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(Communicated by Ronald M. Solomon)

Abstract. Nice quintinomial equations are given for unramified coverings of
the affine line in nonzero characteristic p with PSp(2m, q) and Sp(2m, q) as
Galois groups where m > 2 is any integer and q > 1 is any power of p.

1. Introduction

Let m > 2 be any integer, let q > 1 be any power of a prime p, consider the poly-
nomials F = F (Y ) = Y n+T qY u+XY v+TY w+1 and F ∗ = F ∗(Y ) = Y n

∗
+XY +1

in indeterminates T,X, Y over an algebraically closed field k of characteristic p,
where n = 1 + q + · · · + q2m−1, u = 1 + q + · · · + qm, v = 1 + q + · · · + qm−1,
w = 1 + q + · · · + qm−2, n∗ = 1 + q + · · · + qm−1, and consider their respective
Galois groups Gal(F, k(X,T )) and Gal(F ∗, k(X)). Both these are special cases of
the families of polynomials giving unramified coverings of the affine line in nonzero
characteristic which were written down in my 1957 paper [A01]. In my “Nice
Equations” paper [A04], as a consequence of Cameron-Kantor Theorem I [CaK] on
antiflag transitive collineation groups, I proved that Gal(F ∗, k(X)) = the projective
special linear group PSL(m, q). In the present paper, as a consequence of Kantor’s
characterization of Rank 3 groups in terms of their subdegrees [Kan], supplemented
by Cameron-Kantor Theorem IV [CaK], I shall show that Gal(F, k(X,T )) = the
projective symplectic group PSp(2m, q). Note that Kantor’s Rank 3 character-
ization depends on the Buekenhout-Shult characterization of polar spaces [BuS]
which itself depends on Tits’ classification of spherical buildings [Tit]. Recall that
the Rank of a transitive permutation group is the number of orbits of its 1-point
stabilizer, and the sizes of these orbits are called subdegrees.

As a corollary of the above theorem that the Galois group of F is PSp(2m, q), I
shall show that the Galois group of a more general polynomial f is also PSp(2m, q).
Moreover, by slightly changing f and F , I shall show that we get polynomials φ
and φ1 whose Galois group is the symplectic group Sp(2m, q). The polynomials
f, φ and φ1 are also special cases of the families of polynomials giving unramified
coverings of the affine line in nonzero characteristic written down in [A01].

As in [A03] and [A04], here the basic techniques will be MTR (= the Method of
Throwing away Roots) and FTP (= Factorization of Polynomials).
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2. Notation and outline

Let kp be a field of characteristic p > 0, let q > 1 be any power of p, and let
m > 1 be any integer.1 To abbreviate frequently occurring expressions, for every
integer i ≥ −1 we put

〈i〉 = 1 + q + q2 + · · ·+ qi (convention: 〈0〉 = 1 and 〈−1〉 = 0).

We shall frequently use the geometric series identity

1 + Z + Z2 + · · ·+ Zi =
Zi+1 − 1

Z − 1

and its corollary

〈i〉 = 1 + q + q2 + · · ·+ qi =
qi+1 − 1

q − 1
.

Let

f = f(Y ) = Y 〈2m−1〉 + 1 +XY 〈m−1〉 +
m−1∑
i=1

(
T q

i

i Y
〈m−1+i〉 + TiY

〈m−1−i〉
)

and note that then f is a monic polynomial of degree 〈2m − 1〉 = 1 + q + q2 +
· · ·+ q2m−1 in Y with coefficients in the polynomial ring kp[X,T1, . . . , Tm−1]. Now
the constant term of f is 1 and the Y -exponent of every other term in f is 1
modulo p, and hence f − Y fY = 1 where fY is the Y -derivative of f . Therefore
DiscY (f) = 1 where DiscY (f) is the Y -discriminant of f , and hence the Galois
group Gal(f, kp(X,T1, . . . , Tm−1)) is well-defined as a subgroup of the symmetric
group Sym〈2m−1〉. Since f is linear in X , by the Gauss Lemma it follows that f is
irreducible in kp(X,T1, . . . , Tm−1)[Y ], and hence its Galois group is transitive.

For 1 ≤ e ≤ m− 1, let fe be obtained by substituting Ti = 0 for all i > e in f ,
i.e., let

fe = fe(Y ) = Y 〈2m−1〉 + 1 +XY 〈m−1〉 +
e∑
i=1

(
T q

i

i Y
〈m−1+i〉 + TiY

〈m−1−i〉
)

and note that then fe is a monic polynomial of degree 〈2m − 1〉 = 1 + q + q2 +
· · ·+ q2m−1 in Y with coefficients in the polynomial ring kp[X,T1, . . . , Te] and, as
above, DiscY (fe) = 1 and the Galois group Gal(fe, kp(X,T1, . . . , Te)) is a transitive
subgroup of Sym〈2m−1〉. Note that if k = kp = an algebraically closed field (of
characteristic p > 0), then F is obtained by substituting T for T1 in f1 and hence
Gal(F, k(X,T )) = Gal(f1, kp(X,T1)).

In Section 3, we throw away a root of f to get its twisted derivative f ′(Y, Z),
and we let g(Y, Z) be the polynomial obtained by first dividing the Z-roots of
f ′(Y, Z) by Y and then changing Y to 1/Y . Next we factor g(Y, Z) into two fac-
tors. The Z-degrees of these factors turn out to be q〈2m − 3〉 and q2m−1. In

1In the Abstract and the Introduction we assumed m > 2. But in the rest of the paper, unless
stated otherwise, we only assume m > 1.
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Section 4, we show that these factors are irreducible in case of f1 and hence also
in case of f and fe for 1 ≤ e ≤ m − 1, and therefore Gal(f, k(X,T1, . . . , Tm−1))
and Gal(fe, kp(X,T1, . . . , Te)) are Rank 3 groups with subdegrees 1, q〈2m − 3〉
and q2m−1. In Section 6, from this Rank 3 description, we deduce the result
that if m > 2 and kp is algebraically closed then Gal(f, kp(X,T1, . . . , Tm−1)) =
Gal(fe, kp(X,T1, . . . , Te)) = PSp(2m, q) for 1 ≤ e ≤ m− 1.

Consider the monic polynomials

φ = φ(Y ) = Y q
2m−1 + 1 +XY q

m−1 +
m−1∑
i=1

(
T q

i

i Y
qm+i−1 + TiY

qm−i−1
)

and

φe = φe(Y ) = Y q
2m−1 + 1 +XY q

m−1

+
e∑
i=1

(
T q

i

i Y
qm+i−1 + TiY

qm−i−1
)

for 1 ≤ e ≤ m− 1

of degree q2m−1 in Y with coefficients in kp[X,T1, . . . , Tm−1] and kp[X,T1, . . . , Te]
respectively, and note that, as before, DiscY (φ) = DiscY (φe) = 1. In Section 6, as
a consequence of the above result about the Galois groups of f and fe, we show
that if m > 2 and kp is algebraically closed then Gal(φ, kp(X,T1, . . . , Tm−1)) =
Gal(φe, kp(X,T1, . . . , Te)) = Sp(2m, q) for 1 ≤ e ≤ m− 1.

In Section 5, we give a review of linear algebra including definitions of PSp(2m, q)
and Sp(2m, q).

3. Twisted derivative and its factorization

Solving the equation f = 0 we get

X =
Y 〈2m−1〉 + 1 +

∑m−1
i=1

(
T q

i

i Y
〈m−1+i〉 + TiY

〈m−1−i〉
)

−Y 〈m−1〉

and hence

f ′(Y, Z) =
f(Z)− f(Y )

Z − Y (def of the twisted derivative f ′ of f)

=
Z〈2m−1〉 − Y 〈2m−1〉

Z − Y

+
Y 〈2m−1〉 + 1 +

∑m−1
i=1

(
T q

i

i Y
〈m−1+i〉 + TiY

〈m−1−i〉
)

−Y 〈m−1〉

× Z〈m−1〉 − Y 〈m−1〉

Z − Y

+
m−1∑
i=1

(
T q

i

i

Z〈m−1+i〉 − Y 〈m−1+i〉

Z − Y + Ti
Z〈m−1−i〉 − Y 〈m−1−i〉

Z − Y

)
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and therefore

g = g(Y, Z) =Y 〈2m−1〉−1f ′(1/Y, Z/Y )

(def of polynomial g obtained by dividing

roots of f ′ by Y and then changing Y to 1/Y )

=
Z〈2m−1〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

(
1 + Y 〈2m−1〉

)
−
m−1∑
i=1

Ti

(
Z〈m−1〉 − 1

Z − 1
− Z〈m−1−i〉 − 1

Z − 1

)
Y 〈2m−1〉−〈m−1−i〉

+
m−1∑
i=1

T q
i

i

(
Z〈m−1+i〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

)
Y 〈2m−1〉−〈m−1+i〉.

To simplify g we observe that

〈2m− 1〉 = (qm + 1)〈m− 1〉
and hence

Z〈2m−1〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

(
1 + Y 〈2m−1〉

)
=
Z〈m−1〉 − 1

Z − 1

(
Z〈m−1〉(qm+1) − 1

Z〈m−1〉 − 1
− 1− Y (qm+1)〈m−1〉

)
and also

Z〈m−1〉(qm+1) − 1

Z〈m−1〉 − 1
− 1 = Z〈m−1〉 + Z2〈m−1〉 + · · ·+ Zq

m〈m−1〉

= Z〈m−1〉
(
Z〈m−1〉 − 1

)(qm−1)

= Z〈m−1〉
(
Z〈m−1〉 − 1

)(q−1)〈m−1〉

=

[
Z
(
Z〈m−1〉 − 1

)(q−1)
]〈m−1〉

and therefore

Z〈2m−1〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

(
1 + Y 〈2m−1〉

)
=
Z〈m−1〉 − 1

Z − 1

{[
Z
(
Z〈m−1〉 − 1

)(q−1)
]〈m−1〉

−
[
Y q

m+1
]〈m−1〉

}
.

Moreover

Z〈m−1+i〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

=
(

1 + Z + Z2 + · · ·+ Zq+q
2+···+qm−1+i

)
−
(

1 + Z + Z2 + · · ·+ Zq+q
2+···+qm−1

)
= Z1+q+q2+···+qm−1

(
1 + Z + Z2 + · · ·+ Zq

m〈i−1〉−1
)

=
Z〈m−1〉 (Z〈i−1〉 − 1

)qm
Z − 1
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and

Y 〈2m−1〉−〈m−1+i〉 = Y q
m+i〈m−1−i〉

and hence

T q
i

i

(
Z〈m−1+i〉 − 1

Z − 1
− Z〈m−1〉 − 1

Z − 1

)
Y 〈2m−1〉−〈m−1+i〉

=
Z〈m−1〉 (Z〈i−1〉 − 1

)qm
Z − 1

Y q
m+i〈m−1−i〉T q

i

i .

Similarly

− Ti
(
Z〈m−1〉 − 1

Z − 1
− Z〈m−1−i〉 − 1

Z − 1

)
Y 〈2m−1〉−〈m−1−i〉

= −
Z〈m−1−i〉 (Z〈i−1〉 − 1

)qm−i
Z − 1

Y q
m−i〈m−1+i〉Ti.

Thus

g = A−B + C(3.0)

where

A =
m−1∑
i=1

Z〈m−1〉 (Z〈i−1〉 − 1
)qm

Z − 1
Y q

m+i〈m−1−i〉T q
i

i ,

B =
m−1∑
i=1

Z〈m−1−i〉 (Z〈i−1〉 − 1
)qm−i

Z − 1
Y q

m−i〈m−1+i〉Ti

and

C =
Z〈m−1〉 − 1

Z − 1

{[
Z
(
Z〈m−1〉 − 1

)(q−1)
]〈m−1〉

−
[
Y q

m+1
]〈m−1〉

}

=
Z〈m−1〉 (Z〈m−1〉 − 1

)qm − (Z〈m−1〉 − 1
)
Y 〈2m−1〉

Z − 1
.

To simplify g further, upon letting

ĝ = g/L, Â = A/L, B̂ = B/L, and Ĉ = C/L, where L =
Z〈m−1〉 − 1

Z − 1
,

we get

g = Lĝ and ĝ = Â− B̂ + Ĉ

with

Â =
m−1∑
i=1

Z〈m−1〉 (Z〈i−1〉 − 1
)qm

Z〈m−1〉 − 1
Y q

m+i〈m−1−i〉T q
i

i ,

B̂ =
m−1∑
i=1

Z〈m−1−i〉 (Z〈i−1〉 − 1
)qm−i

Z〈m−1〉 − 1
Y q

m−i〈m−1+i〉Ti



2982 S. S. ABHYANKAR

and

Ĉ =

[
Z
(
Z〈m−1〉 − 1

)(q−1)
]〈m−1〉

−
[
Y q

m+1
]〈m−1〉

,

and hence upon letting

U = Z
(
Z〈m−1〉 − 1

)(q−1)

, J = Y q
m+1,

and

Vi =
Z〈m−1−i〉 (Z〈i−1〉 − 1

)qm−i(
Z〈m−1〉 − 1

)
Y 〈m−1−i〉 for 1 ≤ i ≤ m− 1

we get

Â =
m−1∑
i=1

U 〈i−1〉(ViTi)
qiJ〈m−1〉−〈i−1〉, B̂ =

m−1∑
i=1

(ViTi)J
〈m−1〉,

and

Ĉ = U 〈m−1〉 − J〈m−1〉 with J〈m−1〉 = Y 〈2m−1〉,

and therefore upon letting

g̃ = ĝ/Y 〈2m−1〉, Ã = Â/Y 〈2m−1〉, B̃ = B̂/Y 〈2m−1〉, C̃ = Ĉ/Y 〈2m−1〉,

and

W = U/J, T̃i = ViTi

we get

g = Y 〈2m−1〉Lg̃ and g̃ = Ã− B̃ + C̃

with

Ã =
m−1∑
i=1

W 〈i−1〉T̃ q
i

i , B̃ =
m−1∑
i=1

T̃i, and C̃ = W 〈m−1〉 − 1,

where

W =
Z
(
Z〈m−1〉 − 1

)(q−1)

Y qm+1
and T̃i =

Z〈m−1−i〉 (Z〈i−1〉 − 1
)qm−i(

Z〈m−1〉 − 1
)
Y 〈m−1−i〉 Ti.

To factor g we try to factor g̃. First we try to factor g̃ after putting T̃i = 0 for
all i > 1, i.e., we try to factor

WT̃ q1 − T̃1 +W 〈m−1〉 − 1.

This corresponds to the case of the special polynomial f1; we shall then feed it back

into the general case of g. By changing (W, T̃1) to (V,R), we try to factor

V Rq −R+ V 〈m−1〉 − 1

as a polynomial in an indeterminate R with coefficients in the univariate polynomial
ring GF(p)[V ]. To do this, upon letting

M = −
m−1∑
µ=0

V 〈m−2−µ〉
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we have

VM q = −
m−1∑
µ=0

V 〈m−1−µ〉

and hence

VM q −M + V 〈m−1〉 − 1 = 0

and therefore

(R −M)
[
V
(
Rq−1 +MRq−2 + · · ·+M q−1

)
− 1
]

=V (Rq −M q)−R+M

=V Rq −R− (VM q −M)

=V Rq −R+ V 〈m−1〉 − 1.

Now upon taking an indeterminate S and letting

P =
i−1∑
j=0

V 〈j−1〉Sq
j

we have

V P q − P =

 i∑
j=1

V 〈j−1〉Sq
j

−
i−1∑
j=0

V 〈j−1〉Sq
j


=V 〈i−1〉Sq

i − S
and hence upon taking indeterminates S1, . . . , Sm−1 and letting

D =
m−1∑
i=1

i−1∑
j=0

V 〈j−1〉Sq
j

i

we have

V Dq −D =
m−1∑
i=1

(
V 〈i−1〉Sq

i

i − Si
)

and therefore by substituting D for R in the factorization

V Rq −R+ V 〈m−1〉 − 1 = (R−M)
[
V
(
Rq−1 +MRq−2 + · · ·+M q−1

)
− 1
]

we get the factorization(
m−1∑
i=1

V 〈i−1〉Sq
i

i

)
−
(
m−1∑
i=1

Si

)
+ V 〈m−1〉 − 1

= (D −M)
[
V
(
Dq−1 +MDq−2 + · · ·+M q−1

)
− 1
]
.

Substituting (W, T̃i) for (V, Si) in the above equation we get

g̃ = (E −N)
[
W
(
Eq−1 +NEq−2 + · · ·+Nq−1

)
− 1
]

where

E =
m−1∑
i=1

i−1∑
j=0

W 〈j−1〉T̃ q
j

i and N = −
m−1∑
µ=0

W 〈m−2−µ〉
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and hence upon remembering that g = Y 〈2m−1〉Lg̃ we get

g = Y 〈2m−1〉L(E −N)
[
W
(
Eq−1 +NEq−2 + · · ·+Nq−1

)
− 1
]

and we recall that

L =
Z〈m−1〉 − 1

Z − 1

and

W =
Z
(
Z〈m−1〉 − 1

)(q−1)

Y qm+1
, T̃i =

Z〈m−1−i〉 (Z〈i−1〉 − 1
)qm−i(

Z〈m−1〉 − 1
)
Y 〈m−1−i〉 Ti.

Substituting the above values of W and T̃i in E we get

E =
m−1∑
i=1

i−1∑
j=0

Z〈m−1−i+j〉 (Z〈i−1〉 − 1
)qm−i+j(

Z〈m−1〉 − 1
)
Y qj〈m−1−i〉+(qm+1)〈j−1〉 T

qj

i .

Now upon letting

Gi = Z
(
Z〈i−1〉 − 1

)q−1

and Hi = 1 + Z + Z2 + · · ·+ Z〈i−1〉−1

we get

L = Hm, W =
Z
(
Z〈m−1〉 − 1

)(q−1)

Y qm+1
=

Gm
Y qm+1

, N = −
m−1∑
µ=0

G
〈m−2−µ〉
m

Y (qm+1)〈m−2−µ〉 ,

and

E =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i

(
Z〈i−1〉 − 1

)(
Z〈m−1〉 − 1

)
Y qj〈m−1−i〉+(qm+1)〈j−1〉 T

qj

i ,

and hence

LE =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i Hi

Y qj〈m−1−i〉+(qm+1)〈j−1〉T
qj

i

and

−LN =
m−1∑
µ=0

G
〈m−2−µ〉
m Hm

Y (qm+1)〈m−2−µ〉 .

By factoring the maximal negative power of Y from N , E, LE and LN , we get

N = −
m−1∑
µ=0

G
〈m−2−µ〉
m Y (qm+1)qm−1−µ〈µ−1〉

Y (qm+1)〈m−2〉 ,

E =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i

(
Z〈i−1〉 − 1

)
Y q

m+j〈m−2−j〉+qm−i+j〈i−j−2〉(
Z〈m−1〉 − 1

)
Y (qm+1)〈m−2〉 T q

j

i ,

LE =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i HiY

qm+j〈m−2−j〉+qm−i+j〈i−j−2〉

Y (qm+1)〈m−2〉 T q
j

i ,
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and

−LN =
m−1∑
µ=0

G
〈m−2−µ〉
m HmY

(qm+1)qm−1−µ〈µ−1〉

Y (qm+1)〈m−2〉 .

Therefore upon letting

g′ = Y (qm+1)〈m−2〉L(E −N) and g′′ = Y (qm+1)qm−1

[(
q∑
l=1

WN l−1Eq−l

)
− 1

]
we get

g = g′g′′(3.1)

with

g′ =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i HiY

qm+j〈m−2−j〉+qm−i+j〈i−j−2〉T q
j

i

+
m−1∑
µ=0

G〈m−2−µ〉
m HmY

(qm+1)qm−1−µ〈µ−1〉

(3.2)

and

g′′ =

(
q∑
l=1

Z
(
Z〈m−1〉 − 1

)q−1

N
l−1

E
q−l
)
− Y (qm+1)(qm−1−1),(3.3)

where

N = −
m−1∑
µ=0

G〈m−2−µ〉
m Y (qm+1)qm−1−µ〈µ−1〉(3.4)

and

E =
m−1∑
i=1

i−1∑
j=0

G
〈m−1−i+j〉
i

(
Z〈i−1〉 − 1

)
Y q

m+j〈m−2−j〉+qm−i+j〈i−j−2〉T q
j

i(3.5)

and where we recall that

Gi = Z
(
Z〈i−1〉 − 1

)q−1

and Hi = 1 + Z + Z2 + · · ·+ Z〈i−1〉−1.(3.6)

By (3.6) we see that Gi and Hi are monic polynomials in Z and for their Z-
degrees we have

degZGi = 1 + 〈i− 1〉(q − 1) = qi and degZHi = 〈i− 1〉 − 1

and hence

degZG
〈m−2〉
m Hm = 〈m− 2〉qm + 〈m− 1〉 − 1 = q〈2m− 3〉,

degZG
〈m−2〉
m Hm > degZG

〈m−2−µ〉
m Hm for 1 ≤ µ ≤ m− 1,

and

degZG
〈m−2〉
m Hm > degZG

〈m−1−i+j〉
i Hi for 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ i− 1;

therefore, noting that Y (qm+1)qm−1−µ〈µ−1〉 = 1 for µ = 0, in view of (3.2) we
conclude that g′ is a monic polynomial of degree q〈2m−3〉 in Z with coefficients in
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GF(p)[Y, T1, . . . , Tm−1]. Obviously g is a monic polynomial in Z with coefficients
in GF(p)[Y, T1, . . . , Tm−1] and

degZg = (degY f)− 1 = 〈2m− 1〉 − 1 = q〈2m− 3〉+ q2m−1

and hence in view of (3.1) we see that g′′ is a monic polynomial of degree q2m−1 in
Z with coefficients in GF(p)[Y, T1, . . . , Tm−1]. Thus{

g′ and g′′ are monic polynomials of degrees q〈2m− 3〉 and q2m−1

in Z with coefficients in GF(p)[Y, T1, . . . , Tm−1] respectively.
(3.7)

4. Irreducibility

For 1 ≤ e ≤ m − 1, let f ′e, ge, g
′
e, g
′′
e be the members of GF(p)[Y, Z, T1, . . . , Te]

obtained by putting Ti = 0 for all i > e in f ′, g, g′, g′′ respectively. Then f ′e is
the twisted derivative of fe, and dividing the Z-roots of f ′e by Y and afterwards
changing Y to 1/Y we get ge which is a monic polynomial of degree 〈2m− 1〉 − 1
in Z with coefficients in GF(p)[Y, T1, . . . , Te]. Also

for 1 ≤ e ≤ m− 1 we have ge = g′eg
′′
e where g′e and g′′e are

monic polynomials of degrees q〈2m− 3〉 and q2m−1 in Z

with coefficients in GF(p)[Y, T1, . . . , Te] respectively.

(4.1)

By (3.0) and the immediately following expressions for A,B,C we see that

g1 = A1T
q
1 −B1T1 + C1

where A1, B1, C1 are nonzero elements of GF(p)[Y, Z] given by

A1 = Z〈m−1〉(Z − 1)(q−1)〈m−1〉Y q
m+1〈m−2〉,

B1 = Z〈m−2〉(Z − 1)(q−1)〈m−2〉Y q
m−1〈m〉,

and

C1 =
(

1 + Z + Z2 + · · ·+ Z〈m−1〉−1
)

×
{[

Z
(
Z〈m−1〉 − 1

)(q−1)
]〈m−1〉

−
[
Y q

m+1
]〈m−1〉

}
.

Likewise, by (3.1) to (3.6) we see that

g′1 = A′1T1 +B′1

where A′1, B
′
1 are nonzero elements of GF(p)[Y, Z] given by

A′1 = Z〈m−2〉(Z − 1)(q−1)〈m−2〉Y q
m〈m−2〉

and

B′1 =
m−1∑
µ=0

[
Z
(
Z〈m−1〉 − 1

)q−1
]〈m−2−µ〉

×
(

1 + Z + Z2 + · · ·+ Z〈m−1〉−1
)
Y (qm+1)qm−1−µ〈µ−1〉.

For establishing the irreducibility of g′ and g′′ we now prove the following lemma.
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Lemma (4.2). Let Q be a field of characteristic p and consider a univariate poly-
nomial g0 = A0T

q−B0T+C0 with A0, B0, C0 in Q such that A0 6= 0 6= B0. Assume
that g0 = g′0g

′′
0 in Q[T ] with degT g

′
0 = 1 (and hence degT g

′′
0 = q− 1). Also assume

that for some real discrete valuation I of Q (whose value group is the group of all
integers) we have GCD(q − 1, I(B0/A0)) = 1. Then g′′0 is irreducible in Q[T ].

To see this, we note that by assumption g′0 = A′0T + B′0 with 0 6= A′0 ∈ Q and
B′0 ∈ Q. Now −B′0/A′0 is a root of T q − (B0/A0)T + (C0/A0) and hence

T q − (B0/A0)T + (C0/A0) =
∏

j∈GF(q)

[T + (B′0/A
′
0)− jΛ]

where Λ is an element in an algebraic closure Q∗ of Q with Λq−1 = B0/A0. It
follows that for any root ∆ of g′′ in Q∗ we must have ∆ = jΛ− (B′0/A

′
0) for some

0 6= j ∈ GF(q). By taking an extension I∗ of I to Q(∆) and upon letting r be the
reduced ramification exponent of I∗ over I we see that

I∗(∆ + (B′0/A
′
0)) = I∗(jΛ)

= I∗(jq−1Λq−1)/(q − 1)

= I∗(B0/A0)/(q − 1) = rI(B0/A0)/(q − 1).

Therefore, since I∗(∆ + (B′0/A
′
0)) is obviously an integer, so is rI(B0/A0)/(q − 1).

Since GCD(q − 1, I(B0/A0)) = 1, it follows that r is divisible by q − 1. Since the
field degree [Q(∆) : Q] is at least r, we conclude that [Q(∆) : Q] ≥ q − 1. Since ∆
is a root of g′′0 and degT g

′′
0 = q− 1, the polynomial g′′0 must be irreducible in Q[T ].

The following lemma is an easy consequence of the Gauss Lemma.

Lemma (4.3). Let κ be a field, and let g0 = g′0g
′′
0 where g0, g

′
0, g
′′
0 are monic poly-

nomials of positive degrees in Z with coefficients in the (d + 1)-variable polyno-
mial ring κ[X1, . . . , Xd, T ]. Assume that the polynomials g′0 and g′′0 have positive
T -degrees and are irreducible in the ring κ(X1, . . . , Xd, Z)[T ]. Also assume that
the coefficients of g0 as a polynomial in T have no nonconstant common factor
in κ[X1, . . . , Xd, Z]. Then the polynomials g′0 and g′′0 are irreducible in the ring
κ(X1, . . . , Xd, T )[Z].

By letting I to be the Z-adic valuation of Q = kp(Y, Z), i.e., the real discrete
valuation whose valuation ring is the localization of kp[Y, Z] at the principal prime
ideal generated by Z, we see that I(A1) = 〈m− 1〉 and I(B1) = 〈m− 2〉 and hence
I(B1/A1) = 〈m − 2〉 − 〈m − 1〉 = −qm−1 and therefore GCD(q − 1, I(B1/A1)) =
1. Also obviously A1 and C1 have no nonconstant common factor in kp[Y, Z].
Therefore by (4.2) and (4.3) we conclude that:

the polynomials g′1 and g′′1 are irreducible in kp(Y, T1)[Z].(4.4)

As an immediate consequence of (4.4) we see that:
the polynomials g′ and g′′ are irreducible in kp(Y, T1, . . . , Tm−1)[Z]

and, for 1 ≤ e ≤ m− 1,

the polynomials g′e and g′′e are irreducible in kp(Y, T1, . . . , Te)[Z].

(4.5)

Recall that fe is irreducible in kp(X,T1, . . . , Te)[Y ], its twisted derivative is
f ′e(Y, Z), and ge is obtained by dividing the Z-roots of f ′e(Y, Z) by Y and then
changing Y to 1/Y ; therefore by (4.1) and (4.5) we get the following:
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Theorem (4.6). For 1 ≤ e ≤ m − 1, we have that Gal(fe, kp(X,T1, . . . , Te)) is a
transitive permutation group of Rank 3 with subdegrees 1, q〈2m − 3〉 and q2m−1.
Hence in particular, Gal(f, kp(X,T1, . . . , Tm−1)) is a transitive permutation group
of Rank 3 with subdegrees 1, q〈2m− 3〉 and q2m−1.

Notation. Recall that < denotes a subgroup, and / denotes a normal subgroup. Let
the groups SL(m, q) /GL(m, q) / ΓL(m, q) and PSL(m, q) /PGL(m, q) /PΓL(m, q)
and their actions on GF(q)m and P(GF(q)m) be as on pages 78–80 of [A03]. Let

Θm : ΓL(m, q)→ PΓL(m, q) = ΓL(m, q)/GF(q)∗

be the canonical epimorphism where we identify the multiplicative group GF(q)∗

with scalar matrices which constitute the center of GL(m, q).

Now in view of Proposition 3.1 of [A04] we get the following:

Theorem (4.7). Assuming GF(q) ⊂ kp, for 1 ≤ e ≤ m− 1, in a natural manner
we may regard

Gal(φe, kp(X,T1, . . . , Te)) < GL(2m, q)

and

Gal(fe, kp(X,T1, . . . , Te)) < PGL(2m, q)

and then we have

Θ2m(Gal(φe, kp(X,T1, . . . , Te))) = Gal(fe, kp(X,T1, . . . , Te)).

In particular, again assuming GF(q) ⊂ kp, in a natural manner we may regard

Gal(φ, kp(X,T1, . . . , Tm−1)) < GL(2m, q)

and

Gal(f, kp(X,T1, . . . , Tm−1)) < PGL(2m, q)

and then we have

Θ2m(Gal(φ, kp(X,T1, . . . , Tm−1))) = Gal(f, kp(X,T1, . . . , Tm−1)).

Recall that a quasi-p group is a finite group which is generated by its p-Sylow
subgroups. Since DiscY fe = 1 = DiscY φe for 1 ≤ e ≤ m− 1, by the techniques of
the proofs of Proposition 6 of [A01] and Lemma 34 of [A02] we get the following:

Theorem (4.8). If kp is algebraically closed, then, for 1 ≤ e ≤ m− 1,

Gal(fe, kp(X,T1, . . . , Te)) and Gal(φe, kp(X,T1, . . . , Te))

are quasi-p groups. Hence in particular, if kp is algebraically closed then,

Gal(f, kp(X,T1, . . . , Tm−1)) and Gal(φ, kp(X,T1, . . . , Tm−1))

are quasi-p groups.
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5. Review of linear algebra

Recall that we are assuming m > 1.
Following Dickson (page 89 of [Dic]) we define the symplectic group Sp(2m, q)

as the group of all e =

(
a b
c d

)
∈ GL(2m, q), where a, b, c, d are m by m matrices

over GF(q), which leave the bilinear form ψ(x, y) =
∑m
i=1(xiym+i − yixm+i) un-

changed, i.e., ψ(xe, ye) = ψ(x, y), or equivalently for which: ad − bc = the m by
m identity matrix, and ab′ − ba′ = 0 = cd′ − dc′ where ′ = transpose; note that
Sp(2m, q) < SL(2m, q), and define the projective symplectic group PSp(2m, q) =
Θ2m(Sp(2m, q)).2 Let the general symplectic group GSp(2m, q) be defined as the
group of all e ∈ GL(2m, q) such that for some λ(e) ∈ GF(q) we have ψ(ξe, ηe) =
λ(e)ψ(ξ, η) for all ξ, η in GF(q)2m. Let the semilinear symplectic group ΓSp(2m, q)
be defined as the group of all (τ, e) ∈ ΓL(2m, q), with τ ∈ Aut(GF(q)) and e ∈
GL(2m, q), such that for some λ(τ, e) ∈ GF(q) we have ψ(ξτe, ητe) = λ(τ, e)ψ(ξ, η)τ

for all ξ, η in GF(q)2m. Also define: the projective general symplectic group
PGSp(2m, q) = Θ2m(GSp(2m, q)), and the projective semilinear symplectic group
PΓSp(2m, q) = Θ2m(ΓSp(2m, q)). For the definition of the orthogonal groups
Ω(2m+1, q) < O(2m+1, q) < GO(2m+1, q) < ΓO(2m+1, q) and PΩ(2m+1, q) <
PO(2m+ 1, q) < PGO(2m+ 1, q) < PΓO(2m+ 1, q) see [Tay].3

Note that for any H < GL(2m, q) we have

Sp(2m, q) < H ⇔ PSp(2m, q) < Θ2m(H).(5.1)

This follows exactly as in the proof of Lemma 2.3 of [A04] because by (22.4) of
[Asc] Sp(2m, q) is generated by transvections. The order of every transvection is p
or 1, and hence Sp(2m, q) is a quasi-p group.

By 2.1.B, 2.10.4(ii) and 2.10.6(i) of [LiK], for any H < GL(2m, q) we have

Sp(2m, q) / H ⇔ Sp(2m, q) < H < GSp(2m, q)(5.2)

and by 2.1.C of [LiK] we have

[GSp(2m, q) : Sp(2m, q)] 6≡ 0 (mod p).(5.3)

Since Sp(2m, q) is quasi-p, it follows that it is generated by the p-power elements
of Sp(2m, q)GF(q)∗, and hence these two subgroups have the same normalizer in

2Dickson (pages 89–100 of [Dic]) writes SA(2m, q) for Sp(2m, q) and calls it the special Abelian
linear group; he writes A(2m, q) for PSp(2m, q) and shows that it is simple provided (m, q) 6=
(2, 2). Our notation essentially follows [LiK] where these are defined for each symplectic form.
In this connection note that if Φ < PGL(2m, q) is such that Φ is isomorphic to PSp(2m, q) then
PSp(2m, q) = δ−1Φδ for some δ ∈ PGL(2m, q) (see the fifth line of Table 5.4.C on page 200 of
[LiK] which starts with Cl(q)).

3In [Tay] these are defined for each quadratic form. We take the specific quadratic form
x1xm+1 + · · · + xmx2m + x2

2m+1 which gives us specific orthogonal groups; for p 6= 2 we could

take it to be x2
1 + · · · + x2

2m+1. By the singular points of PΩ(2m + 1, q) we mean the images in

P(GF(q)2m+1) of the nonzero ξ ∈ GF(q)2m+1 at which the quadratic form vanishes. Note that
PΩ(2m+ 1, q) acts faithfully and transitively on its singular points (see 11.24, 11.27 and 11.48 of
[Tay]). Also note that if m > 2 and p 6= 2 then PΩ(2m+ 1, q) and PSp(2m, q) are non-isomorphic
groups of the same order (see 11.54 of [Tay]), and there does not exist any homomorphism of

PΩ(2m+1, q) into PGL(2m, q) except the trivial homomorphism which sends everything to 1 (see
the third line of Table 5.4.C on page 200 of [LiK] which starts with Bl(q)). Finally note that if
either m = 2 or p = 2 then PΩ(2m + 1, q) and PSp(2m, q) are isomorphic (see 11.9 and 12.32 of
[Tay]).
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GL(2m, q). Also clearly GF(q)∗ < GSp(2m, q). Therefore by (5.2), for any G <
PGL(2m, q) we have

PSp(2m, q) / G⇔ PSp(2m, q) < G < PGSp(2m, q)(5.4)

and by (5.3) we get

[PGSp(2m, q) : PSp(2m, q)] 6≡ 0 (mod p).(5.5)

Finally, since GF(q)∗ < GSp(2m, q), for any H < GL(2m, q) we have

H < GSp(2m, q)⇔ Θ2m(H) < PGSp(2m, q).(5.6)

In view of Theorem IV of [CaK], by Corollary 1(i) of Kantor [Kan] we get the
following corrected version of the first part of Sample from CR3 on page 90 of [A03]:

Theorem (5.7) [Kantor]. Assume that m > 2. Let G be a transitive permutation
group of Rank 3 with subdegrees 1, q〈2m−3〉 and q2m−1. Then either the permuted
set can be identified with P(GF(q)2m) so that Psp(2m, q) / G < PΓSp(2m, q), or
the permuted set can be identified with the singular points of PΩ(2m+ 1, q) so that
PΩ(2m+ 1, q)1 /G < PΓO(2m+ 1, q)1 where PΩ(2m+ 1, q)1 and PΓO(2m+ 1, q)1

denote the permutation groups on the said singular points induced by PΩ(2m+1, q)
and PΓO(2m+ 1, q) respectively.

In view of the preceding two footnotes, we get the following corollary of (5.7):

Corollary (5.8). Assume that m > 2. Let G < PGL(2m, q) be transitive Rank 3
on P(GF(q)2m) with subdegrees 1, q〈2m−3〉 and q2m−1. Then PSp(2m, q)/ δ−1Gδ
for some δ ∈ PGL(2m, q)

6. Galois groups

By (4.6), (4.7), (5.1), (5.6) and (5.8) we get the following:

Theorem (6.1). If m > 2 and GF(q) ⊂ kp then, for 1 ≤ e ≤ m− 1, in a natural
manner we have

Sp(2m, q) < Gal(φe, kp(X,T1, . . . , Te)) < GSp(2m, q)

and

Psp(2m, q) < Gal(fe, kp(X,T1, . . . , Te)) < PGSp(2m, q).

Hence in particular, if m > 2 and GF(q) ⊂ kp then, in a natural manner we have

Sp(2m, q) < Gal(φ, kp(X,T1, . . . , Te)) < GSp(2m, q)

and

Psp(2m, q) < Gal(f, kp(X,T1, . . . , Te)) < PGSp(2m, q).

By (4.8), (5.2), (5.3), (5.4), (5.5) and (6.1) we get the following:

Theorem (6.2). If m > 2 and kp is algebraically closed, then, for 1 ≤ e ≤ m− 1,
in a natural manner we have

Gal(φ, kp(X,T1, . . . , Tm−1)) = Gal(φe, kp(X,T1, . . . , Te)) = Sp(2m, q)

and

Gal(f, kp(X,T1, . . . , Tm−1)) = Gal(fe, kp(X,T1, . . . , Te)) = Psp(2m, q).

Remark (6.3). We shall discuss the m = 2 case elsewhere.
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