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Abstract

Background: Simple sequence repeats (SSRs) are found in most organisms, and occupy about
3% of the human genome. Although it is becoming clear that such repeats are important in
genomic organization and function and may be associated with disease conditions, their
systematic analysis has not been reported. This is the first report examining the distribution and
density of simple sequence repeats (1-6 base-pairs (bp)) in the entire human genome.

Results: The densities of SSRs across the human chromosomes were found to be relatively
uniform. However, the overall density of SSR was found to be high in chromosome 19. Triplets and
hexamers were more predominant in exonic regions compared to intronic and intergenic regions,
except for chromosome Y. Comparison of densities of various SSRs revealed that whereas trimers
and pentamers showed a similar pattern (500-1,000 bp/Mb) across the chromosomes, di- tetra- and
hexa-nucleotide repeats showed patterns of higher (2,000-3,000 bp/Mb) density. Repeats of the
same nucleotide were found to be higher than other repeat types. Repeats of A, AT, AC, AAT,
AAC, AAG, AGC, AAAC, AAAT, AAAG, AAGG, AGAT predominate, whereas repeats of C,
CG, ACT, ACG, AACC, AACG, AACT, AAGC, AAGT, ACCC, ACCG, ACCT, CCCG and
CCGG are rare. 

Conclusions: The overall SSR density was comparable in all chromosomes. The density of
different repeats, however, showed significant variation. Tri- and hexa-nucleotide repeats are
more abundant in exons, whereas other repeats are more abundant in non-coding regions. 
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Background 
Microsatellites or simple sequence repeats (SSRs) are

tandemly repeated DNA sequences found in varying abun-

dance in most genomes [1,2]. These repeats have been exten-

sively used for genetic mapping and population studies [3].

SSRs also provide molecular tools to understand spatial rela-

tionships between chromosome segments, which in turn, aid

in analyzing temporal relationships between species and

genera [4]. On the evolutionary timescale SSRs are dynamic,

as they undergo replication slippage, a mutation event that

aids in their expansion or contraction. It is also suggested

that SSRs undergo a life cycle - they are born, they grow and

finally they die. The entire life cycle of an SSR may span tens

or even hundreds of millions of years [5,6]. A growing

number of neurological disorders are found to be the conse-

quence of the expansion of a particular class of repeats, the

trinucleotide repeats [7-9]. In humans about 3% of the

genome is occupied by SSRs [10].
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SSRs are distributed throughout the genome in both coding

and non-coding regions [1]. Certain repeats are preferred

and are often predominant in certain genomic locations.

However, the significance of this observation is unclear.

Triplets predominate in coding regions [11]. The study of

repeat density and its distribution pattern in the genome is

expected to help in understanding their significance. There

is accumulating evidence to suggest that SSRs function to

regulate gene expression [12,13].

The availability of complete genome sequences for many

organisms has made it possible to carry out genome-wide

analyses. In the present study we have screened the entire

human genome to study the distribution and density of

microsatellite (1-6 bp) repeats. 

Results 
We have analyzed the distribution of perfect SSRs spanning

12 bp or more in the complete human genome. Thus, for a

12 bp SSR, one occurrence may comprise a repeat of 12

monomers, or six dimers, or four trimers, or three tetramers

(or pentamers) or two hexamers. The SSR data presented

here includes both strands of the DNA sequence. AGAT, for

example, also includes GATA and the reverse complements

TATC and CTAT, and all possible non-overlapping base

combinations. Analyzed sequences were classified into three

genomic regions, namely exons (including untranslated

regions (UTRs)), introns and intergenic regions. For this

analysis, we calculated the total lengths of all mono-, di-,

tri-, tetra-, penta-, and hexa-nucleotide repeats in terms of

base pairs of SSR per megabase pair (Mb) of DNA. 

Abundance of SSRs in the human genome 
We have determined the total number of loci for all the SSRs

in the human genome on a chromosome-by chromosome

basis, and then calculated the number of repeat units at each

locus. As expected, the total number of occurrences of SSRs

depends on the size of the chromosome. For example, chro-

mosome 1 has the highest and Y the lowest SSR occurrence.

We then analyzed density of each repeat as mentioned in

Materials and methods. We show that the overall SSR

density is comparable across chromosomes (Figure 1).

However, some chromosomes, such as 16, 17, 19 and 22,

showed a slight increase in SSR density. The highest SSR

density was found in chromosome 19 (20,351 bp/Mb) fol-

lowed by 17 (17,385 bp/Mb) and 22 (16,147 bp/Mb). It is

interesting to note that the Y chromosome, although
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Figure 1 
Overall SSR density across the human chromosome set. The density is expressed in base-pairs of SSR sequence per megabase-pairs of chromosome
sequence.
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showing the smallest number of SSRs, has an SSR density

comparable to other autosomes and the X chromosome

(Figure 1).

We have carried out a comprehensive analysis of each SSR

found in the human genome, which is available as additional

data available with the online version of this paper (see addi-

tional data files). For a given repeat, the number of repeats

and total length of the repeated sequence are given, along

with the starting position of the repeat with respect to both

the contig id and the specific GenBank accession id. If the

repeat is found in a gene, the name of the gene and the
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Figure 2 
SSR density in exonic, intronic and intergenic regions on individual human chromosomes. (a) Monomers (b) dimers; (c) trimers; (d) tetramers;
(e) pentamers; (f) hexamers. Blue bars, exons; red bars, introns; yellow bars, intergenic regions.
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respective regions are shown. In the event that a repeat lies

in an intergenic region, the nearest downstream gene and

the distance between the repeat and the gene is given. We

have also presented the association of SSRs with sequence-

tagged sites (STS) in terms of distance between the SSR and

the known STS marker. The details of each repeat type are

included in the additional data files.

Mononucleotide repeats  
All human chromosomes showed a more-or-less similar

density of monomer repeats (Figure 2a). Compared to other

chromosomes, exonic regions of chromosomes 7 and 16

showed maximum density - 6,063 bp/Mb and 5,928 bp/Mb,

respectively - while the exonic region of Y showed the lowest

(786 bp/Mb) density of monomer repeats. With the excep-

tion of chromosome 19, monomer repeat density in the non-

coding region was comparable in all other chromosomes.

Interestingly, however, the intronic density was slightly but

consistently higher than that of intergenic regions of all

chromosomes (Figure 2a). Chromosome 19 showed the

highest overall monomer density. Among the two types of

monomer repeats, poly(A) (or poly(T)) was far more abun-

dant than poly(C) (or G) in all chromosomes (Figure 3).

Chromosome 19 had the maximum repeat density of A (or T)

(7,429 bp/Mb) followed by chromosomes 17, 22 and 16.

Chromosome 16 contained the maximum density (96 bp/Mb)

of C (or G0 repeats (Figure 3). 

Dinucleotide repeats 
Analysis of the repeats AC, AG, AT and CG showed two inter-

esting features: first, exonic regions showed lower overall

density of these repeats compared to non-coding regions,

and, second, within the non-coding region, as in the case of

monomer repeats, introns had a higher dimer repeat density

than the intergenic region (Figure 2b). The densities of

dimer repeats in both intronic and intergenic regions were

comparable and more-or-less uniform across the chromo-

somes. Among the dimer repeats, AC and AT were predomi-

nant, whereas CG repeats were rarest (Figure 4). The density

of AT repeats showed the greatest variation from one chro-

mosome to another. For instance, chromosomes 3, 4, 11, 12,

13, X and Y had an AT density comparable to that of AC,

whereas in all other chromosomes it was found to be much

less than AC. The density of AG repeats was remarkably

uniform across all chromosomes except for 19 and X, which

had marginally greater numbers of this repeat. For details of

individual dimer repeats in exonic, intronic and intergenic

regions, see additional data files. 
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Figure 3
Density of each monomer repeat across the entire human chromosome set. A, blue; C, red.
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Trinucleotide repeats 
Analysis of all trimer repeats (AAC, AAG, AAT, ACC, ACG,

ACT, AGC, AGG, ATC, CCG) revealed a clear greater density

of approximately twofold in exonic regions compared to the

density in intronic and intergenic regions in all chromo-

somes except Y (Figure 2c). Whereas densities of trimers in

non-coding regions of all chromosomes were comparable,

chromosome 19 showed the maximum density in non-coding

regions. Analysis of densities of different trimers revealed

that repeats of AAT, AAC, AAG and AGG were most

common, in that order of abundance (Figure 5). ACG, ACT

and CCG repeats were found to be much rarer in the

genome. Density of the specific repeat type was found to be

rather uniform across all chromosomes. There were very few

deviations from this pattern; for example, chromosome 19

showed a density of the AAT repeat (446 bp/Mb) which is

much higher than that of other chromosomes. For details of

individual trimer repeats in exons, introns and intergenic

regions see additional data files.

Tetranucleotide repeats  
The density of tetramer repeats in exonic regions is less than

in intronic and intergenic regions in most of the chromosomes.

Most human chromosomes showed a similar exonic density

pattern; however, chromosomes 7 and 22 showed a greater

density of these repeats (Figure 2d). Chromosome 19 con-

tained most tetranucleotide repeats in the non-coding

region. Repeat density in the intronic regions of other chro-

mosomes ranged between 2,085 bp/Mb (chromosome 5) to

3,172 bp/Mb (chromosome 22). Analysis of densities of each

tetrameric repeat type revealed that AAAT, AAAG, AAAC

and AAGG were the predominant types across the genome.

The overall densities of tetrameric repeats such as AACC,

AACT, AACG, AAGC, AAGT, AATC, ACCC, ACCG, ACCT,

ACGC, ACGG, ACGT, AGCC, AGCG, AGCT, ATCG, ATGC,

CCGG and CCCG were less. AGAT repeats, however, pre-

dominated on the Y chromosome (Figure 6). Details of indi-

vidual tetramer repeats in exons, introns and intergenic

regions are given in the additional data files.

Pentanucleotide repeats 
In chromosomes 4, 7, 13 and 14, pentamer repeat density in

the exonic regions was greater compared to that in the non-

coding regions. Chromosome 7 contained the maximum

exonic repeat density (921 bp/Mb). The exonic density of

pentamers ranged between 362 bp/Mb in the Y chromosome
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Figure 4
Density of each dimer repeat across the entire human chromosome set. AC, blue; AG, red; AT, yellow; CG, turquoise.
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to 885 bp/Mb in chromosome 15. The intergenic densities

were greater in chromosome 3, 10, 16, 17, 19 and Y

(Figure 2e). An outstanding feature of pentameric repeats

was noticed in the case of chromosome 19, where the

intronic and intergenic density was about twofold (1,195 and

1,201 bp/Mb respectively) greater than the exonic density

(633 bp/Mb). The abundance of all pentameric repeats,

including the repeat number in each locus, is given in the

additional data files. 

Hexanucleotide repeats  
Like trimer repeats, hexamer repeats are also more abun-

dant in the exoninc region, except in the Y chromosome

(Figure 2f). Surprisingly, however, the density of hexameric

repeats was about two- to threefold more than that of

trimeric repeats in the exons. Chromosomes 7, 16 and 22

showed an increased density of exonic hexamer repeats

when compared to other chromosomes. The exonic repeat

density in other chromosomes, including Y, ranged from

2,176 bp to 4,628 bp/Mb. Most of the chromosomes showed

remarkably uniform hexameric densities in the intronic and

intergenic regions (Figure 2f). The details of densities of all

the hexameric repeat and the repeat lengths of each hexa-

meric repeat in human genome are given in the additional

data files.

Discussion 
SSRs contribute significantly to the human genome and are

present in an abundance comparable to the coding region.

Very little is known about the biological significance of this

part the genome. Comprehensive analysis of SSRs is likely to

be helpful in understanding their importance. Information

on their abundance, coupled with the distribution patterns

in the coding, as well as non-coding, regions of the genome

may give us some clue to the function of SSRs in gene regula-

tion. For example, allelic variations of HUMTH01, a TCAT

repeat, have been correlated with quantitative and qualita-

tive changes in the binding of ZNF191 protein which, in turn,

significantly influences the expression of quantitative

genetic traits [14]. In our earlier analysis we found that par-

ticular repeats are preferentially associated with sex chro-

mosomes and their frequency of occurrence in various

genomes reflects an evolutionary correlation [15].

In the present study we have analyzed the occurrence and

density of SSRs across the human genome. We present data

on an individual chromosome basis and each chromosomal

dataset has been split into exonic, intronic and intergenic

regions. The overall density of SSRs in each chromosome

was found to be comparable (Figure 1). The data have been

analyzed taking mono-, di-, tri-, tetra-, penta- and hexamers

as the six classes of repeats. Again, the density of each class

of repeat is comparable across various genomic regions

(Figure 2). However, different repeat motifs often show

tremendous variation in density in different genomic

regions, sometimes even in a chromosome-specific manner.

As is evident from Figures 3-6, within one class of repeats

there may be a lot of difference in the abundance of a partic-

ular sequence repeat. In the case of mononucleotide

repeats, for example, the density of poly(A) or poly(T) is

� 300-fold more than that of poly(G) or poly(C). Similarly,

in the case of dimeric repeats, AC and AT are the most

abundant and CG is the least abundant. While some of this

variation can be explained on the basis of the A/T richness

and the relative ease of strand separation compared to C/G

tracts [2], it cannot all be. The AC repeat, for example, is

twice as abundant as the AG repeat in all chromosomes.

Predominant repeats in the various classes are AAT, AAC

and AAG among trimers, AAAT, AAAC, and AAAG in the

case of tetramers, AAAAT and AAAAC in the case of pen-

tamers and AAAAAT, AAAAAC, AAAAAG and AAAAAG

among hexamers. It is possible that during SSR evolution

the poly(A) stretches present in the genome might have

mutated to produce the A-rich repeats. It is also possible

that the abundance of repeats is influenced by their sec-

ondary structures and the effect on DNA replication. If a

repeat sequence is selected during evolution for transcrip-

tional regulation or is a target of a binding protein for one

or more nuclear processes (such as chromatin organization,

DNA replication, transcription, recombination), its abun-

dance and distribution is expected to be controlled. It is
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Figure 5
Density of each trimer repeat across the entire human chromosome set.
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interesting to note, in this respect, that certain repeats are

very rare in the genome (see additional data files). Further

studies will be required to see whether differential abun-

dance of some repeats can be explained by any of these

hypotheses. Recent studies on GT tandem repeats in human

chromosome 22 revealed that they are recombination hot

spots [16].

We have also compared the relative abundance of the six

types of repeat over the whole chromosome set (Figure 7).

Mononucleotide repeats are the most abundant class of SSR

in all the chromosomes. The data showed several unexpected

trends in the densities of the SSRs. The most surprising

observation was that the abundance of di-, tetra- and

hexamer repeats was significantly different from that of tri-

and pentamer repeats. This situation, where even-number

repeats consistently fall into one group and odd-number

repeats into another, was seen in all the chromosomes. Fur-

thermore, even-number repeats (di-, tetra- and hexamers)

were three times or more abundant than odd-number repeats

(tri- and pentamers) (Figure 7). Among the even-number

repeats, the density of tetrameric repeats was less than that of

hexameric and dimeric repeats for most chromosomes. This

difference in abundance might be due to positive selection of

even-number repeats relative to odd-number repeats. Alter-

natively, there could be a more passive reason, namely that

even-number repeats might be favored to accumulate and or

to be maintained. Further studies will be required to test

these possibilities.

When individual chromosomes are compared, chromosome

19 has several interesting distinctions. It contains the
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Figure 6
Density of each tetramer repeat across the entire human chromosome set.
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highest overall density of repeats, and, whereas exonic

regions are comparable in density, non-coding regions

contain a high abundance of mono-, tetra- and pentamer

repeats (Figures 1, 2). The other chromosome with a distinct

SSR profile is Y. Although the overall abundance of repeats

in Y is comparable to other chromosomes, the exonic region

contains significantly fewer occurrences of all SSRs com-

pared to other chromosomes. 

An example of a repeat that is more abundant in Y than in

other chromosomes is one of the pentameric repeats. Penta-

nucleotide repeats have a density of approximately

700 bp/Mb in all chromosomes, with few deviations (of up

to twice this value). When we looked at the individual penta-

meric repeats, however, we came across significantly uneven

occurrences in different chromosomes (see additional data

files). The most striking example is AATGG. The density of

this repeat varies up to 1,000-fold in different chromosomes;

for example, 904 bp/Mb (chromosome 17), 738 bp/Mb

(chromosome Y), 0.44 bp/Mb (chromosome 21) and

0.9 bp/Mb (chromosome X). Distribution of these repeats

within a chromosome may not be uniform. We have shown

previously that in the Yq centromere and in the distal end of

the Yq euchromatic region there are 1,000 copies of this

pentameric repeat [17].

In humans, microsatellites in the form of trinucleotide

repeats can be found in genes that are associated with several

neurological diseases. The association of triplet repeats with

genes provides a basis for identifying genes that may be pre-

disposed to expansion. Expansion of repeats, which is sug-

gested to be a consequence of replication slippage, may also

influence the packaging of the DNA and may have regulatory

implications in some cases. Analysis of triplets has revealed

that these repeats are predominantly present in exons rather

than in introns and intergenic regions. A similar situation has

also been found for the hexameric repeats. If one assumes

that simple repeats are those that occur randomly on the

chromosome irrespective of their genomic location, the

occurrence of SSRs other than repeats of triplets or of other

multiples of three in a coding region will completely impair

the protein function by causing frameshift mutations. Earlier

studies by Toth et al. [1] and Metzgar et al. [18] on tandem

repeats have shown that triplets are predominantly associ-

ated with the coding regions of the genome. In coding

regions, trinucleotide and hexanucleotide repeats are more

frequent than mononucleotide, dinucleotide, tetranucleotide

or pentanucleotide repeats. 

The study of SSRs in the human genome [19,20] is just

the first step towards understanding the biology of the
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Figure 7
Comparison of densities of SSRs from monomer to hexamer. Dark-blue diamonds, monomers; pink squares, dimers; yellow triangles, trimers; blue
crosses, tetramers; magenta stars, pentamers; brown circles, hexamers.
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non-coding DNA, which constitutes more than 98% of the

human genome. Similar studies will be needed for other

sequenced genomes to investigate whether SSRs may also

reflect the evolutionary history of different genomes. Several

observations presented here suggest that individual chromo-

somes may be characterized by unique SSR profiles. This is

also supported by the reports of chromosome-specific

repeats or chromosome-specific biding proteins [21]. These

observations may lead us to an understanding of the evolu-

tion and maintenance of chromosomes in general, and of

particular chromosomes, for example the sex chromosomes,

in particular. 

The study of SSRs may help us understand numerous

aspects of genome organization and function. With the avail-

ability of several genomic sequences, we have just begun to

get a glimpse of the genomic organization of eukaryotes. We

need to know, for example, why some repeats are abundant

and others extremely rare. Is the abundance and distribution

of such repeats subject to natural selection? What is the

structural and functional basis of the chromosome-specific

differential abundance of particular SSRs? Studies on other

kinds of DNA sequences and repeats will be needed to

understand the evolution, organization and function of

the genome.

Materials and methods 
The complete human genome sequence downloaded from

the FTP site of GenBank [22] build number 29; 16 May,

2002 has been used to generate SSR data. SSRs of k-mer

repeats, (where k ranges from 1 to 6, that is, monomer to

hexamer repeats) were analyzed. All theoretically possible

501 SSR types [23] were analyzed for their abundance and

density per Mb. The reverse complements of these repeats

were also included in the analysis. We have analyzed the dis-

tribution of perfect repeats of length � 12 bp. The rationale

for choosing the small cutoff value was that the SSRs are

often disrupted by single base substitutions. 

A JAVA-based program has been developed and used to scan

the entire genome to find the abundance and distribution of

these repeats in coding and non-coding regions. The occur-

rences of repeats in exons, introns and intergenic region

have been identified from the annotation of the human

genome sequence in the GenBank database. The repeat

density (bp/Mb) on each chromosome was calculated by

dividing the total chromosome length (in Mb) by the number

of base-pairs of sequence contributed by each SSR. In the

case of exonic density, both coding and non-coding exons

(UTRs) were included in the analysis. In the additional data

files we have referred to the 5� UTR (UTR1) as the sequence

present between the transcription start point and the begin-

ning of the start codon of the transcript. The 3� UTR (UTR2)

is the sequence between the stop codon and the last base of

the transcript.

Additional data files 
The details of each SSR are available as an additional data file

with the online version of this paper and at our website [24].
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