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ABSTRACT. Nice quintinomial equations are given for unramified coverings of
the affine line in nonzero characteristic p with PSp(2m, ¢) and Sp(2m, q) as
Galois groups where m > 2 is any integer and ¢ > 1 is any power of p.

1. INTRODUCTION

Let m > 2 be any integer, let ¢ > 1 be any power of a prime p, consider the poly-
nomials F = F(Y) = Y4TI9V "4+ XY 4+TY"+1and F* = F*(Y) = Y™ + XY +1
in indeterminates T, X,Y over an algebraically closed field k of characteristic p,
wheren = 14+qg+ - +¢" L u=14+qg+ - +¢g" v=1+q+ - +¢™ 1,
w=14+qg+--+¢g" 2 n*=14+qg+---+¢™ !, and consider their respective
Galois groups Gal(F, k(X,T)) and Gal(F*,k(X)). Both these are special cases of
the families of polynomials giving unramified coverings of the affine line in nonzero
characteristic which were written down in my 1957 paper [A01]. In my “Nice
Equations” paper [A04], as a consequence of Cameron-Kantor Theorem I [CaK] on
antiflag transitive collineation groups, I proved that Gal(F*, k(X)) = the projective
special linear group PSL(m,¢). In the present paper, as a consequence of Kantor’s
characterization of Rank 3 groups in terms of their subdegrees [Kan], supplemented
by Cameron-Kantor Theorem IV [CaK], I shall show that Gal(F,k(X,T)) = the
projective symplectic group PSp(2m,q). Note that Kantor’s Rank 3 character-
ization depends on the Buekenhout-Shult characterization of polar spaces [BuS]
which itself depends on Tits’ classification of spherical buildings [Tit]. Recall that
the Rank of a transitive permutation group is the number of orbits of its 1-point
stabilizer, and the sizes of these orbits are called subdegrees.

As a corollary of the above theorem that the Galois group of F' is PSp(2m,q), I
shall show that the Galois group of a more general polynomial f is also PSp(2m, q).
Moreover, by slightly changing f and F, I shall show that we get polynomials ¢
and ¢; whose Galois group is the symplectic group Sp(2m,q). The polynomials
f, ¢ and ¢; are also special cases of the families of polynomials giving unramified
coverings of the affine line in nonzero characteristic written down in [A01].

As in [A03] and [A04], here the basic techniques will be MTR (= the Method of
Throwing away Roots) and FTP (= Factorization of Polynomials).
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2. NOTATION AND OUTLINE

Let k, be a field of characteristic p > 0, let ¢ > 1 be any power of p, and let
m > 1 be any integer.! To abbreviate frequently occurring expressions, for every
integer ¢ > —1 we put

(iy=14q+¢*+ - +¢" (convention: (0) =1 and (—1) = 0).

We shall frequently use the geometric series identity

A |
1+ Z2+2°4+ - +2t =" =
+Z+ 77+ + )

and its corollary

. i+1_1
@) =14+q+@++qd=1—"2.

q—1
Let
m—1

F=fE) =YD 414 Xyim=h 4 ( (m—1+i) +Tiy(m—1—i>)
i=1

and note that then f is a monic polynomial of degree (2m — 1) = 1+ ¢+ ¢ +
-+ ¢*™~ 1 in Y with coefficients in the polynomial ring k,[X, T}, ..., Ty—1]. Now
the constant term of f is 1 and the Y-exponent of every other term in f is 1
modulo p, and hence f — Y fy = 1 where fy is the Y-derivative of f. Therefore
Discy (f) = 1 where Discy(f) is the Y-discriminant of f, and hence the Galois
group Gal(f, kp(X,T1,...,Tim—1)) is well-defined as a subgroup of the symmetric
group Sym a,,_1y. Since f is linear in X, by the Gauss Lemma it follows that f is
irreducible in k (X Ti,...,Tm-1)[Y], and hence its Galois group is transitive.
For 1 <e<m—1, let f. be obtained by substituting T; = 0 for all ¢ > e in f,
ie., let

fo= (V)= YD 1 4 xy(m=D) +Z(Tq (m— 1+i)+ny<m—1—i)>

=1

and note that then f. is a monic polynomial of degree (2m — 1) = 1+ ¢+ ¢® +

<+ ¢*™ 1 in Y with coefficients in the polynomial ring k,[X,Ty,...,T.] and, as
above, Discy (fe) = 1 and the Galois group Gal(fe, kp(X,T1,...,Te)) is a transitive
subgroup of Sym(s,,—1). Note that if k¥ = k, = an algebraically closed field (of
characteristic p > 0), then F' is obtained by substituting 7" for 77 in f; and hence
Gal(F, k(X,T)) = Gal(f1, kp(X, T1)).

In Section 3, we throw away a root of f to get its twisted derivative f/(Y,Z),
and we let g(Y,Z) be the polynomial obtained by first dividing the Z-roots of
f'(Y,Z) by Y and then changing Y to 1/Y. Next we factor ¢(Y,Z) into two fac-
tors. The Z-degrees of these factors turn out to be ¢(2m — 3) and ¢*™~!. In

n the Abstract and the Introduction we assumed m > 2. But in the rest of the paper, unless
stated otherwise, we only assume m > 1.



MORE NICE EQUATIONS FOR NICE GROUPS 2979

Section 4, we show that these factors are irreducible in case of fi; and hence also
in case of f and f, for 1 < e < m — 1, and therefore Gal(f, k(X,T1,...,Tm-1))
and Gal(fe, kp(X,T1,...,T.)) are Rank 3 groups with subdegrees 1, ¢(2m — 3)
and ¢>™~!. In Section 6, from this Rank 3 description, we deduce the result
that if m > 2 and k, is algebraically closed then Gal(f,k,(X,T1,...,Tm-1)) =
Gal(fe,kp(X,T1,...,Te)) = PSp(2m, q) for 1 <e <m — 1.

Consider the monic polynomials

m—1 ) ) ,
p=¢(Y)=YI" 414 XY 4 (Ti‘l’qu“—l LTy —1)
=1

and
be = ¢e(Y) =YL L4 14 XY

+ Z (TiquqMH_1 + TquMﬂI_l) forl<e<m-—1
i=1

of degree ¢*™ — 1 in Y with coefficients in k,[X, T, ..., Tpn-1] and k[ X, T, ..., T¢]
respectively, and note that, as before, Discy (¢) = Discy (¢.) = 1. In Section 6, as
a consequence of the above result about the Galois groups of f and f., we show
that if m > 2 and k, is algebraically closed then Gal(¢,k,(X,T1,...,Tm-1)) =
Gal(¢e, kp(X,Th,...,Tc)) = Sp(2m,q) for 1 <e <m — 1.

In Section 5, we give a review of linear algebra including definitions of PSp(2m, q)
and Sp(2m, q).

3. TWISTED DERIVATIVE AND ITS FACTORIZATION

Solving the equation f =0 we get

y (2m—1) L1+ 227;—11 (Tiqiy(m—l-i-i) 4 Tﬂ/(m—l—i))

X = YD
and hence
(v, 2) :w (def of the twisted derivative f’ of f)
7(2m—1) _ y(2m—1)
Z =Y
YO 1 S (e Ty )

_Yy{(m-1)
Z(m—l) _ Y(m—l)
Z-Y

m—1 ; ; ; ;
i Z(m—1+z> _ Y(m—1+z> Z(m—l—z) _ Y(m—l—z)
+ E <Tiq +T; )
pt Z-Y Z-Y

X
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and therefore
g=9(Y,2) =y ®" UL f(1)Y, Z/Y)
(def of polynomial g obtained by dividing
roots of f' by Y and then changing Y to 1/Y)
ZG@m=1) _1  gim=1) _]

_ _ (2m—1>)
Z —1 Z —1 (1+Y

m—1 m—1 m—1—i
— Z T zm -1 _ Z -1 y (2m—1)—(m—1-i)
e Z —1 Z —1

m—1 ;
o [ Zm=1+0) 1 gz(m—=1) _q )
T4 _ Y(2m—l)—(m—l+z)'
* ; i < Z -1 Z -1 )

To simplify g we observe that
2m—-1)=(@"+1)(m-1)

and hence
Z(Zm—l) -1 Z(m—l) -1
_ 1 y<2m—1>)
Z-1 71 ( +
m—1) _ m—1)(¢"m+1) _
B Z<Z—>1 1 <Z< Z(ni(_qn )1 1o Y(qm+l)<m_1>>
and also

Z{m=1)(¢"+1) _ 1

Z(m=1) _q 1= gm=1) 4 g2m=1) L 4 g™ (m-1)

= z(m=1) (Z<m_1> _ 1)(qm—l)

— g{m-1) (Z<m—1> _ 1)
and therefore

(g1 m=Y
{Z (7m0 —1) ! }
Z(2m—1> -1 Z(m—l) -1

_ <2m—1))
Z —1 Z -1 (1+Y

e LG a M M A

Moreover
Zlm=1+i) _ 1  gm=1) _q
Z-1 Z-1
= (1 +Z4+Z%2 4. Zq+q2+---+qm’1“) _ (1 +Z4+2%24.. + Zq+q2+---+qm"1)

(q=1)(m—1)

= Zltatd bt (1 V2424 qu“—”—l)

Z(m=1) (7= _ 1)‘1’”
N Z -1
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and
y@m—1)—(m—1+i) _ qu+i(m—1—i>
and hence
T Zim=1+ 1 _ AR y (2m—1)—(m—1+i)
g Z -1 Z -1
m— i— a" )
IR A v mo1—) pa’
Z -1 ¢
Similarly
m—1 m—1—1
T ztmv -1z ' -1 y(@m—1)—(m—1-i)
Z—1 Z—1
m—1—i i—1 gt _
— _Z< > (Z< > — 1) qu71<m—1+i>T_.
Z -1
Thus
(3.0) g=A—-—B+C
where
m—1 _ i— q
Z/(m—1) (Z“ 1) _ 1) _— N
A= q (m—1—i) g
Z _ 1 Y 1-‘7/ bl
=1
m=1 m—1—i) ((i-1) 1\ _
.72 (z 1) yam i motti g,
. Z -1
=1
and

Z(m—l) (Z<m—1> _ 1)qm _ (Z(m—l) _ 1) Y(2m—1>
Z -1 '
To simplify g further, upon letting

Gg=g9/L, A=A/L, B=B/L, and C=C/L, whereL:%,
we get

g=L§ and G=A-B+C
with
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and

o=z o) ) ]
and hence upon letting

U=7 (Z<m—1> _ 1>(q_1) , J = qu—i-l7

and
Z(m=1=i) (Z(-1) )‘Imﬂ
V; = (Z< ; 1)Y< 9 for1<i<m-1

we get

m—1 m—1

A=Y Uyr)T g B = N (v g,

=1 =1

and

6‘ — U(m—l) _ J(m—l) with J(m—l) _ Y(Zm—l)7
and therefore upon letting

G=g/vemn, A= Ajyeny,

B = E/Y(Qm—w, C = 5/Y<2m—1),

and
w U/Ja TZ = ‘/ZE
we get
g=Y?" VL5 and §:g—§+6~'

with

m—1 N m—1 N

A w 4 B=Y T;, and C=wWm"b_1q

=1 i=1

where
VA (Z(m—l) _ 1)(‘1_1) _ Z(m—l—i) (Z<z—1> _ 1)qm71
W= Yo+l and Ty = (Z<m—1> — 1) Y (m—1—i) T;.

To factor g we try to factor g. First we try to factor g after putting T, = 0 for
all ¢ > 1, i.e., we try to factor

WTE — Ty + Wim=b — 1,

This corresponds to the case of the special polynomial f1; we shall then feed it back
into the general case of g. By changing (W, T1) to (V, R), we try to factor

VRT - R+ V=1 1

as a polynomial in an indeterminate R with coefficients in the univariate polynomial
ring GF(p)[V]. To do this, upon letting

_ Wf V(m—2—p)
n=0
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we have
m—1
VM? = — Z {m=1-w)
pu=0

and hence
VM? - M4 V™D _1=90
and therefore
(R—M)[V(R"'"+ MR >+ 4+ M ") - 1] =V(R"—= M%) — R+ M
=VRI— R— (VM — M)
=VRI— R4V _1,

Now upon taking an indeterminate S and letting
i—1

P= Z yii-1) g’

j=0
we have
VP! _ P — iv(j—USQj _ Sv(j—wsqj
Jj=1 Jj=0
_yli-1)gd' _ g
and hence upon taking indeterminates Si,...,S,—1 and letting
m—1i—1 _
D=3 Y vu-gr
i=1 j=0
we have

m—1 )
VD' -D=>" (V“‘”Séf - Si)
i=1
and therefore by substituting D for R in the factorization

VR —R+V™ Y —1=(R-M)[V (R + MR+ + M) 1]

we get the factorization

m—1 . m—1
(Z V“‘”S;II) — (Z SZ) + V=l _q
i=1 i=1
=D-M)[V(DT"'+MD"? 4.4+ M) —1].
Substituting (W, T}) for (V, S;) in the above equation we get
Gg=(E-N)[W(ET'+NE"?+ ...+ NI7) —1]

where

|
-

m—11

) m—1
E=Y" YWYl and N=-> wm2w
pn=0

Il
o

=17
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2m=1) 1§ we get

and hence upon remembering that g = Y
g=Y¥ULE-N)[W (B + NET2 + ... 4 NI71) — 1]

and we recall that

(m—1)
I Z 1
Z -1
and
7 (Z<m—1> _ 1) (g—1) _ Z(m—l—i) (Z(’L—l) _ 1)‘1m*i
W = , T, = —T;.
Yar+1 (Z(m—l) _ 1) Y (m—1—1)
Substituting the above values of W and T; in E we get
m—14i—1 it i qm
Z(m—1—it+j) (7(i—-1) _1 i
E-Y Y At AN
L L (Z(m=1) — 1) Y& (m—1=i) (" +1) (1)
i=1 7=0

Now upon letting

. q—1 .
Gi = Z(Z<Z—1> —1) and H,=1+Z+ 22 +4... + z0-D-1

we get
7 (Z<m—1> _ 1) (q—1) G m—1 G7<711n_2_u>
L=Hp, W= Yam+1 = yorrr N=- Z% y (@ +1)(m—2—p)’
=
and
b m—1i—1 Gl{m—l—iﬂ‘) (Z<i—1> _ 1) qu
T - Z% (Z<m—1> — 1) Y& (m—1—i)+(gm+1)(G—1) "¢ ’
i=1 j=
and hence
m—1i-1 (m—1—i+j)
Gi HZ q’
=2 ZO Yo @D G-T L
1= J=
and

m—1 (m—2—p)
Gy, H,,
—LN = Z y @ ) {m=—2=p) "

By factoring the maximal negative power of Y from N, E, LE and LN, we get

m_l ngl_z_“)y(qmﬂ)qm’l’“(M—1>

N=-3" Y@ 1) (m—2) ’
pn=0
m—1i-1 G(m 1—i+j) (Z<i—1> _1) y "t m=2—j)+q™ T (i—j-2)
b= (m—1) (g™ +1)(m—2) e
gl (z -1)Y

m—1i—1 ~(m—1—i+j) M (m—2—j)4qm T (i—j—2)

G, H; Y1 J '

LE=3 % ~ Y@+ (m=2) i

j=0

s
Il
—_

<.
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and

ml glm=2-m) (@"+1)q"™ ' (u1)
Gm H,Y4
_LN - Z:O Y(qm-l-l)(m—?)
u=

Therefore upon letting

q
g/ — Y(qM+1)(m—2)L(E _ N) and g// _ Y(qm_,_l)qul [(Z WNl_lEq_l> B 1‘|
=1

we get
(3.1) g=4gqg"
with
m—11i—1 ) o )
P T TR T
(3.2) i::n_fo
+ Gim=2=m gy (@ +1)g" 7 (1)
n=0
and
(3.3) g// _ (Z 7 (Z<m—1> -~ 1) 1 Nl—lﬁq—l> B Y(qu)(qul_l)’
=1
where
m—1
(3.4) N=-3S Gim=2-my@"+Da" """ (u=1)
n=0
and
m—1i—1 , - ,
(35) E — G§m—l—i+j> (Z<Z_1> . 1) qu#rj (m—?—j)+q7"’71+] <i—j—2>7ﬂ;q]
i=1 j=0

and where we recall that
. q—1 )
(36) Gi=2z(z0-1) and  H; =142+ 7%+ 4 2001,

By (3.6) we see that G; and H; are monic polynomials in Z and for their Z-
degrees we have

degzGi=1+(i—1)(g—1)=¢" and degzH;=(i—1)—1
and hence
degz G2 H,,, = (m — 2)¢™ + (m — 1) — 1 = q(2m — 3),
dengf,’l”_2>Hm > dengf,T_Q_MHm for1<pu<m-—1,

and

degz G2 H,, > deg, GV T H, for 1<i<m—1and0<j<i-—1;

therefore, noting that Y(@"+1a" " (u=1) — 1 for ;4 = 0, in view of (3.2) we
conclude that ¢’ is a monic polynomial of degree q(2m — 3) in Z with coefficients in
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GF(p)[Y,T1,...,Tm-1]. Obviously g is a monic polynomial in Z with coefficients
in GF(p)[Y, T4, ..., Tm-1] and

degzg = (degy f) —1=(2m —1) —1 = ¢(2m — 3) + ¢*™!

and hence in view of (3.1) we see that ¢g” is a monic polynomial of degree ¢>™~! in

Z with coefficients in GF(p)[Y,T1,...,Tm—1]. Thus
2m—1

(37) ¢’ and g” are monic polynomials of degrees ¢(2m — 3) and ¢
' in Z with coefficients in GF(p)[Y,T1, ..., Tm—1] respectively.

4. IRREDUCIBILITY

For 1 <e<m-—1,let fl,ge,4.,9) be the members of GF(p)[Y, Z,T1,...,Te]
obtained by putting T; = 0 for all ¢« > e in f’,g,¢’,g” respectively. Then f/ is
the twisted derivative of f., and dividing the Z-roots of f. by Y and afterwards
changing Y to 1/Y we get g. which is a monic polynomial of degree (2m — 1) — 1
in Z with coefficients in GF(p)[Y,T1,...,T.]. Also

for 1 < e <m — 1 we have g. = g.g/ where g/ and g” are

(4.1) monic polynomials of degrees ¢(2m — 3) and ¢! in Z
with coefficients in GF(p)[Y,T1, ..., Te] respectively.
By (3.0) and the immediately following expressions for A, B, C' we see that
g1 =AT — BT +C
where Ay, By, C; are nonzero elements of GF(p)[Y, Z] given by
Ay = Z0m=D (7 1)a=Dm=1)y " m=2)

)

m,71<

By = zim=2(z — 1)la- D=2 ya™ " (m)
and

01:(1+Z+Z2+~~+Z<m_1>_1)

X { {Z (Z<m—1> _ 1)((1—1)} (m—1) B [qu+1] (M—l)} '

Likewise, by (3.1) to (3.6) we see that
g1 =A\Ty + By
where A}, B} are nonzero elements of GF(p)[Y, Z] given by
Al = Z<m_2>(Z _ 1)(¢1—1)<m—2>qu<m—2>

and
(m—2—p)

m—1
qg—1
Bi=Y {Z (Z<’"‘1> - 1) ]
~ (1 +Z+ Z2 N Z(m—l)—l) Y(qm-i-l)qm*lf“(,u—w'

For establishing the irreducibility of ¢’ and g” we now prove the following lemma.
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Lemma (4.2). Let Q be a field of characteristic p and consider a univariate poly-
nomial go = AgTY— BoT+Cy with Ay, By, Co in Q such that Ay # 0 # By. Assume
that go = g4g4 in Q[T] with degr g, = 1 (and hence degr gf = q—1). Also assume
that for some real discrete valuation I of @ (whose value group is the group of all
integers) we have GCD(q — 1,1(By/Ao)) = 1. Then g{ is irreducible in Q[T).

To see this, we note that by assumption g = AT + B|, with 0 # A}, € Q and
Bj € Q. Now —B{ /A is a root of T? — (By/Ao)T + (Co/Ap) and hence

T — (Bo/Ao)T + (Co/Ao) =[] [T+ (By/AG) — jA]
j€GF(q)

where A is an element in an algebraic closure Q* of Q with A" = By/Ay. It
follows that for any root A of ¢” in @* we must have A = jA — (B(/Aj{) for some
0 # j € GF(q). By taking an extension I* of I to Q(A) and upon letting r be the
reduced ramification exponent of I* over I we see that

I"(A + (By/Ap)) = I"(jA)
=I"(j7 AT /(g - 1)
=1I"(Bo/Ao)/(q —1) = rI(Bo/Ao)/(q = 1).

Therefore, since I*(A + (B{/Ajf)) is obviously an integer, so is rI1(By/Ao)/(q¢ — 1).

Since GCD(q — 1,I(By/Ap)) = 1, it follows that r is divisible by ¢ — 1. Since the

field degree [Q(A) : Q] is at least r, we conclude that [Q(A) : Q] > g — 1. Since A

is a root of ¢g{j and degrg{ = ¢ — 1, the polynomial g{ must be irreducible in Q[T].
The following lemma is an easy consequence of the Gauss Lemma.

Lemma (4.3). Let  be a field, and let go = g9 where go, 94, g4 are monic poly-
nomials of positive degrees in Z with coefficients in the (d + 1)-variable polyno-
mial ring k[X1,...,Xaq,T]. Assume that the polynomials g}, and g{ have positive
T-degrees and are irreducible in the ring k(Xi,...,Xq, Z)[T]. Also assume that
the coefficients of go as a polynomial in T have no nonconstant common factor
in K[X1,...,Xq,Z]. Then the polynomials g{, and g are irreducible in the ring
K(X1, ..., Xa,T)[Z].

By letting I to be the Z-adic valuation of @ = k,(Y, Z), i.e., the real discrete
valuation whose valuation ring is the localization of k,[Y, Z] at the principal prime
ideal generated by Z, we see that I(A;) = (m —1) and I(B;1) = (m — 2) and hence
I(B1/A1) = (m —2) — (m — 1) = —¢™~ ! and therefore GCD(q — 1,1(B1/A1)) =
1. Also obviously A; and C; have no nonconstant common factor in k,[Y, Z].
Therefore by (4.2) and (4.3) we conclude that:

(4.4) the polynomials ¢} and ¢{ are irreducible in k, (Y, T1)[Z].
As an immediate consequence of (4.4) we see that:
the polynomials ¢’ and ¢” are irreducible in k, (Y, T1,. .., Tn-1)[Z]

(4.5) and, for 1 <e<m—1,
the polynomials g, and ¢/ are irreducible in k,(Y,T1,...,T.)[Z].
Recall that f. is irreducible in k,(X,T1,...,T.)[Y], its twisted derivative is

fiY,Z), and g. is obtained by dividing the Z-roots of f.(Y,Z) by Y and then
changing Y to 1/Y; therefore by (4.1) and (4.5) we get the following:



2988 S. S. ABHYANKAR

Theorem (4.6). For 1 <e < m — 1, we have that Gal(fe, kp(X,T1,...,Te)) is a
transitive permutation group of Rank 3 with subdegrees 1, q(2m — 3) and ¢*™~!.
Hence in particular, Gal(f, ky(X,T1,...,Tm—1)) s a transitive permutation group
of Rank 3 with subdegrees 1, q¢(2m — 3) and ¢*™~ L.

Notation. Recall that < denotes a subgroup, and < denotes a normal subgroup. Let
the groups SL(m, q) < GL(m, q) <TL(m, q) and PSL(m, q) <PGL(m, q) <PTL(m, q)
and their actions on GF(¢)™ and P(GF(q)™) be as on pages 78-80 of [A03]. Let

O, : TL(m, q) — PTL(m, q) = TL(m, q)/GF(¢)*

be the canonical epimorphism where we identify the multiplicative group GF(g)*
with scalar matrices which constitute the center of GL(m, q).

Now in view of Proposition 3.1 of [A04] we get the following:

Theorem (4.7). Assuming GF(q) C ky, for 1 <e <m —1, in a natural manner
we may regard

Gal(¢pe, kp(X, T4, ..., T.)) < GL(2m, q)
and
Gal(fe, ky(X,Th,...,T.)) < PGL(2m, q)
and then we have
O (Gal(de, kp(X, T1,...,Te))) = Gal(fe, kp(X, T, ..., Te)).
In particular, again assuming GF(q) C kp, in o natural manner we may regard
Gal(¢, ky(X, T1, ..., Trn—1)) < GL(2m, q)
and
Gal(f, kp(X,Th,...,Tim—1)) < PGL(2m, q)
and then we have
Oom (Gal(, kp(X, T1, ..., Trn_1))) = Gal(f, kp(X, T4, ..., Trm_1)).

Recall that a quasi-p group is a finite group which is generated by its p-Sylow
subgroups. Since Discy fo = 1 = Discy ¢ for 1 < e < m — 1, by the techniques of
the proofs of Proposition 6 of [A01] and Lemma 34 of [A02] we get the following:

Theorem (4.8). If k, is algebraically closed, then, for 1 <e <m —1,
Gal(fe, kp(X, T, ..., Te)) and Gal(¢e, kp(X, T1, ..., Te))
are quasi-p groups. Hence in particular, if ky, is algebraically closed then,
Gal(f, kp(X,T1, ..., Tin—1)) and Gal(¢, kp(X,T1, ..., Tin-1))

are quasi-p groups.
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5. REVIEW OF LINEAR ALGEBRA

Recall that we are assuming m > 1.
Following Dickson (page 89 of [Dic]) we define the symplectic group Sp(2m, q)
a b

d
over GF(g), which leave the bilinear form ¢(z,y) = >\ (TiYm+i — YiTmti) Un-
changed, i.e., ¥(ze,ye) = ¥(x,y), or equivalently for which: ad — bc = the m by
m identity matrix, and ab’ — ba’ = 0 = c¢d’ — dc’ where ' = transpose; note that
Sp(2m, q) < SL(2m,q), and define the projective symplectic group PSp(2m,q) =
©2,,(Sp(2m, q)).2 Let the general symplectic group GSp(2m, q) be defined as the
group of all e € GL(2m, ¢) such that for some A(e) € GF(q) we have (e, ne) =
Ae)yp(€,m) for all £, nin GF(q)*™. Let the semilinear symplectic group T'Sp(2m, q)
be defined as the group of all (7,e) € I'L(2m,q), with 7 € Aut(GF(q)) and e €
GL(2m, q), such that for some A(7, ¢) € GF(q) we have 1)(£7e,n"e) = A(7, e)y(&,n)"
for all £, in GF(¢)*™. Also define: the projective general symplectic group
PGSp(2m, q) = 2, (GSp(2m, q)), and the projective semilinear symplectic group
PI'Sp(2m,q) = ©2,,(I'Sp(2m,q)). For the definition of the orthogonal groups
Q(2m+1,q9) < 0(2m+1,q9) < GO(2m+1,q) <T'O(2m+1,q) and PQ(2m+1,q) <
PO(2m +1,q) < PGO(2m + 1,q) < PTO(2m + 1, q) see [Tay].?

Note that for any H < GL(2m, q) we have

(5.1) Sp(2m,q) < H < PSp(2m, q) < Ogp, (H).

This follows exactly as in the proof of Lemma 2.3 of [A04] because by (22.4) of
[Asc] Sp(2m, q) is generated by transvections. The order of every transvection is p
or 1, and hence Sp(2m, ¢) is a quasi-p group.

By 2.1.B, 2.10.4(ii) and 2.10.6(i) of [LiK], for any H < GL(2m, q) we have

as the group of all e = € GL(2m, q), where a,b, c,d are m by m matrices

(5.2) Sp(2m, q) <« H < Sp(2m, q) < H < GSp(2m, q)
and by 2.1.C of [LiK] we have
(5.3) [GSp(2m, q) : Sp(2m, q)] 0 (mod p).

Since Sp(2m, q) is quasi-p, it follows that it is generated by the p-power elements
of Sp(2m, ¢)GF(q)*, and hence these two subgroups have the same normalizer in

2Dickson (pages 89-100 of [Dic]) writes SA(2m, q) for Sp(2m, q) and calls it the special Abelian
linear group; he writes A(2m,q) for PSp(2m, ¢) and shows that it is simple provided (m,q) #
(2,2). Our notation essentially follows [LiK] where these are defined for each symplectic form.
In this connection note that if & < PGL(2m, q) is such that ® is isomorphic to PSp(2m, q) then
PSp(2m, q) = §~1®6 for some § € PGL(2m, q) (see the fifth line of Table 5.4.C on page 200 of
[LiK] which starts with C;(q)).

3In [Tay] these are defined for each quadratic form. We take the specific quadratic form
T1Zm+1 + - + TmTam + m§m+1 which gives us specific orthogonal groups; for p # 2 we could
take it to be x% + -4 x%m+1. By the singular points of PQ(2m + 1,q) we mean the images in
P(GF(q)?™*1) of the nonzero ¢ € GF(q)?™*! at which the quadratic form vanishes. Note that
PQ(2m + 1, q) acts faithfully and transitively on its singular points (see 11.24, 11.27 and 11.48 of
[Tay]). Also note that if m > 2 and p # 2 then PQ(2m + 1, ¢) and PSp(2m, ¢) are non-isomorphic
groups of the same order (see 11.54 of [Tay]), and there does not exist any homomorphism of
PQ(2m+1, q) into PGL(2m, q) except the trivial homomorphism which sends everything to 1 (see
the third line of Table 5.4.C on page 200 of [LiK] which starts with B;(g)). Finally note that if
either m = 2 or p = 2 then PQ(2m + 1, ¢) and PSp(2m, ¢) are isomorphic (see 11.9 and 12.32 of
[Tay)).
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GL(2m,q). Also clearly GF(q)* < GSp(2m,q). Therefore by (5.2), for any G <
PGL(2m, q) we have

(5.4) PSp(2m, q) <G < PSp(2m, q) < G < PGSp(2m, q)
and by (5.3) we get

(5.5) [PGSp(2m, q) : PSp(2m,q)] Z0 (mod p).
Finally, since GF(¢q)* < GSp(2m, q), for any H < GL(2m, ¢) we have
(5.6) H < GSp(2m, q) & ©2,,(H) < PGSp(2m, q).

In view of Theorem IV of [CaK], by Corollary 1(i) of Kantor [Kan] we get the
following corrected version of the first part of Sample from CR3 on page 90 of [A03]:

Theorem (5.7) [Kantor]. Assume that m > 2. Let G be a transitive permutation
group of Rank 3 with subdegrees 1, ¢(2m —3) and ¢*™~*. Then either the permuted
set can be identified with P(GF(q)*™) so that Psp(2m,q) <G < PT'Sp(2m,q), or
the permuted set can be identified with the singular points of PQ(2m +1,q) so that
PQ(2m+1,q)1 <G < PTO(2m+1,q); where PQ(2m+1,q)1 and PTO(2m +1,¢)1
denote the permutation groups on the said singular points induced by PQ(2m+1,q)
and PTO(2m + 1, q) respectively.

In view of the preceding two footnotes, we get the following corollary of (5.7):

Corollary (5.8). Assume that m > 2. Let G < PGL(2m, q) be transitive Rank 3
on P(GF(q)*™) with subdegrees 1, ¢(2m —3) and ¢*™~1. Then PSp(2m, q)<671G§
for some 6 € PGL(2m, q)
6. GALOIS GROUPS
By (4.6), (4.7), (5.1), (5.6) and (5.8) we get the following:

Theorem (6.1). If m > 2 and GF(q) C k, then, for 1 <e <m —1, in a natural
manner we have

Sp(2m, q) < Gal(¢., kp(X,Th,...,Te)) < GSp(2m, q)
and
Psp(2m, q) < Gal(fe, kp(X,Th,...,T.)) < PGSp(2m,gq).
Hence in particular, if m > 2 and GF(q) C kp then, in a natural manner we have
Sp(2m, ¢) < Gal(¢, kp(X,Th,...,Te)) < GSp(2m, q)
and
Psp(2m, q) < Gal(f, k,(X,T1,...,T.)) < PGSp(2m,gq).
By (4.8), (5.2), (5.3), (5.4), (5.5) and (6.1) we get the following;:

Theorem (6.2). If m > 2 and k, is algebraically closed, then, for1 <e<m—1,
in a natural manner we have

Gal(g, kp(X, Th, ..., Tin—1)) = Gal(¢e, kp(X, Th, ..., Te)) = Sp(2m, q)
and

Gal(f, kp(X, T, ..., Tm—1)) = Gal(fe, kp(X,T1,...,T.)) = Psp(2m, q).

Remark (6.3). We shall discuss the m = 2 case elsewhere.
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