and 6 
defined by equations (10) and (11). The solid lines are for 0 + 6 = 
2n•, and the solid and dashed lines are for 0 + 6 = n•, where n = 0, 
!l,!2, !3,.... 

O + cb= nrr 

when only the resultant signs of Xq/Xr and $q/$r are taken into 
account (where n = 0, ___ 1, +2, +3, ß ß .). These relationships 
are shown in Figure 3. 

Because (10) and (11) and Figure 3 demonstrate that 
quoted phase values are generally ambiguous unless the 
basic time dependence which underlies them is specified, it 
is relevant to examine two examples of how time series 
analysis according to either e -iø•t or e +iø•t may be carried out 
for a time series f(t) which has been recorded from time t• to 
time t• + T. 

Example 1: Implied Time Dependence of e 

The signal is expanded as a Fourier series 

= • + n• • an cos • + bn sin f(t) 2 = r (12) 

where an and bn, the Fourier cosine and sine coefficients, 
respectively, are given by 

dt n =0, 1,2,3,-. ß 1 ft tl + T nrrt = f(t) cos • an • • r 

1 It ti + T nrrt bn = • f(t) sin • • T 
dt n= 1,2,3,... 

Consistent with the custom given above, the phase 0 of the 
signal at frequency nrr/T is defined by 

0 = arctan (bn/an) 

Expanding the expression cos (wt - O) as cos wt cos 0 + sin 
wt sin 0 and comparing it with (12) above shows that angle 0 
thus specifies the 'phase lag' of a sinusoidal signal 

f(t) = cos (wt - O) 

as shown in Figure 4. Note that making such a phase lag 0 
more positive shifts the signal to a later real time. 

Example 2: Implied Time Dependence of e +iø•t 

An equally common method of spectral analysis is to 
compute the Fourier transform of the signal f(t) according to 
some definition such as 

g(w) = f-•oo f(t)e-iø•t dt (13) 
(where because of the truncation of the basic signal the 
integral will in fact be taken from t = t• to t - t• + T) and 
then to define the phase • at frequency w as being given by 

• = arctan [gq(w)/gr(w)] 

where gr(oO) and gq(w) are the real and quadrature compo- 
nents of g(w), that is, 

g(w) = gr(w) + igq(W) 

The transform definition (13) implies the inverse transform 

f(t) = • g(w)e ia't do (14) 
for which, at frequency w, the real part of g(w)e iø•t is gr(w) 
cos wt - gq(w) sin wt, of form cos (wt + •b) for •b as defined 
above. The phase angle •b is thus a 'phase lead' as shown in 
Figure 4, and making •b more positive shifts a waveform to 
an earlier real time. 

Discussion 

Because an expansion in terms of Fourier coefficients (as 
in example 1) is suitable for a periodic signal, whereas 
expression in terms of a Fourier transform (as in example 2) 
is suitable only for an aperiodic signal, in principle, the two 
methods should be mutually exclusive. In practice, howev- 
er, commonly either one or the other method may be used 
because geophysical signals are recorded for finite lengths of 
time, and the significance of any truncation that a signal may 
have suffered is often a matter of individual physical inter- 
pretation. 

As both methods may thus be applied to the same data, it 
is therefore appropriate to note with Everett and ttyndman 
[1967], Schmucker [1970], and Lilley [1975] that for the 
Fourier transform as defined in (13), 

f(t) 
ß 

wide 

• +•ot 

f(t) = cos(rot-O) 

f(t) 

this interval is .,.• .,de• ? 
_• • +•ot 

Fig. 4. Demonstration of the difference between 'lag' (0) and 
'lead' (40 phases defined by equations (10) and (11). 
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dtl 

f(t) cos tot dt (15) 

I tl+T gq(to) = -- f(t) sin tot dt 
dtl 

(16) 

al. [ 1973] to isolate the effect associated with closely located 
conductors in southern Africa: the Karroo sedimentary 
basin and the deep conductivity body under the Cape fold 
belt. Gothe et al. [1977] showed that while it might be 
possible to calculate theoretically the arrows resulting from 
the combined effects of two conductors, the inverse task of 
decomposing observed arrows into parts resulting from the 

where the negative sign (which arises from the negative conductors separately is not possible, even were the strikes 
exponent of e -i•øt in (13)) may cause confusion if it is not • of the two conductors known. The examples quoted above 
guarded for, as it causes the quadrature part of the full 
Fourier transform to be the negative of a traditional Fourier 
sine transform. 

EXAMPLES OF PLOTTING CONVENTIONS 

IN SOME EARLIER WORK 

Schmucker [1964, 1970] and Everett and Hyndman [1967] 
in definitive papers on the computation of transfer functions 
(A and B) took Fourier transforms with the form of that in 
(13) above, thus implying a time dependence in the data of 
e +i•øt. Then, as discussed above, phase values computed as 
arc tangents of quadrature parts of transforms divided by 
real parts are phase leads. 

Real arrows formed by plotting Ar north and Br east were 
reversed by Schmucker [1970] to conform to Parkinson's 
[1962] convention and so to point toward good conductors. 
Schmucker's [1970] quadrature arrows, formed by plotting 
Aq north and Bq east, were not reversed and were considered 
to point away from good conductors (consistent with Table 
1), so that substantial quadrature arrows opposed to real 
arrows were taken to suggest that near-surface conductivity 
anomalies were involved. 

Cochrane and Hyndman [1970, 1974] and Hyndman and 
Cochrane [1971] formed real arrows from the negative of the 
real transfer function components, and quadrature arrows 
from the positive of the quadrature transfer function compo- 
nents. The 1971 and 1974 papers by these authors demon- 
strate both conventions for quadrature arrows, as may be 
seen by comparing the arrows for the common sites of the 
two papers. 

Cough et al. [1973], in presenting quadrature arrows for 
the South African region, follow the convention of 
Schmucker [ 1970]; for consistency between real and quadra- 
ture arrows, Cough et al. [1974] and Alabi et al. [1975] 
reverse quadrature arrows. 

EXAMPLES OF SIGNIFICANT APPLICATIONS 

OF QUADRATURE ARROWS 

A rapid spatial variation of real arrows coupled with 
pronounced quadrature arrows was interpreted by Cochrane 
and Hyndman [1970] as suggesting superficial sedimentary 
structures to the east of their station at Grand Forks in 

western Canada. Similarly, Schmucker [1970] interpreted 
substantial quadrature arrows along the western and eastern 
slopes of the Sierra Nevada in the southwest United States 
to indicate concentrations of shallow currents in the San 

Joaquin Valley to the west of the Sierra Nevada and also 
along the eastern slopes of the mountains. 

In addition to establishing the nature or type of a conduc- 
tor as being either reactive or resistive, the separation of 
induction effects into real and quadrature parts can also 
prove advantageous in identifying distinct conductors which 
might exist near each other. The orientation and frequency 
dependence of real and quadrature arrows enabled Cough et 

illustrate that separation of combined conductors may be 
possible, however, by examination of real and quadrature 
Parkinson arrows, for those cases where one conductor has 
a predominantly real or in-phase response and the other 
conductor a predominantly quadrature response. 

A further application of quadrature arrows was that of 
Alabi et al. [1975] in analyzing data from an array study in 
the North American central plains. Northern recording 
stations were close to the auroral electrojet, and source field 
bias was considered to dominate real arrows computed, 
directing them away from the flow paths of ionospheric 
current. Computed quadrature arrows, however, were much 
less affected by source field bias and (reversed in this 
particular case) were used to show the presence and position 
of a major electrical conductor running through the array 
area. 

A balancing cautionary note should be added regarding the 
possible vulnerability of transfer function estimates to the 
effects of source field bias, even at mid-latitudes. Recent 
discussions of this problem, and precautions for guarding 
against it, are given by Anderson et al. [1978], Beamish 
[1979], and Cough and de Beer [1980]. 

CONCLUSIONS 

Consistent with reversing an in-phase Parkinson arrow so 
that it will point to a good electrical conductor, results for 
quadrature Parkinson arrows should carry a clear statement 
of the time dependence upon which they are based. 

For a time dependence of e -i•øt (as implied, for example, 
in a simple Fourier series expansion) a quadrature Parkinson 
arrow unreversed points toward a simple near-surface chan- 
neling like that of Figure 1. 

For a time dependence of e +i•øt (as implied, for example, 
in a simple Fourier transform like equation (12)) a quadrature 
Parkinson arrow should be reversed to point toward a simple 
near-surface channeling like that of Figure 1. 

Similarly, phase values quoted may be ambiguous unless 
the time dependence upon which they are based is stated. 
Generally, phases associated with e -i•øt will be lags, and 
phases associated with e +i•øt will be leads. 
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