

MORE NICE EQUATIONS FOR NICE GROUPS

SHREERAM S. ABHYANKAR

(Communicated by Ronald M. Solomon)

ABSTRACT. Nice quintinomial equations are given for unramified coverings of the affine line in nonzero characteristic p with $\mathrm{PSp}(2m, q)$ and $\mathrm{Sp}(2m, q)$ as Galois groups where $m > 2$ is any integer and $q > 1$ is any power of p .

1. INTRODUCTION

Let $m > 2$ be any integer, let $q > 1$ be any power of a prime p , consider the polynomials $F = F(Y) = Y^n + T^q Y^u + XY^v + TY^w + 1$ and $F^* = F^*(Y) = Y^{n^*} + XY + 1$ in indeterminates T, X, Y over an algebraically closed field k of characteristic p , where $n = 1 + q + \dots + q^{2m-1}$, $u = 1 + q + \dots + q^m$, $v = 1 + q + \dots + q^{m-1}$, $w = 1 + q + \dots + q^{m-2}$, $n^* = 1 + q + \dots + q^{m-1}$, and consider their respective Galois groups $\mathrm{Gal}(F, k(X, T))$ and $\mathrm{Gal}(F^*, k(X))$. Both these are special cases of the families of polynomials giving unramified coverings of the affine line in nonzero characteristic which were written down in my 1957 paper [A01]. In my “Nice Equations” paper [A04], as a consequence of Cameron-Kantor Theorem I [CaK] on antiflag transitive collineation groups, I proved that $\mathrm{Gal}(F^*, k(X)) =$ the projective special linear group $\mathrm{PSL}(m, q)$. In the present paper, as a consequence of Kantor’s characterization of Rank 3 groups in terms of their subdegrees [Kan], supplemented by Cameron-Kantor Theorem IV [CaK], I shall show that $\mathrm{Gal}(F, k(X, T)) =$ the projective symplectic group $\mathrm{PSp}(2m, q)$. Note that Kantor’s Rank 3 characterization depends on the Buekenhout-Shult characterization of polar spaces [BuS] which itself depends on Tits’ classification of spherical buildings [Tit]. Recall that the Rank of a transitive permutation group is the number of orbits of its 1-point stabilizer, and the sizes of these orbits are called subdegrees.

As a corollary of the above theorem that the Galois group of F is $\mathrm{PSp}(2m, q)$, I shall show that the Galois group of a more general polynomial f is also $\mathrm{PSp}(2m, q)$. Moreover, by slightly changing f and F , I shall show that we get polynomials ϕ and ϕ_1 whose Galois group is the symplectic group $\mathrm{Sp}(2m, q)$. The polynomials f, ϕ and ϕ_1 are also special cases of the families of polynomials giving unramified coverings of the affine line in nonzero characteristic written down in [A01].

As in [A03] and [A04], here the basic techniques will be MTR (= the Method of Throwing away Roots) and FTP (= Factorization of Polynomials).

Received by the editors March 21, 1995.

1991 *Mathematics Subject Classification*. Primary 12F10, 14H30, 20D06, 20E22.

This work was partly supported by NSF grant DMS 91-01424 and NSA grant MDA 904-92-H-3035.

It is a pleasure to thank Bill Kantor and Dinesh Thakur for stimulating conversations concerning the material of this paper.

2. NOTATION AND OUTLINE

Let k_p be a field of characteristic $p > 0$, let $q > 1$ be any power of p , and let $m > 1$ be any integer.¹ To abbreviate frequently occurring expressions, for every integer $i \geq -1$ we put

$$\langle i \rangle = 1 + q + q^2 + \cdots + q^i \quad (\text{convention: } \langle 0 \rangle = 1 \text{ and } \langle -1 \rangle = 0).$$

We shall frequently use the geometric series identity

$$1 + Z + Z^2 + \cdots + Z^i = \frac{Z^{i+1} - 1}{Z - 1}$$

and its corollary

$$\langle i \rangle = 1 + q + q^2 + \cdots + q^i = \frac{q^{i+1} - 1}{q - 1}.$$

Let

$$f = f(Y) = Y^{\langle 2m-1 \rangle} + 1 + XY^{\langle m-1 \rangle} + \sum_{i=1}^{m-1} \left(T_i^{q^i} Y^{\langle m-1+i \rangle} + T_i Y^{\langle m-1-i \rangle} \right)$$

and note that then f is a monic polynomial of degree $\langle 2m-1 \rangle = 1 + q + q^2 + \cdots + q^{2m-1}$ in Y with coefficients in the polynomial ring $k_p[X, T_1, \dots, T_{m-1}]$. Now the constant term of f is 1 and the Y -exponent of every other term in f is 1 modulo p , and hence $f - Yf_Y = 1$ where f_Y is the Y -derivative of f . Therefore $\text{Disc}_Y(f) = 1$ where $\text{Disc}_Y(f)$ is the Y -discriminant of f , and hence the Galois group $\text{Gal}(f, k_p(X, T_1, \dots, T_{m-1}))$ is well-defined as a subgroup of the symmetric group $\text{Sym}_{\langle 2m-1 \rangle}$. Since f is linear in X , by the Gauss Lemma it follows that f is irreducible in $k_p(X, T_1, \dots, T_{m-1})[Y]$, and hence its Galois group is transitive.

For $1 \leq e \leq m-1$, let f_e be obtained by substituting $T_i = 0$ for all $i > e$ in f , i.e., let

$$f_e = f_e(Y) = Y^{\langle 2m-1 \rangle} + 1 + XY^{\langle m-1 \rangle} + \sum_{i=1}^e \left(T_i^{q^i} Y^{\langle m-1+i \rangle} + T_i Y^{\langle m-1-i \rangle} \right)$$

and note that then f_e is a monic polynomial of degree $\langle 2m-1 \rangle = 1 + q + q^2 + \cdots + q^{2m-1}$ in Y with coefficients in the polynomial ring $k_p[X, T_1, \dots, T_e]$ and, as above, $\text{Disc}_Y(f_e) = 1$ and the Galois group $\text{Gal}(f_e, k_p(X, T_1, \dots, T_e))$ is a transitive subgroup of $\text{Sym}_{\langle 2m-1 \rangle}$. Note that if $k = k_p$ is an algebraically closed field (of characteristic $p > 0$), then F is obtained by substituting T for T_1 in f_1 and hence $\text{Gal}(F, k(X, T)) = \text{Gal}(f_1, k_p(X, T_1))$.

In Section 3, we throw away a root of f to get its twisted derivative $f'(Y, Z)$, and we let $g(Y, Z)$ be the polynomial obtained by first dividing the Z -roots of $f'(Y, Z)$ by Y and then changing Y to $1/Y$. Next we factor $g(Y, Z)$ into two factors. The Z -degrees of these factors turn out to be $q\langle 2m-3 \rangle$ and q^{2m-1} . In

¹In the Abstract and the Introduction we assumed $m > 2$. But in the rest of the paper, unless stated otherwise, we only assume $m > 1$.

Section 4, we show that these factors are irreducible in case of f_1 and hence also in case of f and f_e for $1 \leq e \leq m-1$, and therefore $\text{Gal}(f, k(X, T_1, \dots, T_{m-1}))$ and $\text{Gal}(f_e, k_p(X, T_1, \dots, T_e))$ are Rank 3 groups with subdegrees 1, $q\langle 2m-3 \rangle$ and q^{2m-1} . In Section 6, from this Rank 3 description, we deduce the result that if $m > 2$ and k_p is algebraically closed then $\text{Gal}(f, k_p(X, T_1, \dots, T_{m-1})) = \text{Gal}(f_e, k_p(X, T_1, \dots, T_e)) = \text{PSp}(2m, q)$ for $1 \leq e \leq m-1$.

Consider the monic polynomials

$$\phi = \phi(Y) = Y^{q^{2m}-1} + 1 + XY^{q^m-1} + \sum_{i=1}^{m-1} \left(T_i^{q^i} Y^{q^{m+i}-1} + T_i Y^{q^{m-i}-1} \right)$$

and

$$\begin{aligned} \phi_e = \phi_e(Y) &= Y^{q^{2m}-1} + 1 + XY^{q^m-1} \\ &+ \sum_{i=1}^e \left(T_i^{q^i} Y^{q^{m+i}-1} + T_i Y^{q^{m-i}-1} \right) \text{ for } 1 \leq e \leq m-1 \end{aligned}$$

of degree $q^{2m}-1$ in Y with coefficients in $k_p[X, T_1, \dots, T_{m-1}]$ and $k_p[X, T_1, \dots, T_e]$ respectively, and note that, as before, $\text{Disc}_Y(\phi) = \text{Disc}_Y(\phi_e) = 1$. In Section 6, as a consequence of the above result about the Galois groups of f and f_e , we show that if $m > 2$ and k_p is algebraically closed then $\text{Gal}(\phi, k_p(X, T_1, \dots, T_{m-1})) = \text{Gal}(\phi_e, k_p(X, T_1, \dots, T_e)) = \text{Sp}(2m, q)$ for $1 \leq e \leq m-1$.

In Section 5, we give a review of linear algebra including definitions of $\text{PSp}(2m, q)$ and $\text{Sp}(2m, q)$.

3. TWISTED DERIVATIVE AND ITS FACTORIZATION

Solving the equation $f = 0$ we get

$$X = \frac{Y^{\langle 2m-1 \rangle} + 1 + \sum_{i=1}^{m-1} \left(T_i^{q^i} Y^{\langle m-1+i \rangle} + T_i Y^{\langle m-1-i \rangle} \right)}{-Y^{\langle m-1 \rangle}}$$

and hence

$$\begin{aligned} f'(Y, Z) &= \frac{f(Z) - f(Y)}{Z - Y} \quad (\text{def of the twisted derivative } f' \text{ of } f) \\ &= \frac{Z^{\langle 2m-1 \rangle} - Y^{\langle 2m-1 \rangle}}{Z - Y} \\ &+ \frac{Y^{\langle 2m-1 \rangle} + 1 + \sum_{i=1}^{m-1} \left(T_i^{q^i} Y^{\langle m-1+i \rangle} + T_i Y^{\langle m-1-i \rangle} \right)}{-Y^{\langle m-1 \rangle}} \\ &\times \frac{Z^{\langle m-1 \rangle} - Y^{\langle m-1 \rangle}}{Z - Y} \\ &+ \sum_{i=1}^{m-1} \left(T_i^{q^i} \frac{Z^{\langle m-1+i \rangle} - Y^{\langle m-1+i \rangle}}{Z - Y} + T_i \frac{Z^{\langle m-1-i \rangle} - Y^{\langle m-1-i \rangle}}{Z - Y} \right) \end{aligned}$$

and therefore

$$\begin{aligned}
 g = g(Y, Z) &= Y^{\langle 2m-1 \rangle - 1} f'(1/Y, Z/Y) \\
 &\quad (\text{def of polynomial } g \text{ obtained by dividing} \\
 &\quad \text{roots of } f' \text{ by } Y \text{ and then changing } Y \text{ to } 1/Y) \\
 &= \frac{Z^{\langle 2m-1 \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} (1 + Y^{\langle 2m-1 \rangle}) \\
 &\quad - \sum_{i=1}^{m-1} T_i \left(\frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1-i \rangle} - 1}{Z - 1} \right) Y^{\langle 2m-1 \rangle - \langle m-1-i \rangle} \\
 &\quad + \sum_{i=1}^{m-1} T_i^{q^i} \left(\frac{Z^{\langle m-1+i \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \right) Y^{\langle 2m-1 \rangle - \langle m-1+i \rangle}.
 \end{aligned}$$

To simplify g we observe that

$$\langle 2m-1 \rangle = (q^m + 1) \langle m-1 \rangle$$

and hence

$$\begin{aligned}
 &\frac{Z^{\langle 2m-1 \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} (1 + Y^{\langle 2m-1 \rangle}) \\
 &= \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \left(\frac{Z^{\langle m-1 \rangle(q^m+1)} - 1}{Z^{\langle m-1 \rangle} - 1} - 1 - Y^{\langle q^m+1 \rangle \langle m-1 \rangle} \right)
 \end{aligned}$$

and also

$$\begin{aligned}
 \frac{Z^{\langle m-1 \rangle(q^m+1)} - 1}{Z^{\langle m-1 \rangle} - 1} - 1 &= Z^{\langle m-1 \rangle} + Z^{2\langle m-1 \rangle} + \cdots + Z^{q^m\langle m-1 \rangle} \\
 &= Z^{\langle m-1 \rangle} \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q^m-1)} \\
 &= Z^{\langle m-1 \rangle} \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q-1)\langle m-1 \rangle} \\
 &= \left[Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q-1)} \right]^{\langle m-1 \rangle}
 \end{aligned}$$

and therefore

$$\begin{aligned}
 &\frac{Z^{\langle 2m-1 \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} (1 + Y^{\langle 2m-1 \rangle}) \\
 &= \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \left\{ \left[Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q-1)} \right]^{\langle m-1 \rangle} - \left[Y^{q^m+1} \right]^{\langle m-1 \rangle} \right\}.
 \end{aligned}$$

Moreover

$$\begin{aligned}
 &\frac{Z^{\langle m-1+i \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \\
 &= \left(1 + Z + Z^2 + \cdots + Z^{q+q^2+\cdots+q^{m-1+i}} \right) - \left(1 + Z + Z^2 + \cdots + Z^{q+q^2+\cdots+q^{m-1}} \right) \\
 &= Z^{1+q+q^2+\cdots+q^{m-1}} \left(1 + Z + Z^2 + \cdots + Z^{q^m\langle i-1 \rangle - 1} \right) \\
 &= \frac{Z^{\langle m-1 \rangle} \left(Z^{\langle i-1 \rangle} - 1 \right)^{q^m}}{Z - 1}
 \end{aligned}$$

and

$$Y^{\langle 2m-1 \rangle - \langle m-1+i \rangle} = Y^{q^{m+i} \langle m-1-i \rangle}$$

and hence

$$\begin{aligned} T_i^{q^i} & \left(\frac{Z^{\langle m-1+i \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \right) Y^{\langle 2m-1 \rangle - \langle m-1+i \rangle} \\ & = \frac{Z^{\langle m-1 \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^m}}{Z - 1} Y^{q^{m+i} \langle m-1-i \rangle} T_i^{q^i}. \end{aligned}$$

Similarly

$$\begin{aligned} & -T_i \left(\frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} - \frac{Z^{\langle m-1-i \rangle} - 1}{Z - 1} \right) Y^{\langle 2m-1 \rangle - \langle m-1-i \rangle} \\ & = -\frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{Z - 1} Y^{q^{m-i} \langle m-1+i \rangle} T_i. \end{aligned}$$

Thus

$$(3.0) \quad g = A - B + C$$

where

$$\begin{aligned} A & = \sum_{i=1}^{m-1} \frac{Z^{\langle m-1 \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^m}}{Z - 1} Y^{q^{m+i} \langle m-1-i \rangle} T_i^{q^i}, \\ B & = \sum_{i=1}^{m-1} \frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{Z - 1} Y^{q^{m-i} \langle m-1+i \rangle} T_i \end{aligned}$$

and

$$\begin{aligned} C & = \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1} \left\{ \left[Z (Z^{\langle m-1 \rangle} - 1)^{(q-1)} \right]^{\langle m-1 \rangle} - \left[Y^{q^m+1} \right]^{\langle m-1 \rangle} \right\} \\ & = \frac{Z^{\langle m-1 \rangle} (Z^{\langle m-1 \rangle} - 1)^{q^m} - (Z^{\langle m-1 \rangle} - 1) Y^{\langle 2m-1 \rangle}}{Z - 1}. \end{aligned}$$

To simplify g further, upon letting

$$\hat{g} = g/L, \quad \hat{A} = A/L, \quad \hat{B} = B/L, \quad \text{and} \quad \hat{C} = C/L, \quad \text{where } L = \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1},$$

we get

$$g = L\hat{g} \quad \text{and} \quad \hat{g} = \hat{A} - \hat{B} + \hat{C}$$

with

$$\begin{aligned} \hat{A} & = \sum_{i=1}^{m-1} \frac{Z^{\langle m-1 \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^m}}{Z^{\langle m-1 \rangle} - 1} Y^{q^{m+i} \langle m-1-i \rangle} T_i^{q^i}, \\ \hat{B} & = \sum_{i=1}^{m-1} \frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{Z^{\langle m-1 \rangle} - 1} Y^{q^{m-i} \langle m-1+i \rangle} T_i \end{aligned}$$

and

$$\widehat{C} = \left[Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q-1)} \right]^{\langle m-1 \rangle} - \left[Y^{q^m+1} \right]^{\langle m-1 \rangle},$$

and hence upon letting

$$U = Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{(q-1)}, \quad J = Y^{q^m+1},$$

and

$$V_i = \frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{(Z^{\langle m-1 \rangle} - 1) Y^{\langle m-1-i \rangle}} \quad \text{for } 1 \leq i \leq m-1$$

we get

$$\widehat{A} = \sum_{i=1}^{m-1} U^{\langle i-1 \rangle} (V_i T_i)^{q^i} J^{\langle m-1 \rangle - \langle i-1 \rangle}, \quad \widehat{B} = \sum_{i=1}^{m-1} (V_i T_i) J^{\langle m-1 \rangle},$$

and

$$\widehat{C} = U^{\langle m-1 \rangle} - J^{\langle m-1 \rangle} \quad \text{with} \quad J^{\langle m-1 \rangle} = Y^{\langle 2m-1 \rangle},$$

and therefore upon letting

$$\tilde{g} = \widehat{g}/Y^{\langle 2m-1 \rangle}, \quad \tilde{A} = \widehat{A}/Y^{\langle 2m-1 \rangle}, \quad \tilde{B} = \widehat{B}/Y^{\langle 2m-1 \rangle}, \quad \tilde{C} = \widehat{C}/Y^{\langle 2m-1 \rangle},$$

and

$$W = U/J, \quad \tilde{T}_i = V_i T_i$$

we get

$$g = Y^{\langle 2m-1 \rangle} L \tilde{g} \quad \text{and} \quad \tilde{g} = \tilde{A} - \tilde{B} + \tilde{C}$$

with

$$\tilde{A} = \sum_{i=1}^{m-1} W^{\langle i-1 \rangle} \tilde{T}_i^{q^i}, \quad \tilde{B} = \sum_{i=1}^{m-1} \tilde{T}_i, \quad \text{and} \quad \tilde{C} = W^{\langle m-1 \rangle} - 1,$$

where

$$W = \frac{Z (Z^{\langle m-1 \rangle} - 1)^{(q-1)}}{Y^{q^m+1}} \quad \text{and} \quad \tilde{T}_i = \frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{(Z^{\langle m-1 \rangle} - 1) Y^{\langle m-1-i \rangle}} T_i.$$

To factor g we try to factor \tilde{g} . First we try to factor \tilde{g} after putting $\tilde{T}_i = 0$ for all $i > 1$, i.e., we try to factor

$$W \tilde{T}_1^q - \tilde{T}_1 + W^{\langle m-1 \rangle} - 1.$$

This corresponds to the case of the special polynomial f_1 ; we shall then feed it back into the general case of g . By changing (W, \tilde{T}_1) to (V, R) , we try to factor

$$VR^q - R + V^{\langle m-1 \rangle} - 1$$

as a polynomial in an indeterminate R with coefficients in the univariate polynomial ring $\text{GF}(p)[V]$. To do this, upon letting

$$M = - \sum_{\mu=0}^{m-1} V^{\langle m-2-\mu \rangle}$$

we have

$$VM^q = - \sum_{\mu=0}^{m-1} V^{\langle m-1-\mu \rangle}$$

and hence

$$VM^q - M + V^{\langle m-1 \rangle} - 1 = 0$$

and therefore

$$\begin{aligned} (R - M) [V (R^{q-1} + MR^{q-2} + \cdots + M^{q-1}) - 1] &= V(R^q - M^q) - R + M \\ &= VR^q - R - (VM^q - M) \\ &= VR^q - R + V^{\langle m-1 \rangle} - 1. \end{aligned}$$

Now upon taking an indeterminate S and letting

$$P = \sum_{j=0}^{i-1} V^{\langle j-1 \rangle} S^{q^j}$$

we have

$$\begin{aligned} VP^q - P &= \left(\sum_{j=1}^i V^{\langle j-1 \rangle} S^{q^j} \right) - \left(\sum_{j=0}^{i-1} V^{\langle j-1 \rangle} S^{q^j} \right) \\ &= V^{\langle i-1 \rangle} S^{q^i} - S \end{aligned}$$

and hence upon taking indeterminates S_1, \dots, S_{m-1} and letting

$$D = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} V^{\langle j-1 \rangle} S_i^{q^j}$$

we have

$$VD^q - D = \sum_{i=1}^{m-1} \left(V^{\langle i-1 \rangle} S_i^{q^i} - S_i \right)$$

and therefore by substituting D for R in the factorization

$$VR^q - R + V^{\langle m-1 \rangle} - 1 = (R - M) [V (R^{q-1} + MR^{q-2} + \cdots + M^{q-1}) - 1]$$

we get the factorization

$$\begin{aligned} &\left(\sum_{i=1}^{m-1} V^{\langle i-1 \rangle} S_i^{q^i} \right) - \left(\sum_{i=1}^{m-1} S_i \right) + V^{\langle m-1 \rangle} - 1 \\ &= (D - M) [V (D^{q-1} + MD^{q-2} + \cdots + M^{q-1}) - 1]. \end{aligned}$$

Substituting (W, \tilde{T}_i) for (V, S_i) in the above equation we get

$$\tilde{g} = (E - N) [W (E^{q-1} + NE^{q-2} + \cdots + N^{q-1}) - 1]$$

where

$$E = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} W^{\langle j-1 \rangle} \tilde{T}_i^{q^j} \quad \text{and} \quad N = - \sum_{\mu=0}^{m-1} W^{\langle m-2-\mu \rangle}$$

and hence upon remembering that $g = Y^{\langle 2m-1 \rangle} L \tilde{g}$ we get

$$g = Y^{\langle 2m-1 \rangle} L(E - N) [W(E^{q-1} + NE^{q-2} + \cdots + N^{q-1}) - 1]$$

and we recall that

$$L = \frac{Z^{\langle m-1 \rangle} - 1}{Z - 1}$$

and

$$W = \frac{Z(Z^{\langle m-1 \rangle} - 1)^{(q-1)}}{Y^{q^m+1}}, \quad \tilde{T}_i = \frac{Z^{\langle m-1-i \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i}}}{(Z^{\langle m-1 \rangle} - 1) Y^{\langle m-1-i \rangle}} T_i.$$

Substituting the above values of W and \tilde{T}_i in E we get

$$E = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} \frac{Z^{\langle m-1-i+j \rangle} (Z^{\langle i-1 \rangle} - 1)^{q^{m-i+j}}}{(Z^{\langle m-1 \rangle} - 1) Y^{q^j \langle m-1-i \rangle + (q^m+1) \langle j-1 \rangle}} T_i^{q^j}.$$

Now upon letting

$$G_i = Z(Z^{\langle i-1 \rangle} - 1)^{q-1} \quad \text{and} \quad H_i = 1 + Z + Z^2 + \cdots + Z^{\langle i-1 \rangle-1}$$

we get

$$L = H_m, \quad W = \frac{Z(Z^{\langle m-1 \rangle} - 1)^{(q-1)}}{Y^{q^m+1}} = \frac{G_m}{Y^{q^m+1}}, \quad N = - \sum_{\mu=0}^{m-1} \frac{G_m^{\langle m-2-\mu \rangle}}{Y^{(q^m+1) \langle m-2-\mu \rangle}},$$

and

$$E = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} \frac{G_i^{\langle m-1-i+j \rangle} (Z^{\langle i-1 \rangle} - 1)}{(Z^{\langle m-1 \rangle} - 1) Y^{q^j \langle m-1-i \rangle + (q^m+1) \langle j-1 \rangle}} T_i^{q^j},$$

and hence

$$LE = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} \frac{G_i^{\langle m-1-i+j \rangle} H_i}{Y^{q^j \langle m-1-i \rangle + (q^m+1) \langle j-1 \rangle}} T_i^{q^j}$$

and

$$-LN = \sum_{\mu=0}^{m-1} \frac{G_m^{\langle m-2-\mu \rangle} H_m}{Y^{(q^m+1) \langle m-2-\mu \rangle}}.$$

By factoring the maximal negative power of Y from N , E , LE and LN , we get

$$N = - \sum_{\mu=0}^{m-1} \frac{G_m^{\langle m-2-\mu \rangle} Y^{(q^m+1)q^{m-1-\mu} \langle \mu-1 \rangle}}{Y^{(q^m+1) \langle m-2 \rangle}},$$

$$E = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} \frac{G_i^{\langle m-1-i+j \rangle} (Z^{\langle i-1 \rangle} - 1) Y^{q^{m+j} \langle m-2-j \rangle + q^{m-i+j} \langle i-j-2 \rangle}}{(Z^{\langle m-1 \rangle} - 1) Y^{(q^m+1) \langle m-2 \rangle}} T_i^{q^j},$$

$$LE = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} \frac{G_i^{\langle m-1-i+j \rangle} H_i Y^{q^{m+j} \langle m-2-j \rangle + q^{m-i+j} \langle i-j-2 \rangle}}{Y^{(q^m+1) \langle m-2 \rangle}} T_i^{q^j},$$

and

$$-LN = \sum_{\mu=0}^{m-1} \frac{G_m^{\langle m-2-\mu \rangle} H_m Y^{\langle q^m+1 \rangle q^{m-1-\mu} \langle \mu-1 \rangle}}{Y^{\langle q^m+1 \rangle \langle m-2 \rangle}}.$$

Therefore upon letting

$$g' = Y^{\langle q^m+1 \rangle \langle m-2 \rangle} L(E - N) \quad \text{and} \quad g'' = Y^{\langle q^m+1 \rangle q^{m-1}} \left[\left(\sum_{l=1}^q W N^{l-1} E^{q-l} \right) - 1 \right]$$

we get

$$(3.1) \quad g = g' g''$$

with

$$(3.2) \quad \begin{aligned} g' &= \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} G_i^{\langle m-1-i+j \rangle} H_i Y^{\langle q^{m+j} \rangle \langle m-2-j \rangle + \langle q^{m-i+j} \rangle \langle i-j-2 \rangle} T_i^{q^j} \\ &+ \sum_{\mu=0}^{m-1} G_m^{\langle m-2-\mu \rangle} H_m Y^{\langle q^m+1 \rangle q^{m-1-\mu} \langle \mu-1 \rangle} \end{aligned}$$

and

$$(3.3) \quad g'' = \left(\sum_{l=1}^q Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{q-1} \overline{N}^{l-1} \overline{E}^{q-l} \right) - Y^{\langle q^m+1 \rangle (q^{m-1}-1)},$$

where

$$(3.4) \quad \overline{N} = - \sum_{\mu=0}^{m-1} G_m^{\langle m-2-\mu \rangle} Y^{\langle q^m+1 \rangle q^{m-1-\mu} \langle \mu-1 \rangle}$$

and

$$(3.5) \quad \overline{E} = \sum_{i=1}^{m-1} \sum_{j=0}^{i-1} G_i^{\langle m-1-i+j \rangle} \left(Z^{\langle i-1 \rangle} - 1 \right) Y^{\langle q^{m+j} \rangle \langle m-2-j \rangle + \langle q^{m-i+j} \rangle \langle i-j-2 \rangle} T_i^{q^j}$$

and where we recall that

$$(3.6) \quad G_i = Z \left(Z^{\langle i-1 \rangle} - 1 \right)^{q-1} \quad \text{and} \quad H_i = 1 + Z + Z^2 + \cdots + Z^{\langle i-1 \rangle-1}.$$

By (3.6) we see that G_i and H_i are monic polynomials in Z and for their Z -degrees we have

$$\deg_Z G_i = 1 + \langle i-1 \rangle (q-1) = q^i \quad \text{and} \quad \deg_Z H_i = \langle i-1 \rangle - 1$$

and hence

$$\deg_Z G_m^{\langle m-2 \rangle} H_m = \langle m-2 \rangle q^m + \langle m-1 \rangle - 1 = q \langle 2m-3 \rangle,$$

$$\deg_Z G_m^{\langle m-2 \rangle} H_m > \deg_Z G_m^{\langle m-2-\mu \rangle} H_m \quad \text{for } 1 \leq \mu \leq m-1,$$

and

$$\deg_Z G_m^{\langle m-2 \rangle} H_m > \deg_Z G_i^{\langle m-1-i+j \rangle} H_i \quad \text{for } 1 \leq i \leq m-1 \text{ and } 0 \leq j \leq i-1;$$

therefore, noting that $Y^{\langle q^m+1 \rangle q^{m-1-\mu} \langle \mu-1 \rangle} = 1$ for $\mu = 0$, in view of (3.2) we conclude that g' is a monic polynomial of degree $q \langle 2m-3 \rangle$ in Z with coefficients in

$\text{GF}(p)[Y, T_1, \dots, T_{m-1}]$. Obviously g is a monic polynomial in Z with coefficients in $\text{GF}(p)[Y, T_1, \dots, T_{m-1}]$ and

$$\deg_Z g = (\deg_Y f) - 1 = \langle 2m - 1 \rangle - 1 = q\langle 2m - 3 \rangle + q^{2m-1}$$

and hence in view of (3.1) we see that g'' is a monic polynomial of degree q^{2m-1} in Z with coefficients in $\text{GF}(p)[Y, T_1, \dots, T_{m-1}]$. Thus

$$(3.7) \quad \begin{cases} g' \text{ and } g'' \text{ are monic polynomials of degrees } q\langle 2m - 3 \rangle \text{ and } q^{2m-1} \\ \text{in } Z \text{ with coefficients in } \text{GF}(p)[Y, T_1, \dots, T_{m-1}] \text{ respectively.} \end{cases}$$

4. IRREDUCIBILITY

For $1 \leq e \leq m-1$, let f'_e, g_e, g'_e, g''_e be the members of $\text{GF}(p)[Y, Z, T_1, \dots, T_e]$ obtained by putting $T_i = 0$ for all $i > e$ in f', g, g', g'' respectively. Then f'_e is the twisted derivative of f_e , and dividing the Z -roots of f'_e by Y and afterwards changing Y to $1/Y$ we get g_e which is a monic polynomial of degree $\langle 2m - 1 \rangle - 1$ in Z with coefficients in $\text{GF}(p)[Y, T_1, \dots, T_e]$. Also

$$(4.1) \quad \begin{cases} \text{for } 1 \leq e \leq m-1 \text{ we have } g_e = g'_e g''_e \text{ where } g'_e \text{ and } g''_e \text{ are} \\ \text{monic polynomials of degrees } q\langle 2m - 3 \rangle \text{ and } q^{2m-1} \text{ in } Z \\ \text{with coefficients in } \text{GF}(p)[Y, T_1, \dots, T_e] \text{ respectively.} \end{cases}$$

By (3.0) and the immediately following expressions for A, B, C we see that

$$g_1 = A_1 T_1^q - B_1 T_1 + C_1$$

where A_1, B_1, C_1 are nonzero elements of $\text{GF}(p)[Y, Z]$ given by

$$A_1 = Z^{\langle m-1 \rangle} (Z-1)^{\langle q-1 \rangle \langle m-1 \rangle} Y^{q^{m+1} \langle m-2 \rangle},$$

$$B_1 = Z^{\langle m-2 \rangle} (Z-1)^{\langle q-1 \rangle \langle m-2 \rangle} Y^{q^{m-1} \langle m \rangle},$$

and

$$\begin{aligned} C_1 &= \left(1 + Z + Z^2 + \dots + Z^{\langle m-1 \rangle - 1} \right) \\ &\times \left\{ \left[Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{\langle q-1 \rangle} \right]^{\langle m-1 \rangle} - \left[Y^{q^m + 1} \right]^{\langle m-1 \rangle} \right\}. \end{aligned}$$

Likewise, by (3.1) to (3.6) we see that

$$g'_1 = A'_1 T_1 + B'_1$$

where A'_1, B'_1 are nonzero elements of $\text{GF}(p)[Y, Z]$ given by

$$A'_1 = Z^{\langle m-2 \rangle} (Z-1)^{\langle q-1 \rangle \langle m-2 \rangle} Y^{q^m \langle m-2 \rangle}$$

and

$$\begin{aligned} B'_1 &= \sum_{\mu=0}^{m-1} \left[Z \left(Z^{\langle m-1 \rangle} - 1 \right)^{q-1} \right]^{\langle m-2-\mu \rangle} \\ &\times \left(1 + Z + Z^2 + \dots + Z^{\langle m-1 \rangle - 1} \right) Y^{(q^m + 1)q^{m-1-\mu} \langle \mu-1 \rangle}. \end{aligned}$$

For establishing the irreducibility of g' and g'' we now prove the following lemma.

Lemma (4.2). *Let Q be a field of characteristic p and consider a univariate polynomial $g_0 = A_0 T^q - B_0 T + C_0$ with A_0, B_0, C_0 in Q such that $A_0 \neq 0 \neq B_0$. Assume that $g_0 = g'_0 g''_0$ in $Q[T]$ with $\deg_T g'_0 = 1$ (and hence $\deg_T g''_0 = q-1$). Also assume that for some real discrete valuation I of Q (whose value group is the group of all integers) we have $\text{GCD}(q-1, I(B_0/A_0)) = 1$. Then g''_0 is irreducible in $Q[T]$.*

To see this, we note that by assumption $g'_0 = A'_0 T + B'_0$ with $0 \neq A'_0 \in Q$ and $B'_0 \in Q$. Now $-B'_0/A'_0$ is a root of $T^q - (B_0/A_0)T + (C_0/A_0)$ and hence

$$T^q - (B_0/A_0)T + (C_0/A_0) = \prod_{j \in \text{GF}(q)} [T + (B'_0/A'_0) - j\Lambda]$$

where Λ is an element in an algebraic closure Q^* of Q with $\Lambda^{q-1} = B_0/A_0$. It follows that for any root Δ of g''_0 in Q^* we must have $\Delta = j\Lambda - (B'_0/A'_0)$ for some $0 \neq j \in \text{GF}(q)$. By taking an extension I^* of I to $Q(\Delta)$ and upon letting r be the reduced ramification exponent of I^* over I we see that

$$\begin{aligned} I^*(\Delta + (B'_0/A'_0)) &= I^*(j\Lambda) \\ &= I^*(j^{q-1}\Lambda^{q-1})/(q-1) \\ &= I^*(B_0/A_0)/(q-1) = rI(B_0/A_0)/(q-1). \end{aligned}$$

Therefore, since $I^*(\Delta + (B'_0/A'_0))$ is obviously an integer, so is $rI(B_0/A_0)/(q-1)$. Since $\text{GCD}(q-1, I(B_0/A_0)) = 1$, it follows that r is divisible by $q-1$. Since the field degree $[Q(\Delta) : Q]$ is at least r , we conclude that $[Q(\Delta) : Q] \geq q-1$. Since Δ is a root of g''_0 and $\deg_T g''_0 = q-1$, the polynomial g''_0 must be irreducible in $Q[T]$.

The following lemma is an easy consequence of the Gauss Lemma.

Lemma (4.3). *Let κ be a field, and let $g_0 = g'_0 g''_0$ where g_0, g'_0, g''_0 are monic polynomials of positive degrees in Z with coefficients in the $(d+1)$ -variable polynomial ring $\kappa[X_1, \dots, X_d, T]$. Assume that the polynomials g'_0 and g''_0 have positive T -degrees and are irreducible in the ring $\kappa(X_1, \dots, X_d, Z)[T]$. Also assume that the coefficients of g_0 as a polynomial in T have no nonconstant common factor in $\kappa[X_1, \dots, X_d, Z]$. Then the polynomials g'_0 and g''_0 are irreducible in the ring $\kappa(X_1, \dots, X_d, T)[Z]$.*

By letting I to be the Z -adic valuation of $Q = k_p(Y, Z)$, i.e., the real discrete valuation whose valuation ring is the localization of $k_p[Y, Z]$ at the principal prime ideal generated by Z , we see that $I(A_1) = \langle m-1 \rangle$ and $I(B_1) = \langle m-2 \rangle$ and hence $I(B_1/A_1) = \langle m-2 \rangle - \langle m-1 \rangle = -q^{m-1}$ and therefore $\text{GCD}(q-1, I(B_1/A_1)) = 1$. Also obviously A_1 and C_1 have no nonconstant common factor in $k_p[Y, Z]$. Therefore by (4.2) and (4.3) we conclude that:

$$(4.4) \quad \text{the polynomials } g'_1 \text{ and } g''_1 \text{ are irreducible in } k_p(Y, T_1)[Z].$$

As an immediate consequence of (4.4) we see that:

$$(4.5) \quad \begin{cases} \text{the polynomials } g' \text{ and } g'' \text{ are irreducible in } k_p(Y, T_1, \dots, T_{m-1})[Z] \\ \text{and, for } 1 \leq e \leq m-1, \\ \text{the polynomials } g'_e \text{ and } g''_e \text{ are irreducible in } k_p(Y, T_1, \dots, T_e)[Z]. \end{cases}$$

Recall that f_e is irreducible in $k_p(X, T_1, \dots, T_e)[Y]$, its twisted derivative is $f'_e(Y, Z)$, and g_e is obtained by dividing the Z -roots of $f'_e(Y, Z)$ by Y and then changing Y to $1/Y$; therefore by (4.1) and (4.5) we get the following:

Theorem (4.6). *For $1 \leq e \leq m-1$, we have that $\text{Gal}(f_e, k_p(X, T_1, \dots, T_e))$ is a transitive permutation group of Rank 3 with subdegrees 1, $q\langle 2m-3 \rangle$ and q^{2m-1} . Hence in particular, $\text{Gal}(f, k_p(X, T_1, \dots, T_{m-1}))$ is a transitive permutation group of Rank 3 with subdegrees 1, $q\langle 2m-3 \rangle$ and q^{2m-1} .*

Notation. Recall that $<$ denotes a subgroup, and \triangleleft denotes a normal subgroup. Let the groups $\text{SL}(m, q) \triangleleft \text{GL}(m, q) \triangleleft \Gamma\text{L}(m, q)$ and $\text{PSL}(m, q) \triangleleft \text{PGL}(m, q) \triangleleft \text{P}\Gamma\text{L}(m, q)$ and their actions on $\text{GF}(q)^m$ and $\mathcal{P}(\text{GF}(q)^m)$ be as on pages 78–80 of [A03]. Let

$$\Theta_m : \Gamma\text{L}(m, q) \rightarrow \text{P}\Gamma\text{L}(m, q) = \Gamma\text{L}(m, q)/\text{GF}(q)^*$$

be the canonical epimorphism where we identify the multiplicative group $\text{GF}(q)^*$ with scalar matrices which constitute the center of $\text{GL}(m, q)$.

Now in view of Proposition 3.1 of [A04] we get the following:

Theorem (4.7). *Assuming $\text{GF}(q) \subset k_p$, for $1 \leq e \leq m-1$, in a natural manner we may regard*

$$\text{Gal}(\phi_e, k_p(X, T_1, \dots, T_e)) < \text{GL}(2m, q)$$

and

$$\text{Gal}(f_e, k_p(X, T_1, \dots, T_e)) < \text{PGL}(2m, q)$$

and then we have

$$\Theta_{2m}(\text{Gal}(\phi_e, k_p(X, T_1, \dots, T_e))) = \text{Gal}(f_e, k_p(X, T_1, \dots, T_e)).$$

In particular, again assuming $\text{GF}(q) \subset k_p$, in a natural manner we may regard

$$\text{Gal}(\phi, k_p(X, T_1, \dots, T_{m-1})) < \text{GL}(2m, q)$$

and

$$\text{Gal}(f, k_p(X, T_1, \dots, T_{m-1})) < \text{PGL}(2m, q)$$

and then we have

$$\Theta_{2m}(\text{Gal}(\phi, k_p(X, T_1, \dots, T_{m-1}))) = \text{Gal}(f, k_p(X, T_1, \dots, T_{m-1})).$$

Recall that a *quasi-p group* is a finite group which is generated by its p -Sylow subgroups. Since $\text{Disc}_Y f_e = 1 = \text{Disc}_Y \phi_e$ for $1 \leq e \leq m-1$, by the techniques of the proofs of Proposition 6 of [A01] and Lemma 34 of [A02] we get the following:

Theorem (4.8). *If k_p is algebraically closed, then, for $1 \leq e \leq m-1$,*

$$\text{Gal}(f_e, k_p(X, T_1, \dots, T_e)) \text{ and } \text{Gal}(\phi_e, k_p(X, T_1, \dots, T_e))$$

are quasi- p groups. Hence in particular, if k_p is algebraically closed then,

$$\text{Gal}(f, k_p(X, T_1, \dots, T_{m-1})) \text{ and } \text{Gal}(\phi, k_p(X, T_1, \dots, T_{m-1}))$$

are quasi- p groups.

5. REVIEW OF LINEAR ALGEBRA

Recall that we are assuming $m > 1$.

Following Dickson (page 89 of [Dic]) we define the *symplectic group* $\mathrm{Sp}(2m, q)$ as the group of all $e = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2m, q)$, where a, b, c, d are m by m matrices over $\mathrm{GF}(q)$, which leave the bilinear form $\psi(x, y) = \sum_{i=1}^m (x_i y_{m+i} - y_i x_{m+i})$ unchanged, i.e., $\psi(xe, ye) = \psi(x, y)$, or equivalently for which: $ad - bc = \text{the } m \text{ by } m \text{ identity matrix}$, and $ab' - ba' = 0 = cd' - dc'$ where $'$ = transpose; note that $\mathrm{Sp}(2m, q) < \mathrm{SL}(2m, q)$, and define the *projective symplectic group* $\mathrm{PSp}(2m, q) = \Theta_{2m}(\mathrm{Sp}(2m, q))$.² Let the *general symplectic group* $\mathrm{GSp}(2m, q)$ be defined as the group of all $e \in \mathrm{GL}(2m, q)$ such that for some $\lambda(e) \in \mathrm{GF}(q)$ we have $\psi(\xi e, \eta e) = \lambda(e)\psi(\xi, \eta)$ for all ξ, η in $\mathrm{GF}(q)^{2m}$. Let the *semilinear symplectic group* $\Gamma\mathrm{Sp}(2m, q)$ be defined as the group of all $(\tau, e) \in \Gamma\mathrm{L}(2m, q)$, with $\tau \in \mathrm{Aut}(\mathrm{GF}(q))$ and $e \in \mathrm{GL}(2m, q)$, such that for some $\lambda(\tau, e) \in \mathrm{GF}(q)$ we have $\psi(\xi^\tau e, \eta^\tau e) = \lambda(\tau, e)\psi(\xi, \eta)^\tau$ for all ξ, η in $\mathrm{GF}(q)^{2m}$. Also define: the *projective general symplectic group* $\mathrm{PGSp}(2m, q) = \Theta_{2m}(\mathrm{GSp}(2m, q))$, and the *projective semilinear symplectic group* $\mathrm{PTSp}(2m, q) = \Theta_{2m}(\Gamma\mathrm{Sp}(2m, q))$. For the definition of the orthogonal groups $\Omega(2m+1, q) < \mathrm{O}(2m+1, q) < \mathrm{GO}(2m+1, q) < \Gamma\mathrm{O}(2m+1, q)$ and $\mathrm{P}\Omega(2m+1, q) < \mathrm{PO}(2m+1, q) < \mathrm{PGO}(2m+1, q) < \mathrm{PTGO}(2m+1, q)$ see [Tay].³

Note that for any $H < \mathrm{GL}(2m, q)$ we have

$$(5.1) \quad \mathrm{Sp}(2m, q) < H \Leftrightarrow \mathrm{PSp}(2m, q) < \Theta_{2m}(H).$$

This follows exactly as in the proof of Lemma 2.3 of [A04] because by (22.4) of [Asc] $\mathrm{Sp}(2m, q)$ is generated by transvections. The order of every transvection is p or 1, and hence $\mathrm{Sp}(2m, q)$ is a quasi- p group.

By 2.1.B, 2.10.4(ii) and 2.10.6(i) of [LiK], for any $H < \mathrm{GL}(2m, q)$ we have

$$(5.2) \quad \mathrm{Sp}(2m, q) \triangleleft H \Leftrightarrow \mathrm{Sp}(2m, q) < H < \mathrm{GSp}(2m, q)$$

and by 2.1.C of [LiK] we have

$$(5.3) \quad [\mathrm{GSp}(2m, q) : \mathrm{Sp}(2m, q)] \not\equiv 0 \pmod{p}.$$

Since $\mathrm{Sp}(2m, q)$ is quasi- p , it follows that it is generated by the p -power elements of $\mathrm{Sp}(2m, q)\mathrm{GF}(q)^*$, and hence these two subgroups have the same normalizer in

²Dickson (pages 89–100 of [Dic]) writes $\mathrm{SA}(2m, q)$ for $\mathrm{Sp}(2m, q)$ and calls it the *special Abelian linear group*; he writes $\mathrm{A}(2m, q)$ for $\mathrm{PSp}(2m, q)$ and shows that it is simple provided $(m, q) \neq (2, 2)$. Our notation essentially follows [LiK] where these are defined for each symplectic form. In this connection note that if $\Phi < \mathrm{PGL}(2m, q)$ is such that Φ is isomorphic to $\mathrm{PSp}(2m, q)$ then $\mathrm{PSp}(2m, q) = \delta^{-1}\Phi\delta$ for some $\delta \in \mathrm{PGL}(2m, q)$ (see the fifth line of Table 5.4.C on page 200 of [LiK] which starts with $C_l(q)$).

³In [Tay] these are defined for each quadratic form. We take the specific quadratic form $x_1 x_{m+1} + \cdots + x_m x_{2m} + x_{2m+1}^2$ which gives us specific orthogonal groups; for $p \neq 2$ we could take it to be $x_1^2 + \cdots + x_{2m+1}^2$. By the *singular points* of $\mathrm{P}\Omega(2m+1, q)$ we mean the images in $\mathcal{P}(\mathrm{GF}(q)^{2m+1})$ of the nonzero $\xi \in \mathrm{GF}(q)^{2m+1}$ at which the quadratic form vanishes. Note that $\mathrm{P}\Omega(2m+1, q)$ acts faithfully and transitively on its singular points (see 11.24, 11.27 and 11.48 of [Tay]). Also note that if $m > 2$ and $p \neq 2$ then $\mathrm{P}\Omega(2m+1, q)$ and $\mathrm{PSp}(2m, q)$ are non-isomorphic groups of the same order (see 11.54 of [Tay]), and there does not exist any homomorphism of $\mathrm{P}\Omega(2m+1, q)$ into $\mathrm{PGL}(2m, q)$ except the trivial homomorphism which sends everything to 1 (see the third line of Table 5.4.C on page 200 of [LiK] which starts with $B_l(q)$). Finally note that if either $m = 2$ or $p = 2$ then $\mathrm{P}\Omega(2m+1, q)$ and $\mathrm{PSp}(2m, q)$ are isomorphic (see 11.9 and 12.32 of [Tay]).

$\mathrm{GL}(2m, q)$. Also clearly $\mathrm{GF}(q)^* < \mathrm{GSp}(2m, q)$. Therefore by (5.2), for any $G < \mathrm{PGL}(2m, q)$ we have

$$(5.4) \quad \mathrm{PSp}(2m, q) \triangleleft G \Leftrightarrow \mathrm{PSp}(2m, q) < G < \mathrm{PGSp}(2m, q)$$

and by (5.3) we get

$$(5.5) \quad [\mathrm{PGSp}(2m, q) : \mathrm{PSp}(2m, q)] \not\equiv 0 \pmod{p}.$$

Finally, since $\mathrm{GF}(q)^* < \mathrm{GSp}(2m, q)$, for any $H < \mathrm{GL}(2m, q)$ we have

$$(5.6) \quad H < \mathrm{GSp}(2m, q) \Leftrightarrow \Theta_{2m}(H) < \mathrm{PGSp}(2m, q).$$

In view of Theorem IV of [CaK], by Corollary 1(i) of Kantor [Kan] we get the following corrected version of the first part of Sample from CR3 on page 90 of [A03]:

Theorem (5.7) [Kantor]. *Assume that $m > 2$. Let G be a transitive permutation group of Rank 3 with subdegrees $1, q(2m-3)$ and q^{2m-1} . Then either the permuted set can be identified with $\mathcal{P}(\mathrm{GF}(q)^{2m})$ so that $\mathrm{Psp}(2m, q) \triangleleft G < \mathrm{PGSp}(2m, q)$, or the permuted set can be identified with the singular points of $\mathrm{P}\Omega(2m+1, q)$ so that $\mathrm{P}\Omega(2m+1, q)_1 \triangleleft G < \mathrm{PGO}(2m+1, q)_1$ where $\mathrm{P}\Omega(2m+1, q)_1$ and $\mathrm{PGO}(2m+1, q)_1$ denote the permutation groups on the said singular points induced by $\mathrm{P}\Omega(2m+1, q)$ and $\mathrm{PGO}(2m+1, q)$ respectively.*

In view of the preceding two footnotes, we get the following corollary of (5.7):

Corollary (5.8). *Assume that $m > 2$. Let $G < \mathrm{PGL}(2m, q)$ be transitive Rank 3 on $\mathcal{P}(\mathrm{GF}(q)^{2m})$ with subdegrees $1, q(2m-3)$ and q^{2m-1} . Then $\mathrm{PSp}(2m, q) \triangleleft \delta^{-1}G\delta$ for some $\delta \in \mathrm{PGL}(2m, q)$*

6. GALOIS GROUPS

By (4.6), (4.7), (5.1), (5.6) and (5.8) we get the following:

Theorem (6.1). *If $m > 2$ and $\mathrm{GF}(q) \subset k_p$ then, for $1 \leq e \leq m-1$, in a natural manner we have*

$$\mathrm{Sp}(2m, q) < \mathrm{Gal}(\phi_e, k_p(X, T_1, \dots, T_e)) < \mathrm{GSp}(2m, q)$$

and

$$\mathrm{Psp}(2m, q) < \mathrm{Gal}(f_e, k_p(X, T_1, \dots, T_e)) < \mathrm{PGSp}(2m, q).$$

Hence in particular, if $m > 2$ and $\mathrm{GF}(q) \subset k_p$ then, in a natural manner we have

$$\mathrm{Sp}(2m, q) < \mathrm{Gal}(\phi, k_p(X, T_1, \dots, T_e)) < \mathrm{GSp}(2m, q)$$

and

$$\mathrm{Psp}(2m, q) < \mathrm{Gal}(f, k_p(X, T_1, \dots, T_e)) < \mathrm{PGSp}(2m, q).$$

By (4.8), (5.2), (5.3), (5.4), (5.5) and (6.1) we get the following:

Theorem (6.2). *If $m > 2$ and k_p is algebraically closed, then, for $1 \leq e \leq m-1$, in a natural manner we have*

$$\mathrm{Gal}(\phi, k_p(X, T_1, \dots, T_{m-1})) = \mathrm{Gal}(\phi_e, k_p(X, T_1, \dots, T_e)) = \mathrm{Sp}(2m, q)$$

and

$$\mathrm{Gal}(f, k_p(X, T_1, \dots, T_{m-1})) = \mathrm{Gal}(f_e, k_p(X, T_1, \dots, T_e)) = \mathrm{Psp}(2m, q).$$

Remark (6.3). We shall discuss the $m = 2$ case elsewhere.

REFERENCES

- [A01] S. S. Abhyankar, *Coverings of algebraic curves*, American Journal of Mathematics **79** (1957), 825–856. MR **20**:872
- [A02] S. S. Abhyankar, *Tame coverings and fundamental groups of algebraic varieties, Part I*, American Journal of Mathematics **81** (1959), 46–94. MR **21**:3428
- [A03] S. S. Abhyankar, *Galois theory on the line in nonzero characteristic, Dedicated to “Feit-Serre-Email”*, Bulletin of the American Mathematical Society **27** (1992), 68–133. MR **94a**:12004
- [A04] S. S. Abhyankar, *Nice equations for nice groups*, Israel Journal of Mathematics **88** (1994), 1–24. CMP 95:04
- [Asc] M. Aschbacher, *Finite Group Theory*, Cambridge University Press, 1986. MR **89b**:20001
- [BuS] F. Buekenhout and E. E. Shult, *On the foundations of polar geometry*, Geometriae Dedicata **3** (1974), 155–170. MR **50**:3091
- [CaK] P. J. Cameron and W. M. Kantor, *2-Transitive and antiflag transitive collineation groups of finite projective spaces*, Journal of Algebra **60** (1979), 384–422. MR **81c**:20032
- [Dic] L. E. Dickson, *Linear Groups*, Teubner, 1901.
- [Kan] W. M. Kantor, *Rank 3 characterizations of classical geometries*, Journal of Algebra **36** (1975), 309–313. MR **52**:8229
- [LiK] M. W. Liebeck and P. Kleidman, *The Subgroup Structure of the Finite Classical Groups*, Cambridge University Press, 1990. MR **91g**:20001
- [Tay] D. E. Taylor, *The Geometry of the Classical Groups*, Heldermann Verlag, Berlin, 1992. MR **94d**:20028
- [Tit] J. Tits, *Buildings of Spherical Type and Finite BN-Pairs*, Springer Lecture Notes In Mathematics Number 386, 1974. MR **57**:9866

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907
E-mail address: ram@cs.purdue.edu