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Abstract
Background: Homeotic gene complexes determine the anterior-posterior body axis in animals.
The expression pattern and function of hox genes along this axis is colinear with the order in which
they are organized in the complex. This 'chromosomal organization and functional correspondence'
is conserved in all bilaterians investigated. Genomic sequences covering the HoxD complex from
several vertebrate species are now available. This offers a comparative genomics approach to
identify conserved regions linked to this complex. Although the molecular basis of 'colinearity' of
Hox complexes is not yet understood, it is possible that there are control elements within or in the
proximity of these complexes that establish and maintain the expression patterns of hox genes in a
coordinated fashion.

Results: We have compared DNA sequence flanking the HoxD complex of several primate, rodent
and fish species. This analysis revealed an unprecedented conservation of non-coding DNA
sequences adjacent to the HoxD complex from fish to human. Stretches of hundreds of base pairs
in a 7 kb region, upstream of HoxD complex, show 100% conservation across the vertebrate
species. Using PCR primers from the human sequence, these conserved regions could be amplified
from other vertebrate species, including other mammals, birds, reptiles, amphibians and fish. Our
analysis of these sequences also indicates that starting from the conserved core regions, more
sequences have been added on and maintained during evolution from fish to human.

Conclusion: Such a high degree of conservation in the core regions of this 7 kb DNA, where no
variation occurred during ~500 million years of evolution, suggests critical function for these
sequences. We suggest that such sequences are likely to provide molecular handle to gain insight
into the evolution and mechanism of regulation of associated gene complexes.

Background
Eukaryotic genome contains a large excess of non-coding
sequences. Conservation of these sequences among spe-
cies is a strong indication of their functional significance.

With the availability of genome sequences it is possible to
identify such sequences taking a comparative genomics
approach [1-4]. The clusters of homeotic genes, which are
expressed in a coordinated manner [5], are among the
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most conserved regions of the vertebrate genome. Cluster-
ing of genes that are regulated in a linked manner has
been noticed in several other cases [6,7]. However, the
molecular mechanism behind such coordination in regu-
lation is not yet understood. Several mechanisms have
been proposed that link the organization of homeotic
genes and the spatio-temporally controlled expression
[8]. Colinearity in hox complexes was first discovered in
Drosophila [9] and later studies on the bithorax complex
have demonstrated the role of chromatin organization in
its regulation [10]. Recent studies on the HoxD complex
suggest a role for higher order chromatin organization in
the regulation of this complex involving up to 20 kb
upstream region [11].

Results and discussion
We compared genomic regions flanking hox complexes in
order to identify conserved regions with potential regula-
tory function. Here we report that the upstream regions of
HoxD complexes of human, mouse, rat, sacred baboon,
horn shark, zebra fish and puffer fish contain long
stretches of extremely conserved sequences. In the 25 kb
region upstream of the HoxD complex from these organ-
isms we found an extremely conserved region spread in
three blocks located within 7 kb from the 3' end of the
Evx-2 gene. These conserved regions, designated as Con-
served Region 1, Conserved Region 2 and Conserved
Region 3 (CR1, CR2 and CR3) (Fig. 1) show a degree of
conservation not seen before among distant species.

Detailed analysis of each region spanning to several hun-
dred base pairs, in particular the CR2 shows several
stretches of 100 % conservation, Fig. 2. We also noticed
longer stretches of conservation among mammals, which
gradually shortens as we go towards lower vertebrates,
defining the core of each conserved region, across the ver-
tebrate classes, see Additional file 1. This and the fact that
in case of shark, as compared to mammals, the interven-
ing sequence lengths between CR2 and CR3, and CR1 and
Evx-2 is shorter by ~1300 bp and ~600 bp, respectively
(Fig. 1) suggest that starting from the shorter conserved
regions, additional unique sequences have progressively
been acquired and conserved during the evolution of pri-
mates from lower vertebrates. This may reflect the molec-
ular basis of conservation and elaboration of Hox gene
regulation during evolution of these species [12].

Universal occurrence of these sequences in all vertebrate
classes was confirmed by their amplification using prim-
ers from human HoxD complex (Figure 3) followed by
Southern hybridization and sequencing (unpublished
observation). Furthermore, using CR1, CR2 or CR3 as
query we searched genomic sequences of variety of
eukaryotes in available databases. This search indicated
that these sequences are single copy and vertebrate spe-
cific. While these conserved regions appear to be a key
component of the HoxD complex of all vertebrates looked
at, we did not find such a degree of conservation in the
flanking regions of other hox complexes (HoxA, B and C)

Schematic representation of sequence conservation in the HoxD upstream regionFigure 1
Schematic representation of sequence conservation in the HoxD upstream region. Human sequence (AC009336; 
from position 56601 to 64095) was compared to the corresponding sequences of Papio hamadryas (AC116665), Heterodontus 
francisci (AF224263), Mus musculus (AC015584), Fugu rubripes (CAAB01000449) and Rattus norvegicus (NW_042732). 
Sequences that are conserved across vertebrates are shown as blocks. The conservation extends beyond these blocks within 
primates and rodents. ESTs found in the database corresponding to this region are also shown. ESTs mapping to CR3 are 
BB838602 from mouse 8 cell embryo and BU129154 from chicken 36 stage limb; and those mapping to CR1 are AA620964 
from human testis; BB332383, BB335110, BB334358, BB333569 from 6 and10 days mouse neonate medulla oblongata and 
BU255316 from chicken 36 stage limb.
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of vertebrates. In order to trace back the evolutionary
origin of such sequences, it will be of interest to investi-
gate occurrence of these sequences at the corresponding
region in the hox complexes of species of urochordata,
cephalochordata or even agnatha. In the tunicate Oikop-
leura dioca, where hox genes are dispersed but the spatial
pattern seen in other animals is still present [13], we did
not find CR1, CR2 or CR3. Also, we did not find any sig-
nificant conserved region corresponding to these CRs in

the amphioxus genomic region that contains the cluster of
hox genes. It appears, therefore, that these extremely con-
served sequences have originated in the vertebrates where
the hox complex has additional distinct features of tight
clustering compared to the insect hox clusters and the
temporal colinearity, not seen in invertebrates.

Several recent reports using comparative genomics
approach have identified conserved non-coding regions

Comparison of conserved regions from human, mouse and sharkFigure 2
Comparison of conserved regions from human, mouse and shark. Conserved bases of mouse and shark are shown as 
'.' and '-' indicates indels. Underlined sequences of human indicate primers that were used for amplification of the correspond-
ing sequence from different vertebrates.

CR3

HUMAN   G--CCAAAGCTGCTCAGAGCTTTAATAAAAGCCCAGGGAAGATCAGAACCCGCGTCCAAGGCTGCTGCTTAATCCAATGAAGGCAATTTCCGAGGATAATTGCGAACATGTTTTAATGCA

MOUSE   .--.....................................................................................................................

SHARK   .AGT.T.G.T......CT.....GT.TG..A.AGGCT.....A.....A.AC.A..T..CC..TA..TG...........C..........TT...........................

HUMAN   TATGCATGAAAAAGGATTTTTTTTCTGAGAGACCAACTTTACATGCTTATGTAATTGATTGAGGCGCTGACCCGCTATTCAAAATGTTATTTGAGAACCATCACAATGCGTAAACTTGCA

MOUSE   .......................C.-........G....................................................................G................

SHARK   ........G.............CC--......T.G.GC..G..C...................T..G.....T.........................T....A................

HUMAN   AATTGCCCAGCTTGTATCTGAATTAATACCTCATTCATCATCATTATGGGTTGATAAGTTAATTTAACCATTTCATTCTGCCTTAATGAGCTATAGTTAAATTAATGCCACATAATATAT

MOUSE   ........................................................................................................................

SHARK   ..............................................C.TT......................................................................

HUMAN   GAAAGTAACATTTAAATAGAAGCACTGGGCTGAGACAAGCCGAGGCTGCTGCTATTTGGGCTGAAATAAGGTGACATAAATCTTTTCTTCATTACAGGACCCAGTCTGCTCTACCACGAG

MOUSE   ...............................................................................................................C........

SHARK   .....................C....CA.T...A....A.A.G...C.-........A...........T..TG.......................CG...G.....T.GTAG..GC..

CR2

HUMAN   TCAGGTTT-----------------TTTTGTCCTCCCTGCAGCAGCTGTCACCCTGCATTACTCGCAGTCAGCTAAATGAAACATTATTCTAAACATATGCATCGTAATCAGTTCGGTCA

MOUSE   ........CTTTTTTTTTTTTTTTT...............................................................................................

SHARK   .----...-----------------...........T----....G.................T........................................................

HUMAN   CACTTACAAGAACACGCGTTAATAAGGCAATCAATCACCCTGGAACAAGCAAGTTGTTCTGTAACAGCTCATAAACAGTGTGTAATGAAGAATTGGAGGTTACCGTGACATGCGTTGATC

MOUSE   ........................................................................................................................

SHARK   ......................................G...T.....C......C..............................................G.A.....C...C.....

HUMAN   AGATAATCAATGTCAAAGATGCGATGAATGTCAGTAAATGTAGTTTTCATGTCGTTTCTATAAAATCTTCAATTTACAACAAGCAGTTCAATTACCCAGAAAATACAGTCAATTAAATAG

MOUSE   ........................................................................................................................

SHARK   ........................................................................................................................

HUMAN   GGGTGATTGGACAGTAGGGGGGTGGATCATCGATCTTTGCATTTCTATCTCGCTAGTGGACATTTAATTTGGTTTTTCCATTAGCGACGAAATAAAGAAAATATAAAATATATTAAACAA

MOUSE   ..............................................................................T.........................................

SHARK   ...................---..........................T....G................T.......T......TC.................................

HUMAN   CCTACAGATTTATTTTCTTGTCAAAAACAATTCGGGCTTGATGACAGACAGTCTTCTGCATTTTATGATGAATTATTTTTTCATTCTTTGCACACTCGAGACAAAAAAAA----------

MOUSE   .................................A.......................T......................................T...G.........AAAATATATA

SHARK   ..........................GT.....A..TCC.G............G-.AA...........A...--.C............A....-.--..AG........------T---

HUMAN   ----TGCTGTTATTTTGGACAGGGTTTTTTGGCCA------------CTGTCTTTTTCCGTTTGCTGGCCCATCTATCTCAATGCTTTTGTTTTTAAGGGTTACAACCCCCGAGTTAGCA

MOUSE   TATAC..............................------------...........T.............................................................

SHARK   --TATA..........C.....T.....C......TAGCAGCGACCA.........C.T.....T.TTT.................A...............G......T..CC....T.

HUMAN   AAGAGCACCGAAAACCAGGGTGATACATCACCAGTCCAAATGTGCTGCTATAATCGTATTTCTTTAATGGGGGAGTTCAAGAAAAGAGAGAAGGGGAAAGAGAGAAAAGAATTTATC---

MOUSE   ..A..............................C.......................................CA................T.......-...........C.....TGG

SHARK   ..-....TT......A.A..........T....GCA.........................T.AA....C.A.ACG.TC.....GA..GC.C.-------------------.....---

HUMAN   GAGGGGGAGGGAACCCTTGGGATTACTTCAGTATATATTTAACCAACCTGCAATTAAAGACGGTATCAGCTTGTATCATTTAGAGCTAATGCAATAATAATGGTAAATTACAGGCC-AAA

MOUSE   AG...............C.........C........................................................................................-...

SHARK   ------TTA.TGT...AC...GGC...C......................................................................................G.G...

CR1

HUMAN   AAACATGCACTAGCAAGTTATTTTAGGGCTTCAACTCTTCAGAA-AATCTCATTATGTGAGGAGCCAAGTGGCTCTGCGGGGAGCATTATGGAAATATCTGGGCTTGATTTAATGAGGCT

MOUSE   ..G......------.............T...............-....................G.........A............................................

SHARK   ..GT.....CCGTGA.AAA...G.TA.AT..T---.T.C.....G....C.....A....A...TG.........TAT....CGT...........T...A..-................

HUMAN   GTTCACACTGGTGGAATATCAACTTAACAGAGAAAAGTCTACCCAGGGCGTCCA-------AGTTACCAAAATGAAAATCGGCAATTGAGATGATAAGAACGTGGCTTTCTT-CTGCGAA

MOUSE   .......T..............................................-------..................T.............................T..T.......

SHARK   .......TCA..ACC...CTGG..--...AG.G.....GG..A...AA....T.CAATATAG...T.......T...A.T...AG.-.G..CA..G..G....A..G..T..---..A..

HUMAN   ATCACTTCAGGTAACAGAGATAACATTAAATAACATACATTCTATGCACCAAGAACAATGTTTTATGTACCGAGTCTCTTATCCGTCTCTCCTAATGACTTCCCTTAGCGGGTTGTTAGT

MOUSE   ..................................G.....................................................................................

SHARK   ..........A....GA.T.CC.........CCTG................T.................T.A...........TA.....T.............................

HUMAN   ACTTGACAGCAGGTCTCCGTGCGGGGAACTTTTCTCCAATTCCACATTCAAAGGAGGTCCATCAGAGAGCATGATTGGCAATTTTCGTCATAATCTGCACATTATTAGCATCAAACTTGA

MOUSE   ......................A.................................................................................................

SHARK   .T...............A....A..........T........T.....................AG.TA...........................................CG.A....
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among different vertebrates [14-16] but none to the
degree that we report here. The mechanism that may
require such a high degree of conservation is not known.
It is not, therefore, immediately clear what precisely is the
role of these sequences. EST database search revealed that
part of CR1 and CR3 are transcribed without any signifi-
cant ORF but no EST corresponding to CR2 or any other
part of the 7 Kb region was found, Fig. 1. A possible mech-
anism could involve RNA from this region that may func-
tion by base pairing to the genomic target sites. If that is
the case, such high conservation could be expected. Role
of transcription in the regulation of bithorax complex is
emerging from recent studies [17].

Conclusions
While such an extreme conservation of several hundred
nucleotides over half a billion years in a region that does

not code for any known proteins certainly implicates
essential role for such sequences, probably in the regula-
tion of HoxD complex, no known regulatory element
requires such extreme conservation extending up to hun-
dreds of base pairs. It is, therefore, likely that these ele-
ments could be components of a novel mechanism
common to all vertebrates that regulates this gene com-
plex. We are tempted to suggest that such a strongly con-
served region from fish to human linked to a gene
complex that is known to determine body axis formation
may be the key determinant of molecular basis of early
ontogeny. Early embryos of all vertebrates show striking
similarity and we suggest that these elements may control
the early expression pattern of HoxD which leads to simi-
lar pattern of the embryo shape. The gradient of
conservation seen in this region from fish to human may
further signify the evolutionary history of this locus and

Conservation of CR1, CR2 and CR3 in all vertebrate classesFigure 3
Conservation of CR1, CR2 and CR3 in all vertebrate classes. PCR amplification of different vertebrate genomic DNA 
samples using primers designed based on the human sequence. Lanes: M – size marker indicated in bp, hu – human, mo – 
mouse, ch – chicken, co – cobra, fr – frog and zf – zebra fish. The arrows indicate the corresponding products that have been 
confirmed by direct sequencing as well as Southern hybridization using human CRs as probe.
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diversification of the morphological features along the
anterior-posterior body axis of the vertebrate classes.

Methods
Sequence analysis
The genomic sequences that contained Evx-2 and any of
the Hoxd genes were downloaded and annotated using
gene/ORF prediction tools. Similar approach was used for
other hox complexes. Homology searches of the upstream
sequences of HoxD region from human (AC009336; from
nucleotide 56601 to 64095) was carried out using the
BLAST program of NCBI. The sequences that showed sig-
nificant homology were further used to analyze the extent
of homology by BLAST 2 program. The conserved regions
from each sequence was obtained and subjected to multi-
ple sequence analysis using Clustal X. In order to identify
the expressed sequences corresponding to the conserved
sequence, the conserved sequences along with the unique
sequences were BLASTed against EST databases (human,
mouse and dbEST).

The contigs that showed significant homology to the
upstream sequences of human HoxD were annotated
using the tBLASTx program and searching the translated
amino acid sequence in the Swissprot database. Repeat
masker program was used to look for repeat content.
Genebank sequences used in this study are as follows:
AC116665 Papio hamadryas, AF224263 Heterodontus fran-
cisci, AC015584 Mus musculus, AC009336 Homo sapiens,
CAAB01000449 Fugu rubripes and NW_042732 Rattus
norvegicus.

DNA isolation, PCR amplification, sequencing and 
Southern hybridization
For the isolation of genomic DNA blood samples of
human, chick and cobra (Naja naja) were used while liver
tissue of mouse and muscle tissue of frog (Bufo melanostic-
tus) and zebra fish were used. Standard protocol of DNA
isolation was followed which included lysis, RNase A and
proteinase K digestions followed by phenol/chloroform
extraction and precipitation. Concentration and quality of
the genomic DNA was checked on 0.7% agarose gel and
UV absorption spectrophotometry. Based on the sequence
of conserved regions primers were designed to amplify the
three regions CR1, CR2 and CR3.

Primers used in this study to amplify conserved
regions from different vertebrate species were:CR1 for-
ward- GAGGCTGTTCACACTGGTGG,CR1 reverse-
ATCATGCTCTCTGATGGACC,CR2 forward- GCATCG-
TAATCAGTTCGGTC,CR2 reverse- TGATACAAGCTGA-
TACCGTC,CR3 forward- GCTATTCAAAATGTTATTTGAG
and CR3 reverse- CTGTAATGAAGAAAAGATTTATG.

The 25 µl reaction was performed using 100 ng template
DNA and 5 pmol each of forward and reverse primers.
PCR protocol was as follows: initial denaturation step of
94°C for 3 min was followed by 35 cycles of 94°C for 1
min, 57°C for 1 min and 72°C for 1.30 min and final
extension step at 72°C for 7 min. Authenticity of the PCR
products was confirmed by direct sequencing and South-
ern hybridization, using the corresponding human DNA
as probe.

Note
An earlier version of this article was deposited in the
'Deposited Research' section of Genome Biology, http://
genomebiology.com/2003/4/4/P2, [18]. While this man-
uscript was in reviewing process, a report comparing
human genome to several other mammalian sequences
identified many highly conserved noncoding sequences
[19]. Interestingly, this study also identified CR2 as
uc.108 near HOXD and, in agreement to our observation,
noted only a "core" conserved region in fish, suggesting
that additional parts of the ultraconserved region were
innovations after the common ancestor with fish.

Authors' contributions
CS carried out the sequence analysis, PCR amplification
and Southern analysis. SS participated in sequence analy-
sis and DNA isolation from several organisms. AT carried
out the sequencing of PCR products and participated in
the sequence alignments. RKM conceived of the study,
and participated in its design and coordination. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
This work was supported by a young investigators grant (RGY0316/2001-
M) from Human Frontier Science Program to RKM.

References
1. Pennacchio LA, Rubin EM: Genomic strategies to identify mam-

malian regulatory sequences. Nature Rev Genet 2001, 2:100-109.
2. Kondrashov AS, Shabalina SA: Classification of common con-

served sequences in mammalian intergenic regions. Human
Mol Genet 2002, 11:669-674.

3. Dehal P, Predki P, Olsen AS, Kobayashi A, Folta P, Lucas S, Land M,
Terry A, Ecale Zhou C, Rash S, Zhang Q, Gordon L, Kim J, Elkin C,

Additional File 1
Size and degree of conservation of CR1, CR2 and CR3 in different ver-
tebrates. Core of conserved regions and extended conserved regions 
between indicated species is shown as length of sequence and degree of 
conservation. Non-overlapping blocks of vertebrate conservation is indi-
cated based on human, baboon, rat, mouse and shark comparison.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-5-75-S1.doc]
Page 5 of 6
(page number not for citation purposes)

http://genomebiology.com/2003/4/4/P2
http://genomebiology.com/2003/4/4/P2
http://www.biomedcentral.com/content/supplementary/1471-2164-5-75-S1.doc


BMC Genomics 2004, 5:75 http://www.biomedcentral.com/1471-2164/5/75
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Pollard MJ, Richardson P, Rokhsar D, Uberbacher E, Hawkins T,
Branscomb E, Stubbs L: Human Chromosome 19 and Related
Regions in Mouse: Conservative and Lineage-Specific
Evolution. Science 2001, 293:104-111.

4. Glazko GV, Koonin EV, Rogozin IB, Shabalina SA: A significant frac-
tion of conserved noncoding DNA in human and mouse con-
sists of predicted matrix attachment regions. Trends Genet
2003, 19:119-124.

5. McGinnis W, Krumlauf R: Homeobox genes and axial
patterning. Cell 1992, 68:283-302.

6. Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI: Large
clusters of co-expressed genes in the Drosophila genome.
Nature 2002, 420:666-669.

7. Lercher MJ, Urrutia AO, Hurst LD: Clustering of housekeeping
genes provides a unified model of gene order in the human
genome. Nat Genet 2002, 31:180-183.

8. Duboule D: Vertebrate hox gene regulation: clustering and/or
colinearity? Curr Opin Genet Dev 1998, 8:514-518.

9. Lewis EB: A gene complex controlling segmentation in Dro-
sophila. Nature 1978, 276:565-570.

10. Mihaly J, Hogga I, Barges S, Galloni M, Mishra RK, Hagstrom K, Muller
M, Schedl P, Sipos L, Gausz J, Gyurkovics H, Karch F: Chromatin
domain boundaries in the Bithorax complex. Cell Mol Life Sci
1998, 54:60-70.

11. Kondo T, Duboule D: Breaking colinearity in the mouse HoxD
complex. Cell 1999, 97:407-417.

12. Manzanares M, Wada H, Itasaki N, Trainor PA, Krumlauf R, Holland
PW: Conservation and elaboration of Hox gene regulation
during evolution of the vertebrates. Nature 2000, 408:854-857.

13. Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen
A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R,
Chourrout D: Hox cluster disintegration with persistent
anteroposterior order of expression in Oikopleura dioica.
Nature 2004, 431:67-71.

14. Wassermann WW, Palumbo M, Thompson W, Fickett JW, Lawrence
CE: Human-mouse genome comparisons to locate regula-
tory sites. Nat Genet 2000, 26:225-228.

15. Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C, Rigby
PWJ, Krumlauf R, Brenner S: Detecting conserved regulatory
elements with the model genome of the Japanese puffer fish
Fugu rubripes. Proc Natl Acad Sci USA 1995, 92:1684-1688.

16. Dermitzakis ET, Reymond A, Lyle R, Scamuffa N, Ucla G, Deutsch S,
Stevenson BJ, Flegel V, Bucher P, Jongeneel CV, Antonarakis SE:
Numerous potentially functional but non-genic conserved
sequences on human chromosome 21. Nature 2002,
420:578-582.

17. Drewell RA, Bae E, Burr J, Lewis EB: Transcription defines the
embryonic domains of cis-regulatory activity at the Dro-
sophila bithorax complex. Proc Natl Acad Sci USA 2002,
99:16853-16858.

18. Sabarinadh Ch, Subramanian S, Mishra RK: Extreme conservation
of non-repetitive non-coding regions near HoxD complex of
vertebrates. Genome Biology 2003, 4:P2.

19. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS,
Haussler D: Ultraconserved elements in the human genome.
Science 2004, 304:1321-1325.
Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11441184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11441184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11441184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1346368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1346368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12478293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11992122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11992122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11992122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=103000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9487387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9487387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10319820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7878040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12477928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131266
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Conclusions
	Methods
	Sequence analysis
	DNA isolation, PCR amplification, sequencing and Southern hybridization
	Note

	Authors' contributions
	Additional material
	Acknowledgements
	References

