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A unified theory is presented for the field-induced spinodal instabilities of thin vis-
coelastic bilayers composed of the Maxwell fluids or of the soft solids obeying
the Kelvin-Voigt model. The analysis includes the different important mechanisms
by which a bilayer is rendered unstable: (1) the wetting instability engendered by
the excess van der Waals forces in an ultrathin (<100 nm) bilayer (Figure (1a));
(2) the electric field induced instability caused by an external electrostatic field across
the bilayer (Figure (1b)); (3) the contact instability caused by the attractive interac-
tions with another surface in the contact proximity of the upper film (Figure (1c)). The
key features of the short-, long-, and finite-wavenumber instabilities are compared and
contrasted for a host of bilayers having purely viscous, purely elastic, viscoelastic-
viscous, and viscoelastic rheological properties. Linear stability analysis shows:
(i) controlling mode of instability can shift from one interface to the other, which
is accompanied by an abrupt shift in the time and the length scales of the instabili-
ties with the change in the interfacial tensions, relaxation times, and elastic moduli
of the films; (ii) purely elastomeric bilayers show a finite wavenumber bifurcation
only beyond a critical destabilizing force due to their elastic stiffness; (iii) bilay-
ers with at least one viscous or Maxwell layer show zero elastic-stiffness against
the destabilizing influences; (iv) wetting viscoelastic bilayer is unstable only when
it is ultrathin and elastically very soft or if one of the layers is purely viscous;
(v) Maxwell (elastomer) bilayers show a faster (slower) growth of instability with the
increase in relaxation time (elastic modulus). C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4736549]

I. INTRODUCTION

Instabilities of thin polymer films have been studied in recent times because of their technological
and scientific importance. Fabricating ordered polymer micro/nano structures require an in depth
understanding of the stability and dynamics of thin polymer films.1–4 As explained below, at least
three different important mechanisms of thin film destabilization: dewetting by intermolecular
interactions, electric field induced instability, and the contact instability of polymer films, have been
investigated previously. These mechanisms can lead to variously self-organized meso-patterns, which
can also be spatially ordered by spatio-temporal control of the destabilizing forces. As discussed
below, a thin viscoelastic bilayer destabilized by any of the above mechanisms allows much greater
variety of patterns and far more flexibility in the control of their morphology. The purpose of this
study is to present a unified framework for the analysis of a general viscoelastic bilayer rendered
unstable by any of the above three mechanisms and including as limiting cases both purely viscous
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liquids and soft solids. The theory allows a seamless understanding of thin film instabilities spanning
the destabilizing mechanisms, rheology, long and short length scales, and morphology.

Spinodal dewetting5–13 of an ultrathin (<100 nm) viscous polymer film on a homogeneous
substrate is initiated with randomly located circular holes with an average inter-hole distance close
to that predicted by the linear stability analysis (LSA). The time and length scales of the hole-
formation in an ultrathin (<100 nm) fluid film are governed by the interplay between the stabilizing
in-plane curvature forces and destabilizing intermolecular forces. The holes grow with time and
coalesce to form a network of ribbon like structures, which further breaks up to produce a collection
of droplets. Unlike the spinodal pathway, in heterogeneous nucleation the thin films dewet surfaces
by the low-energy passage offered by some pre-existing nucleation sites or defects on the film or
substrate.14–16 Interestingly, periodic defects (physical or chemical) on the substrate can lead to the
ordering of the dewetted structures when synchronization between the spinodal wavelength and the
periodicity of the substrate pattern takes place.14–24 Previous studies indicate that the slippage25, 26

of the film on the substrate and the rheological properties27–32 of the film can significantly influence
the interfacial deformations and subsequent pattern formation.

The self-organizing contact instabilities can also develop periodic patterns on the surface of the
soft solid polymer films when its free surface comes in the contact proximity (<100 nm) of another,
usually a rigid surface (contactor). The instability becomes readily visible upon separation of ad-
hering surfaces. Previous studies33–40 uncovered that this finite-wavenumber, short-wave instability
has a length scale (λ) linearly proportional to the film thickness (h), independent of the strength
of adhesive inter-surface interactions and the elastic properties. Further, the contact instability at
the surface of an elastic film is governed by a competition between the destabilizing inter-surface
attractive interactions, such as the van der Waals and electrostatic, and the restoring elastic force
in the film. For the sub-micron elastic films, surface tension force also becomes important and
the instability wavelength increases depending on a non-dimensional parameter, (γ /Gh), where γ

and G are surface tension and elastic shear modulus of the film.39

Apart from the self-organization of thin films under the influence of intermolecular forces,
electric field induced instability is another simple and versatile method to fabricate patterns on
polymer films. Experiments41 show that an applied electric field across an initially flat interface of
a polymer film can form regular columnar structure when the destabilizing electrostatic stress at
the polymer-air interface dominates over the stabilizing curvature force. The electric field induced
instabilities of the macroscopic fluid interfaces of thick liquid layers have been known for a long
time.42–45 However, the recent development of the electric field lithographic technique46–61 shows
that these instabilities in thin polymer films under electric field can lead to interesting meso-patterns
such as ordered columns, cavities, and stripes.

As compared to the single layer, the wetting, electric field, and contact instabilities of bilayers are
substantially different with a far richer underlying physics. The instabilities of bilayers are initiated
by the coupled deformation of a “confined” polymer-polymer interface and a “free” polymer-air
surface as shown in Figure 1. In such a scenario, the interfaces can initially deform through either
in-phase bending or anti-phase squeezing or in a mixed mode as observed for a free film.62 These
modes grow with time to form interesting interfacial morphologies. Early experimental works63

related to dewetting of polymer bilayers under the influence of intermolecular forces show the
importance of the ratios of the polymer viscosities on the dewetting dynamics and interfacial
deformations. Subsequent studies64, 65 have shown the influence of the film thicknesses and viscosity
ratios of the film on the hole-formation, movement of the rims surrounding the holes, and the
near equilibrium morphologies. Recent experiments on bilayer instabilities uncover a number of
interesting aspects such as the possibility of phase inversion,66 switching of the instabilities from one
interface to the other by changing the film thickness of a bilayer,67 and the influence of the patterned
substrate.68–70

Danov et al.71, 72 and Paunov et al.73 are the first to theoretically show the linear and nonlinear
deformations of the bilayer interfaces under the coupled influence of intermolecular forces in
addition to the thermal and solutal Marangoni effects. Following this, considering much simpler
isothermal and Newtonian bilayer, a number of studies74–85 have identified the length and time
scales, and interesting interfacial morphologies at the two interfaces under varied conditions. The
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FIG. 1. Schematic diagrams represent (a) “free” bilayer on a solid substrate, (b) bilayer under the influence of electric
field, and (c) confined bilayer undergoing contact instability. The solid and the unevenly broken line at the upper interface
depict bending and squeezing mode of evolution with respect to the solid line at the lower interface. The notations γ i, εi,
μi, Gi, and λi represent the surface energy, relative dielectric constant, viscosity, shear modulus, and relaxation time of the
ith layer/interface. The notations γ S and d are the surface energy of the substrate and distance between the electrodes (or
between substrate and contactor). The mean and the local thicknesses of the lower (composite) layer are h10 and h1(x, t) (h20

and h2(x, t)), respectively.

interfacial morphologies predicted theoretically by these studies have also been validated by some
of the recent experiments.82, 83 The linear and nonlinear analyses on the thermal86–88 and solutal
Marangoni78 instabilities of viscous bilayers, spinodal instabilities of a viscous film resting on a
substrate-bonded elastomer film, and a viscous film sandwiched between an elastomer film and
a solid substrate are also available in the literature.89–91The experimental and theoretical studies
together highlight that, as compared to simpler single films, bilayers are capable of generating self-
organized embedded and encapsulated structures with much smaller length scales. Further, a long-
range order can be imposed on dewetted structures when the substrates are physically or chemically
patterned.84, 85

The contact instabilities of thin bilayers have also been studied recently.92–95 Unlike the single
film scenario, the difference in stiffness of the films in a bilayer adds more flexibility in changing
the length scale of the patterns formed at the interface. Even a viscous underlayer is found to impart
weak slippage to an elastic top layer and change the length scale significantly.95



074106-4 Bandyopadhyay, Reddy, and Sharma Phys. Fluids 24, 074106 (2012)

The experimental studies54–56, 96, 97 on the electric field induced instabilities of bilayers have
shown that the different dielectric contrast at the interfaces can lead to interesting embedded and
encapsulated patterns, which can be ordered when the spatially varying electric field is imposed
employing patterned electrodes. Interestingly, one recent study97 shows that the electric field in-
duced instabilities in polymer bilayers can also undergo conditional phase inversion. The theoretical
studies98, 99 show: (i) the embedded structures formed because of these instabilities always have a
core with the material of higher dielectric permittivity, (ii) the conditions under which the phase
inversion becomes a possibility, and (iii) the possibility of long-range ordering of the structures
when the periodicity of electrode-pattern is close to the spinodal length scale of the electric field
induced instability. The influence of frequency dependent ac field on the length and time scales as
well as on the film morphologies have also been explored in recent theoretical studies.100, 101

As noted above, most of the previous studies of bilayers have concentrated on a single mechanism
of instability, either the electric field, or the van der Waals dewetting or the contact instability. In
addition, often a single rheological description, either purely viscous or purely elastic, is considered.
In the present work, the focus is on the analysis valid for all the three destabilizing mechanisms,
for rheological descriptions spanning from purely viscous to elastic, and length scales from short
to long. Figure 1 shows the different types of bilayers that are described by the unified analysis:
(i) “free” bilayer deforming under the influence of intermolecular forces originating with the layers
(Figure 1(a)), (ii) a “confined” bilayer deforming under the influence of an electric field (Figure 1(b)),
and (iii) “confined” bilayer undergoing deformation because of the interaction between an external
contactor and the surface of the upper film (Figure 1(c)). In the formulation, we consider two different
types of linear viscoelastic materials—either the Kelvin-Voigt zero-frequency soft materials35 or
frequency dependent Maxwell fluids. The former describes a viscoelastic soft solid, whereas the
latter describes a viscoelastic liquid. However, it is to be noted that the results obtained from the
Kelvin-Voigt model also describe a purely viscous liquid in the limit of vanishing elastic storage
modulus. A unified theory has been developed to study the short-, long-, and finite-wavenumber
instabilities engendered either by intermolecular forces or by contact forces or by the external
electric field, of ultrathin (<100 nm) to thick viscous, elastic, viscoelastic, and viscous-viscoelastic
composite bilayers under a single framework. A LSA of this theory uncovers the role of the shear
moduli, relaxation times, and dielectric permittivities of the films on the time and the length scales of
the instabilities. It may be noted here that the viscoelastic properties of zero-frequency elastomeric
materials are very different from the Maxwell fluids. The storage modulus in an elastomeric soft
solid is a thermodynamic property, which is a measure of the frequency independent restoring elastic
force. The elastomer behaves as a purely elastic solid when the loss modulus is minimal and a viscous
behavior is expected when it is elastically very soft.30 In contrast, a Maxwell liquid has no long-term
(zero-frequency) elasticity. The magnitude of its relaxation time (ratio of the loss to storage moduli)
is a kinetic parameter, which is essentially the time required to dissipate of the stored elastic energy.
Thus, LSA of the unified model allows comparison and contrast with the key features of different
spinodal instabilities, namely the wetting instability, contact instability, and the electric field induced
instability of the bilayers with a wide range of solid-like and liquid-like rheologies. In the case of
a single film, rheological properties such as viscosity in a solid model and the relaxation time in a
fluid model can be viewed as purely kinetic parameters that play no role in changing the length scale
of instability, which is determined by thermodynamic considerations. However, it is known that the
length scale of instability in a viscous bilayer can be significantly altered by changing the ratio of
viscosities of the films.75, 80, 81 Thus, rheology in a bilayer has more than a purely kinetic role in
determining the evolution of two coupled interfaces. In this regard, viscoelasticity in both the layers
allows far more flexibility in the control of pattern formation by tailoring the time and length scales
over a wide spectrum.

In what follows, we focus on the roles of rheological parameters that define the elastic properties
of the two layers. For a viscoelastic liquid, we thus explore the influence of elastic relaxation times
in the two layers on the length and time scales of the instabilities. Similarly, in a solid-like bilayer,
the roles of elastic storage moduli are considered. The key outcomes from this study can be of
significance especially in the areas of mesopatterning of soft materials by self-organization and in
control of multilayer coatings.
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II. PROBLEM FORMULATION

In this script, x- and z- are the coordinates parallel and normal to the substrate surface (as shown
in Figure 1), the bracketed superscript denotes the vector components, the superscript dot represents
time derivative of the variable, and the subscripts i = 1 and 2 denote the lower and the upper
layer/interface. The lower layer, upper layer, and combined film thicknesses are denoted by h1, h3,
and h2 (= h3 + h1), respectively. The respective base state thicknesses are denoted by h10, h30, and h20.
The symbols σ i,τ i, κ i, Pi (= pi − π i), λi, Gi, εi, μi, and γ i are the stress tensor for the elastomer, stress
tensor for the Maxwell fluid, curvature, non-body-force pressure, relaxation time, shear modulus,
dielectric permittivity, viscosity, and surface energy of the ith layer, respectively, where pi and π i

denote the isotropic and excess disjoining pressure, respectively because of intermolecular force
or electric field. The instability because of the density differences is not considered because for
very thin films, the intermolecular forces or the electric field forces dominate significantly over
gravity. In addition, owing to the small thicknesses of the films the inertial effects are neglected in
the governing equations. Separate formulations for zero-frequency viscoelastic solid and Maxwell
fluid are presented because the constitutive relation for the viscoelastic solid is expressed in terms of
displacements, ui {u(x)

i , u(z)
i }, whereas for the Maxwell fluid is expressed in terms of the velocities,

vi {v(x)
i , v

(z)
i }.

A. Zero-frequency linear viscoelastic solid

The following condition for incompressibility, equations of motion, and the constitutive relation
describe the dynamics of the ith layer of an incompressible zero-frequency linear viscoelastic solid:

∇ · ui = 0, (2.1)

− ∇ Pi + ∇ · σ i = 0, (2.2)

σ i = Gi (∇ui + ∇uT
i ) + μi (∇u̇i + ∇u̇T

i ). (2.3)

The constitutive relation Eq. (2.3) represents a linear combination of a Newtonian damper and a
Hookean elastic spring connected in parallel. The constitutive model is expected to describe the
rheology of viscoelastic solid polymer films undergoing a reversible strain under a small load.
Previously a number of studies30, 32, 34, 90 have shown the usefulness of this model to describe the
small deformations of elastomers such as cross-linked PDMS (poly-dimethylsiloxane) under the
influence of the intermolecular and electric field forces. Since the bilayer instabilities discussed
here are small strain/small deformation problems, this constitutive model is appropriate within
the framework of LSA. Interestingly, the model shows correct asymptotic transition to purely
elastic material like behavior when the material is elastically very soft (a non-dimensional number,
T = γ /Gh < 0.1).30 The non-dimensional number, T, denotes the importance of surface tension force
vis-à-vis the elastic restoring force. A large value of T indicates a negligible role of elasticity and
the behavior is thus dominated by the stabilizing effect of surface tension, as in the case of viscous
fluids.

The lower layer is considered to be perfectly bonded with the rigid substrate, thus, at z = 0,
no-slip and non-permeability boundary conditions are enforced,

u1 = 0. (2.4)

The confined liquid/liquid interface at z = h1 is expected to deform under the governing forces.
Therefore, continuity of x- and z- components of displacements, normal stress balance, shear stress
balance, and the kinematic condition are applied as the boundary conditions,

u1 = u2, (2.5)

− p2 + n1 · σ 2 · n1 + p1 − n1 · σ 1 · n1 = γ21κ1, (2.6)

t1 · σ 2 · n1 = t1 · σ 1 · n1, (2.7)

ḣ1 + u̇(x)
1

(
∂h1

/
∂x

) = u̇(z)
1 . (2.8)
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Here γ 21 is the interfacial tension at the confined interface is obtained from the relation,

(
√

γ2 − √
γ1)2.79–81 In the boundary conditions, the symbols ni, [(−hix/

√
(1 + h2

i x )1/

√
(1 + h2

i x ))]

and ti, [(1/

√
(1 + h2

i x ), hix/

√
(1 + h2

i x ))] represent unit normal and tangent vectors, respectively.
The normal stress balance, shear stress balance, and the kinematic condition are applied as boundary
conditions at the deformable free surface (liquid/air) at z = h2,

− p2 + n2 · σ 2 · n2 = −γ2κ2, (2.9)

t2 · σ 2 · n2 = 0, (2.10)

ḣ2 + u̇(x)
2 (∂h2/∂x) = u̇(z)

2 . (2.11)

B. Frequency dependent Maxwell fluid

The conditions for incompressibility, the equations of motion, and the constitutive relation that
describe the deformations of the ith layer composed of a Maxwell fluid are

∇ · vi = 0, (2.12)

− ∇ Pi + ∇ · τ i = 0, (2.13)

τ i + λi τ̇ i = μi (∇vi + ∇vT
i ). (2.14)

The expression represents a linear combination of a Newtonian damper and a Hookean elastic
spring connected in series. The Maxwell fluids behave like an elastic solid when the time scale for
deformation is shorter than the relaxation time and they behave like a Newtonian fluid in the limit of
zero relaxation time. In reality, polymeric viscoelastic liquids have a spectrum of relaxation times.
Thus, the single relaxation time shown in the constitutive relation Eq. (2.14) can be interpreted as the
one corresponding to the frequency (inverse time scale) of fluid motion. Further, the use of a simple
time derivative of the stress tensor in the constitutive model instead of the more rigorous upper-
convected time derivative arising from the material nonlinearities is justified because we study the
spontaneous small deformation of an initially unperturbed bilayer of liquid films under the influence
of either intermolecular force or electric field. Moreover, the upper-convected terms are quadratic in
the stresses and do not make any linear contributions when expanded about a quiescent base state.
Thus, the results obtained from the LSA are exact even with the inclusion of the upper-convected
terms.

The lower layer is considered to be perfectly bonded to its rigid substrate and at z = 0, no-slip
and non-permeability boundary conditions are enforced,

v1 = 0. (2.15)

At the confined interface (z = h1), continuity of x- and z- components of velocities, normal stress
balance, shear stress balance, and the kinematic condition are employed as the boundary conditions,

v1 = v2, (2.16)

− p2 + n1 · τ 2 · n1 + p1 − n1 · τ 1 · n1 = γ21κ1, (2.17)

t1 · τ 2 · n1 = t1 · τ 1 · n1, (2.18)

ḣ1 + v
(x)
1 (∂h1/∂x) = v

(z)
1 . (2.19)
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At the free surface (z = h2), the normal stress balance, shear stress balance, and the kinematic
condition are enforced as the boundary conditions,

− p2 + n2 · τ 2 · n2 = −γ2κ2, (2.20)

t2 · τ 2 · n2 = 0, (2.21)

ḣ2 + v
(x)
2 (∂h2/∂x) = v

(z)
2 . (2.22)

C. Excess pressures at the interfaces

1. Wetting instability

The van der Waals disjoining pressures π1 and π2 at the interfaces are given by74–77, 79–81

π1 = − A1

6πh3
1

− A2

6πh3
2

, π2 = − A3

6πh3
3

− A2

6πh3
2

. (2.23)

The disjoining pressures are written in terms of effective Hamaker constants, which are derived
from the binary Hamaker constants, A1 = A11 + As2 − As1 − A12, A2 = A12 − As2 and A3 = A22

− A12. The binary Hamaker constants are of the materials denoted by their subscripts s, 1, and 2
corresponding to the solid substrate, lower layer, and upper layer, respectively. A positive effective
Hamaker constant for a single layer implies an attractive force leading to the wetting instability and
its negative value corresponds to thermodynamic stability.

2. Electric field induced instability

The excess pressures at the interfaces resulting from the electric field are modelled by assuming
the bilayer with the air gap as a series capacitor as shown in Figure 1(b).98, 99 The total free energy
�G = −(1/2)Cψ2

b obtained from the capacitance (C−1 = C−1
1 + C−1

2 + C−1
a ) leads to the following

expressions for the excess electrical pressures (π1 = ∂(− �G)/∂h1 andπ2 = ∂(− �G)/∂h3) at the
interfaces,

π1 =
[ −ε0ε1ε2ψ

2
b ([ε2 − ε1] + ε1 [1 − ε2])

2 [ε1 (h1 + h3) [ε2 − 1] − h1 [ε2 − ε1] − ε2ε1d]2

]
,

π2 =
[ −ε0ε

2
1ε2ψ

2
b [1 − ε2]

2 [ε1 (h1 + h3) [ε2 − 1] − h1 [ε2 − ε1] − ε2ε1d]2

]
. (2.24)

The notations C1
[= ε0ε1 Ā/h1

]
, C2

[= ε0ε2 Ā/ (h2 − h1)
]
, and Ca

[= ε0 Ā/(d − h2)
]

represent the
capacitances of the lower layer, upper layer and air respectively. The symbol ε0 represents the
dielectric permittivity of free space and Ārepresents the area of the flat interfaces.

3. Contact instability

In this case, a rigid surface (contactor) interacts with an attractive van der Waals force with the
upper surface. The van der Waals disjoining pressures π1 and π2 at the two interfaces are given
by34, 39

π1 = 0, π2 = A

(d − h2)3
, (2.25)

where d is the distance between the contactor and the solid substrate as shown in Figure 1(c) and
A is the effective Hamaker constant resulting from the interaction between the upper layer and the
contactor. The other intermolecular interactions are ignored because in contact instabilities larger
film thicknesses (>100 nm) ensure a weaker contribution from them.
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III. LINEAR STABILITY ANALYSIS

In order to perform one dimensional LSA, the two-dimensional governing equations
and the boundary conditions are linearized using the normal linear modes, vi = ṽi eω t+ i kx ,
ui = ũi eω t+ i kx , τ i j = τ̃ i j eω t+ i kx , Pi = P̃i eω t+ i kx , and hi = hi0 + δ̃i eω t+i kx where the symbols
ω and k represent the linear growth coefficient and the wave number of disturbance, respectively.

A. Zero-frequency linear viscoelastic solid

The governing equations (2.1) to (2.3) are linearized to obtain the following expressions:

− ik P̃i + (Gi + μiω)

(
−k2ũ(i)

x + ∂2ũ(i)
x

∂z2

)
= 0, (3.1)

− ∂ P̃i

∂z
+ (Gi + μiω)

(
−k2ũ(i)

z + ∂2ũ(i)
z

∂z2

)
= 0, (3.2)

ikũ(i)
x + ∂ ũ(i)

z

∂z
= 0. (3.3)

Eliminating P̃i from the Eqs. (3.1) and (3.2) and then replacing ũ(i)
x with −∂ ũ(i)

z / (ik∂z) from
Eq. (3.3) the following biharmonic equation is obtained for the ith (i = 1 and 2) layer,

d4ũ(i)
z

dz4
− 2k2 d2ũ(i)

z

dz2
+ k4ũ(i)

z = 0. (3.4)

The general solution of Eq. (3.4) is

ũ(i)
z = (Bi1 + Bi2z) ekz + (Bi3 + Bi4z) e−kz . (3.5)

Here the coefficients Bij (i = 1 and 2; j = 1 to 4) are constants. The boundary conditions Eq. (2.4) to
(2.11) are also linearized employing the normal linear modes. The following are the linearized no
slip and non-permeability conditions at z = 0,

ũ(1)
x = ũ(1)

z = 0. (3.6)

The linearized continuity of displacements, the tangential and normal stress balances and the kine-
matic condition at z = h1 reduces to the form,

ũ(1)
x = ũ(2)

x , (3.7)

ũ(1)
z = ũ(2)

z , (3.8)

(G1 + μ1ω)

(
∂ ũ(1)

x

∂z
+ ikũ(1)

z

)
= (G2 + μ2ω)

(
∂ ũ(2)

x

∂z
+ ikũ(2)

z

)
, (3.9)

P̃1 − P̃2 − 2(G1 + μ1ω)
∂ ũ(1)

z

∂z
+ 2(G2 + μ2ω)

∂ ũ(2)
z

∂z
+

∣∣∣∣
(

−k2γ21 + ∂π1

∂h1
− ∂π2

∂h1

)
ũ(1)

z

∣∣∣∣
h10,h20

+
∣∣∣∣
(

∂π1

∂h2
− ∂π2

∂h2

)
ũ(2)

z

∣∣∣∣
h10,h20

= 0, (3.10)

δ̃1 = ũ(1)
z

∣∣
h10

. (3.11)
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The tangential and normal stress balances and the kinematic condition at z = h2 are linearized to

(G2 + μ2ω)

(
∂ ũ(2)

x

∂z
+ ikũ(2)

z

)
= 0, (3.12)

P̃2 − 2(G2 + μ2ω)
∂ ũ(2)

z

∂z
+

∣∣∣∣
(

−k2γ2 + ∂π2

∂h2

)
ũ(2)

z

∣∣∣∣
h10,h20

+
(

∂π2

∂h1

)
ũ(1)

z

∣∣∣∣
h10,h20

= 0, (3.13)

δ̃2 = ũ(2)
z

∣∣
h20

. (3.14)

In the above expressions the disjoining pressures are expanded in Taylor’s series about their base
states in the following manner:

π1 (h10 + δ1 , h20 + δ2) = π1 (h10, h20) + [
(∂π1/∂h1)|h10,h20

δ1 + (∂π1/∂h2)|h10,h20
δ2 + ....

]
,

π2 (h10 + δ1 , h20 + δ2) = π2 (h10, h20) + [
(∂π2/∂h1)|h10,h20

δ1 + (∂π2/∂h2)|h10,h20
δ2 + ....

]
.

(3.15)

Here δ1 and δ2 are the infinitesimal perturbation at the elastic-viscous and elastic-air interface,
respectively. Replacing the expressions for ũ(i)

z , ũ(i)
x , and P̃i from the Eqs. (3.1) to (3.3) in the

linearized boundary conditions leads to a set of eight homogeneous linear algebraic equations
involving eight unknown constants Bij (i = 1 and 2; j = 1 to 4). Equating the determinant of the
coefficient matrix of the set of linear equations to zero the dispersion relation for the zero-frequency
linear viscoelastic solid bilayer is obtained as shown by the Eq. (A1) in Appendix.

B. Maxwell fluid

The governing equations (2.12) and (2.13) are linearized into the following forms:

P̃i = μi

ik (1 + ωλi )

(
∂2ṽ(i)

x

∂z2
− k2ṽ(i)

x

)
, (3.16)

∂ P̃i

∂z
= 1

1 + ωλi

(
∂2ṽ(i)

z

∂z2
− k2ṽ(i)

z

)
, (3.17)

ikṽ(i)
x + ∂ṽ(i)

z

∂z
= 0. (3.18)

Eliminating P̃i from the Eqs. (3.16) and (3.17) and then replacing ṽ(i)
x with −∂ṽ(i)

z / (ik∂z) from
Eq. (3.18) the following biharmonic equation is obtained for the ith (i = 1 and 2) layer,

d4ṽ(i)
z

dz4
− 2k2 d2ṽ(i)

z

dz2
+ k4ṽ(i)

z = 0. (3.19)

The general solution of Eq. (3.19) is

ṽ
(z)
i = (Ci1 + Ci2z) ekz + (Ci3 + Ci4z) e−kz . (3.20)

Here the coefficients Cij (i = 1 and 2; j = 1 to 4) are constants. The boundary conditions Eq. (2.15)
to (2.22) are linearized employing the normal linear modes. The linear no-slip and impermeability
boundary conditions at z = 0 are

ṽ(1)
x = ṽ(1)

z = 0. (3.21)

The continuity of velocity components, the tangential and normal stress balances, and the kinematic
condition at z = h1 reduce to the form,

ṽ(1)
x = ṽ(2)

x , (3.22)
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ṽ(1)
z = ṽ(2)

z , (3.23)

τ̃ (1)
xz = τ̃ (2)

xz , (3.24)

P̃1 − P̃2 − τ̃ (1)
zz + τ̃ (2)

zz +
∣∣∣∣
(

−k2γ21 + ∂π1

∂h1
− ∂π2

∂h1

)
ṽ(1)

z

ω

∣∣∣∣
h10,h20

+
∣∣∣∣
(

∂π1

∂h2
− ∂π2

∂h2

)
ṽ(2)

z

ω

∣∣∣∣
h10,h20

= 0,

(3.25)

δ̃1 = ṽ(1)
z

ω

∣∣∣∣
h10

. (3.26)

The tangential and normal stress balances and the kinematic condition at z = h2 reduces to the form,

τ̃ (2)
xz = 0, (3.27)

P̃2 − τ̃ (2)
zz +

∣∣∣∣
(

−k2γ2 + ∂π2

∂h2

)
ṽ(2)

z

ω

∣∣∣∣
h10,h20

+
(

∂π2

∂h1

)
ṽ(1)

z

ω

∣∣∣∣
h10,h20

= 0, (3.28)

δ̃2 = ṽ(2)
z

ω

∣∣∣∣
h20

. (3.29)

Replacing the expressions for ṽ(i)
z , ṽ(i)

x , and P̃i in the linearized boundary conditions results in a set
of eight homogeneous linear algebraic equations involving eight unknown constants Cij ( j = 1 to 4).
Equating the determinant of the coefficient matrix of the set of linear equations to zero, we obtain
the dispersion relation for the Maxwell bilayer as shown by the Eq. (A2) in Appendix.

The dispersion relation gives, ω = f(k), when all the physical properties and the thicknesses
of the films are known. The dominant growth coefficient (ωm) and the corresponding wavelength
(λm) are obtained by finding the global maxima of ω and the corresponding wavelength from the
dispersion relations. As a limiting case, we have verified that the dispersion relation for the wetting
film reduces to the case of a single viscous film5 and a viscous bilayer.74, 79 The dispersion relations
for the elastic bilayers undergoing contact instability93, 94 and the electric field induced instabilities
of the viscous bilayers98 are also obtained asymptotically. The operations in this derivation are done
with the help of the commercial package MATHEMATICATM.

IV. RESULTS AND DISCUSSION

In this section, the results obtained from the LSA for wetting induced, electric field mediated, and
contact instabilities of thin bilayers are discussed. It may be noted that the rheological characteristics
of zero-frequency viscoelastic solids are fundamentally different from Maxwell fluids. The storage
or elastic modulus in a constant moduli viscoelastic solid is a measure of the frequency independent
stabilizing elastic force. When the loss modulus of the viscoelastic solid is very small it behaves
like a purely elastic material and its response becomes increasingly faster under an external load. In
contrast, when the storage modulus is zero the material behaves like a purely viscous liquid and all
the energy supplied is dissipated. A linear viscoelastic solid has a frequency independent, constant
loss, and storage moduli. In comparison, a Maxwell liquid has no long-term (zero-frequency)
elasticity. The magnitude of its relaxation time (ratio of the loss to storage moduli) is essentially
the timescale for the viscous dissipation of the stored elastic energy. Previous studies have shown
thermodynamic stabilizing influence of the frequency-independent solid-like elasticity for a linear
viscoelastic material.30, 35 However, increasing the elastic relaxation time in a Maxwell fluid, which
is a measure of the fluid elasticity, makes the film kinetically more unstable.31, 59 Importantly these
studies also show that only the rates of deformation and flow are significantly influenced by the
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rheological parameters, but the length scale is independent of rheology. More importantly, the length
scale of instability for single films is found to be influenced by the thermodynamic parameters such
as the dielectric constant, surface tension, and destabilizing intermolecular/electric field forces. As
compared to the single film scenario, the length and time scales of instabilities for the bilayers are
found to be sensitive towards the kinetic parameter such as viscosity ratio of the films80 in addition
to the thermodynamic parameters such as ratio of surface tensions at the interfaces, dielectric
permittivities of the films, and the intermolecular forces.74–76, 80, 81

It would help to note a few more general ideas7, 30, 34, 34 about the stability of thin films for a
clearer interpretation of the results presented below. Instability of viscous liquid films is of a long-
wave character (kc > k ≥ 0; and kch � 1) and does not require a critical minimum destabilizing force
for its inception. However, a thin film of constant elastic modulus material becomes unstable only
when the strength of the destabilizing force marginally overcomes the elastic stiffness of the film.
For a relatively thick single layer, the instability has a short-wave nature as the critical wavenumber
corresponding to this situation follows a wavelength ∼3h, which is independent of the film rheology
and surface tension. For very thin sub-micron films, surface tension progressively increases the
length scale (>3h), which depends nonlinearly on the surface tension and elastic modulus, eventu-
ally reaching the pure viscous surface tension dominated long-wave regime.30, 39 In comparison to
this situation when the destabilizing force is considerably larger than the stabilizing forces, the un-
stable wavenumbers are bounded between two finite critical wavenumbers. The difference between
the critical wavenumbers (instability window) grows with increased destabilization. The dominant
wavenumber, km displaying the maximum growth rate lies within this window. Extrapolating from
what we know about a single film, one can in general anticipate long-wave (k h � 1) regimes for
ultrathin wetting and externally destabilized viscoelastic bilayers where surface tension effects are
important. However, a constant elastic modulus should cause a finite wavenumber bifurcation (kc is
nonzero).

The critical wavenumber at the onset of instability and the dominant wavenumber for stronger
destabilization are both physically relevant in distinct contexts. In the experiments where an external
destabilizing field is progressively ramped up until the film becomes unstable, the critical wavenum-
ber is observed. This happens for example when a contactor gradually approaches the free surface
or when an applied electric field is slowly increased. The unstable free surface comes in periodic
contact with the contactor/electrode where it is pinned in a meta-stable contact. The experimentally
observed length scale of instability in such cases is determined at the bifurcation condition. In the
wetting films on the other hand, the van der Waals forces originating within the films are deter-
mined only by the film thicknesses. Thus, in an unstable initial configuration beyond the critical, the
wavelength corresponds to the dominant mode bounded by the two critical wavenumbers. In view
of these reasons, we consider the influence of viscoelasticity both on the critical wavenumber at the
onset of instability and on the dominant wavenumber.

In what follows, the major focus is to uncover the effects of the rheological properties such as
the ratio of the elastic moduli and relaxation times of the two films in a bilayer. In particular, bilayer
film thicknesses are varied from ultrathin to thick to explore the importance of the surface/interfacial
tension forces. We thus explore the long- to short-wave instabilities30, 34, 35 in the materials that have
solid-like or fluid-like elasticity. In addition, the role of the dielectric permittivities of the films in
influencing the length and time scales of the electric field induced instability is also explored.

A. Instabilities of wetting films

Figure 1(a) schematically shows the configuration of a bilayer where the wetting instabilities
can be observed because of the presence of intermolecular forces, the most generic of which is the
long-range van der Waals force. Importantly, the van der Waals forces can stabilize or destabilize a
bilayer depending on the choice of materials for the films. The forces are attractive (repulsive) and
destabilizing (stabilizing) when the effective Hamaker constant has a positive (negative) value. In this
section, the bilayers are classified based on the macroscopic wetting (dewetting) behavior.74, 75, 79–81
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FIG. 2. LSA results for the case 1 dewetting bilayer. The viscoelastic films in this plot are zero-frequency viscoelastic solids.
Plots (a) and (b) show the variation of ω with k. The curves 1−4 in plot (a) correspond to G2 = 0 Pa and G1 = 0 Pa, 5 Pa,
10 Pa, and 104 Pa, respectively. In plot (b) curves 1-4 correspond to G1 = 0 Pa and G2 = 0 Pa, 100 Pa, 500 Pa, and 104 Pa,
respectively. Plots (c) and (d) show the variations of ωm and λm, respectively, (i) with G1 when G2 = 0 Pa (curve 1) and G2

= 100 Pa (curve 2) and (ii) with G2 when G1 = 0 Pa (curve 3) and G1 = 100 Pa (curve 4). For curves 2 and 4 in plot (c) and
(d) γ s = 0.8 N/m. In all the plots, h30 = h10 = 10 nm. All other necessary parameters used in the plots are given in Table I.

The results obtained from the LSA for each case are discussed. The typical parameters employed
for the van der Waals forces for different cases are provided in Table I.

1. Case 1 (A1 > 0 and A3> 0)

This combination of Hamaker constants indicates instability for both the films. The lower layer
can be unstable under the influence of A1 > 0 and the upper layer can show instability because of
A3 > 0. However, the intermolecular forces have to overcome the stabilizing elastic and capillary
forces in the zero-frequency viscoelastic solid films whereas the capillary force is the only resistive
force in case of bilayers composed of the Maxwell fluid.

a. Zero-frequency viscoelastic solid. The LSA results for this case are summarized in
Figure 2. Figures 2(a) and 2(b) show the variation of the growth coefficient, ω with the wavenumber
k when the upper (lower) and lower (upper) layer is viscous (viscoelastic), respectively. Figures
2(c) and 2(d) show the variations of the maximum linear growth coefficient (ωm) and the corre-
sponding wavelength (λm), respectively, with the shear modulus of the lower layer (G1) at a constant
upper layer shear modulus (G2) and with the shear modulus of the upper layer (G2) at a constant
lower layer shear modulus (G1). Previous works79–81 have shown that a purely viscous bilayer can
show a pair of maxima (bimodal behavior) in ω vs. k plots when both the layers are unstable. The
nonlinear simulations further showed that the instabilities at the two interfaces can get decoupled
and the interfaces then evolve at two different wavelengths.80, 81 The free surface can grow with a

TABLE I. Typical values used for the van der Waals forces.

System A1 (J) A2 (J) A3 (J) γ 21 (N/m) γ 2(N/m) μ1,μ2(Pa s)

Case 1 4.76 × 10−20 −1.35 × 10−19 2.05 × 10−20 0.00385 0.031 1.0
Case 2 −3.81 × 10−22 5.29 × 10−21 4.88 × 10−21 0.0002 0.0362 1.0
Case 3 1.73 × 10−21 3.18 × 10−21 −1.33 × 10−20 0.00385 0.013 0.1
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larger wavelength owing its higher surface energy and the confined interface assumes the smaller
wavelength because of its smaller stabilizing interfacial tension. We start discussing our results with
this interesting bilayer system where the parameters ensure that ω vs. k plots are bimodal (curve 1
in Figure 2(a)) and the lower layer is more unstable. The larger destabilizing intermolecular forces
at the lower layer ensures that the dominant mode of instability is at the confined interface and the
instability manifests by the larger deformation of the confined interface leading to the rupture of the
lower layer.80, 81 Since the interfacial tension of the confined interface between the two materials is
much smaller than the free surface of the bilayer, the dominant mode of instability grows by a larger
wavenumber mode corresponding to the lower film. The curves 2-4 in this figure show that when
the lower layer is made viscoelastic with progressive increase in the lower layer elasticity, the larger
wavenumber dominant mode progressively becomes subdominant. Further, when the lower layer
is highly elastic, the smaller wavenumber maximum (longer wavelength) is the dominant mode of
instability (curve 4). Increasing elasticity of the viscoelastic lower layer imparts an extra stabilizing
influence to the confined interface and beyond a threshold value of shear modulus of the lower layer,
the instability evolves by the larger deformation of the viscous upper layer. The shift of the dominant
mode of the instability from one interface to the other takes place at the points of the discontinuities
shown in the curves 1 and 1a in the Figures 2(c) and 2(d). The changeover of wavelengths from
smaller to larger by changing the kinetic parameters such as the ratio of the viscosities in the bilayer
films are reported earlier in the literature.79–81 Figure 2 uncovers that by changing the extent of
elasticity inside the viscoelastic bilayers is another alternative to tune the wavelengths for ultrathin
unstable bilayers.

In contrast to the bilayers with a viscous upper layer and a viscoelastic lower layer, the bilayers
with a viscoelastic upper layer and a viscous lower layer show completely different instability
features. We again start with a purely viscous bilayer with a bimodal instability as shown by curve
1 in Figure 2(b). Curves 2-4 in Figure 2(b) show that with an increase in the elasticity of the upper
layer, the ω vs. k plots changes from bimodal to a single dominant mode. Increase in the elasticity
of the upper layer synchronizes the deformations at the two interfaces leading to a single dominant
mode of instability.

Curve 3 in Figures 2(c) and 2(d) shows that ωm (λm) progressively reduces (increases) with an
increase in G2, rather than a discontinuous shift as in the previous case. A further inquiry into the ω

vs. k plots (not shown here) uncovers that: (i) when at least one of its layers is purely viscous, the
bilayer shows a zero elastic stiffness and can thus deform under an infinitesimally small destabilizing
field; (ii) the wetting instability of purely viscous or viscoelastic-viscous bilayers have long-wave
characteristics (kch � 1) because the dominant wavelength varies in the range of 1 – 10 μm when
the film thicknesses are of the order of 10 nm.

As compared to viscous-viscoelastic composite bilayers considered above, when both the layers
are viscoelastic the instabilities can have strikingly different characteristics. The curves 2 and 4 in
the Figures 2(c) and 2(d) show the results for a viscoelastic bilayer when G1 is varied at a constant
G2 and G2 is varied at a constant G1, respectively. The key features of instabilities for the viscoelastic
bilayers are: (i) the bilayer has a finite elastic stiffness, which leads to a finite-wavenumber instability
as found previously for single viscoelastic film.30 The surface tension force stabilizes the smaller
waves and the elastic forces stabilize the larger unstable waves. The waves with intermediate length
scale can grow under the destabilizing intermolecular forces. This is in contrast to a single viscous
film or viscous bilayer or viscous-viscoelastic composite bilayers where the instability can initiate
under infinitesimally small destabilizing fields (ω → 0 as k → 0); (ii) only ultrathin films can
show wetting instability and stronger destabilizing interactions are necessary to overcome the extra
stabilizing elastic forces in both the layers. In the example shown, the solid substrate is considered as
a high-energy metal, which gives a higher strength of the van der Waals forces required to engender
instability. The analysis predicts a feature size of ∼100 nm in such a situation; (iii) a bilayer with
film thicknesses of 10 nm can undergo wetting instability only when it is very soft with its shear
moduli less than a few kPa. Bilayers with higher elasticity cannot be destabilized by the van der
Waals interactions; (iv) the dominant growth rate, ωm progressively decreases with an increase in the
elasticity of the films. It is more pronounced when the upper layer has more elastic resistance because
the elastic forces at the upper layer stabilizes both the free surface and the confined interface; (v)
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FIG. 3. LSA results for the case 1. The viscoelastic films in this plot are Maxwell fluids. Plots (a)–(d) show the variation
of ω with k. The curves 1−4 in the plot (a) correspond to λ2 = 0 s and λ1 = 0 s, 0.5 s, 1.0 s, and 3.0 s. In plot (b) curves
1−4 correspond to λ2 = 0.001 s and λ1 = 0.1 s, 0.4 s, 0.5 s, and 0.7 s. In plot (c) curves 1−4 correspond to λ1 = 0 s and
λ2 = 0 s, 2 s, 8 s, and 9.5 s. In plot (d) curves 1−4 correspond to λ1 = 0.01 s and λ2 = 0.1 s, 1 s, 5 s, and 9.5 s. Plots (e) and
(f) show the variations of ωm and λm, respectively, (i) with λ1 when λ2 = 0 s (curve 1) and λ2 = 0.001 s (curve 2) and (ii)
with λ2 when λ1 = 0.01 s (curve 3). For all plots, h30 = h10 = 10 nm. All other necessary parameters used in the plots are
given in Table I.

interestingly, λm remains almost invariant with the change in the shear moduli of the layers. These
observations are important because they indicate: (A) miniaturized elastic-patterns can be developed
by employing a bilayer in which destabilizing van der Waals interactions are enhanced and the
interfacial tension at the confined interface is reduced, and (B) pattern periodicity can be tuned by
changing the elasticity of the two films.

b. Maxwell fluid. In Figure 3, we summarize the LSA results for the bilayers composed of
Maxwell fluid. Figures 3(a) to 3(d) show the variation of ω with k, which compare the results for
purely viscous, viscoelastic, and viscous-viscoelastic composite Maxwell fluid bilayers. Figures 3(e)
and 3(f) show the variations of ωm and λm with the relaxation time of the lower (λ1) and the upper
(λ2) layers. For the sake of continuity with the above discussion on the zero-frequency viscoelastic
bilayer, we examine the same viscous bilayer showing a bimodal instability with a more unstable
lower layer. Curve 1 in Figure 3(a) depicts the bimodal nature of the instability with lower layer more
unstable because of the dominant larger wavenumber maximum. The curves 2-4 show that when λ1 is
progressively increased under an unstable viscous upper layer, ωm and λm rapidly increase (curve 1 in
the Figures 3(e) and 3(f)). The relaxation time in a Maxwell fluid is the measure of the time required
to dissipate the elastic-energy stored inside the material. Thus, a layer with a larger relaxation time
behaves more like an elastic material for a longer time and ωm increases rapidly with an increase in
the relaxation times of the lower layer. It may be noted here that increase in λ1 has a greater effect
in enhancing the larger wavenumber maximum as compared to the smaller wavenumber maximum.
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The ω vs. k plots for the bilayers with very large relaxation times approaching the viscous time scale
show divergence (ω → ∞) near the dominant wavenumber (results not shown). This phenomenon
has been discussed previously for a single Maxwell film.31 The fast elastic dynamics in such cases
can be resolved by the inclusion of the inertial effects as shown in the work by Tomar et al.31

In contrast to the bilayers with a viscous upper layer and a viscoelastic lower layer, the bilayers
with a viscoelastic upper layer on a viscous lower layer show a completely different behavior when
λ2 is increased. The curves 2-4 in the Figure 3(c) depicts the smaller wavenumber maximum grows
faster than the larger wavenumber maximum and can become the dominant mode at higher λ2. It may
be noted that the smaller wavenumber maximum also diverges at very high values of λ2 indicating
the requirement of the inertial time scale in the formulation to remove the non-physical singularity
introduced by a faster elastic time scale (results not shown).

Figures 3(b), 3(d) and curves 2 and 3 in Figures 3(e) and 3(f) summarizes the key features
of the wetting instability when both the layers are viscoelastic: (i) The increase in the growth
rate of instability is more explosive when the lower layer relaxation time is increased (curve 2 in
Figure 3(e)); (ii) increasing the relaxation time of the more unstable upper layer only increases
the growth rate of instability and the length scale remains unaltered (curve 3 in Figure 3(f));
(iii) increasing the relaxation time of the upper layer on a viscoelastic lower layer can cause shifting of
dominant mode of instability from the confined interface to the free surface as shown by the curves 2-4
in the Figure 3(d). This shift is also accompanied by an abrupt change in the wavelength of instability;
(iv) unlike the purely viscoelastic bilayers with elastomeric solids, which show a finite wavenumber
instability, the Maxwell bilayers show a long-wave (kc > k ≥ 0 and kch � 1) wetting instability.

The results shown in the Figures 2 and 3 clearly indicate that unlike a single film where the
parameters such as relaxation time and shear modulus can merely change the time scale of the
wetting instability, for bilayers both the time and length scales can be significantly altered by tuning
the ratios of the rheological properties.

2. Case 2 (A1 < 0 and A3> 0)

In this case, the upper layer can be unstable (A3 > 0) on a stable (A1 < 0) lower layer. However,
the instability in the upper layer can grow either by a dominant deformation at the confined interface
or at the free surface. The influence of the relaxation times and shear moduli of the films can
completely change the evolution of instability by restricting or promoting the destabilizing forces
present in the films. Figure 4 summarizes the LSA results for this case.

a. Zero-frequency linear viscoelastic solid. Figure 4(a) shows the variation of ω with k, and
Figures 4(b) and 4(c) show the variations of the dominant parameters, ωm and λm with the change
in the G1 and G2. It may be noted here that in the physically realistic cases, the van der Waals forces
cannot be made sufficiently strong to engender instability in the bilayers when both the layers are
viscoelastic solids unless their shear moduli and the film thickness are very small.30

Thus, only the results for the viscous-viscoelastic bilayers are shown. Curve 1 in Figure 4(a)
corresponds to a purely viscous bilayer. Unlike the case 1 bilayers, the nature of van der Waals
forces in the films in this case ensures only the upper layer is unstable. The bimodal nature of this
curve indicates that the dominant mode of instability can reside on any of the two interfaces present,
which can break the upper film in long time. In curve 1, the low interfacial tension ensure that the
dominant large wavenumber mode stays at the confined interface. Curves 2 and 3 show that when the
elasticity of the lower layer is increased and the deformation of the confined interface is restricted,
the growth rate decreases as shown by the curve 1 in Figure 4(b). Eventually, the small wavenumber
mode becomes dominant (curve 3 in Figure 4(a)) and the instability grows by the deformation of the
free surface with larger λm as shown by the curve 1a in the Figure 4(c).

In contrast, starting with a viscous bilayer and increasing the elasticity of the upper viscoelastic
film show a different picture. The curves 1, 4, and 5 in Figure 4(a) show that when the elasticity of
the upper layer is increased, the confined interface and the free surface gets progressively coupled.
Thus, a bilayer with a high shear modulus of the upper layer and a viscous lower layer displays
a single mode in the ω vs. k plot (curve 5 in Figure (4(a)). The curves 2 in the Figures 4(b) and
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FIG. 4. LSA results for the case 2. The viscoelastic films in plots (a)–(c) are for zero frequency viscoelastic solids and (d)–(f)
are for Maxwell fluids. Plots (a) and (d) show the variation of ω with k. In plot (a), the curves 1−3 correspond to G2 = 0 Pa
and G1 = 0 Pa, 0.3 Pa, and 10 Pa, respectively. The curves 4 and 5 correspond to G1 = 0 Pa when G2 = 100 Pa and 150 Pa,
respectively. The curves 1−3 in the plot (d) correspond to λ2 = 0.01 s when λ1 = 1.0 s, 5.0 s, and 10.0 s, respectively. The
curve 4 corresponds to λ1 = 0.1 s and λ2 = 50 s. Plots (b) and (c) [(e) and (f)] show the variations of ωm and λm, respectively,
(i) with G1 when G2 = 0 Pa (curve 1) and (ii) with G2 when G1 = 0 Pa (curve 2) [(i) with λ1 when λ2 = 0.02 s (curve 1) and
(ii) with λ2 when λ1 = 0.1 s (curve 2)]. For all plots, h30 = h10 = 10 nm. All other necessary parameters used in the plots
are given in Table I.

4(c) more clearly show that when the upper layer is viscoelastic, ωm progressively reduces whereas
λm remains almost constant with the change in G2. The plots indicate that for a wetting bilayer
with an unstable viscoelastic (viscous) upper layer on a stable viscous (viscoelastic) lower layer the
wavelength can be tuned from a few hundred nanometres to a few microns by changing the shear
modulus of the lower layer.

b. Maxwell fluid. The LSA results for the Maxwell fluids in this case are discussed in the
Figures 4(d)–4(f). Figure 4(d) shows the variation of ω with k, and Figures 4(e) and 4(f) show the
variations of ωm and λm with the change in the λ1 and λ2. Since the Maxwell fluids are more prone
to destabilization owing to which the fluid bilayers show some new and interesting features. Curve 1
in Figure 4(d) show a bimodal instability for a viscous bilayer with unstable upper layer on a stable
lower layer. A shorter dominant wavelength indicates that the confined interface is more unstable.
The curves 1-3 in Figure 4(d) show that with increase in λ1 the larger wavenumber maximum
increases rapidly. Thus, increase in relaxation time at the lower layer leads to a faster destabilizing
confined interface, which can lead to the rupture of the upper layer in long time. In contrast, curve 4
shows a different scenario when λ2 is increased. In such a situation, the increased relaxation time at
the upper layer equally destabilizes the free and the confined interfaces. Thus, both the modes in the
bimodal plot show an enhanced growth rate. However, the plots also show that λ1 plays a primary
role in strengthening the instability when compared to λ2.
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parameters used in the plots are given in Table I.

3. Case 3 (A1 > 0 and A3 < 0)

In this case, the lower layer is unstable because A1 > 0 and the upper layer is stable on the
lower layer because A3 < 0. Thus, we expect this bilayer to behave more like a single film because
of a more passive upper layer. An interesting aspect of this case is that the free surface of the stable
upper layer can trace the contours of the structures formed at the confined interface, thus providing
a pathway for the inter-surface pattern replication and transfer.81 In addition, the presence of the
upper layer reduces the interfacial tension at the confined interface, which can lead to a reduction in
the wavelength as shown previously by employing the LSA and nonlinear simulations.80, 81

a. Zero-frequency linear viscoelastic solid. Figures 5(a) and 5(b) summarize the LSA results
for this case where one of the layers is purely viscous and the other one is viscoelastic. Figure 5(a)
shows that increase in the shear modulus of either of the films leads to a reduction in ωm, whereas
λm remains almost constant. Increasing G1 has more stabilizing influence as can be observed in the
curve 1 in the Figure 5(a) because larger G1 resists any deformation of the unstable lower layer to
make the system stable.

b. Maxwell fluid. In contrast to the viscoelastic solid case, Figures 5(c) and 5(d) show that
increase in the relaxation times of the layers can strengthen the instability. It is observed that when
the relaxation times of both the layers are simultaneously increased, the growth rate increases more
than when the individual relaxation times of the layers are increased one at a time. Figure 5(d)
confirms that the wavelength of instability does not change much with the change in the relaxation
times of the films in this case.

Bilayers for this case behave much like a single film with similar characteristics: (i) very thin
and soft films are unstable when the lower layer is a Kelvin-Voigt zero-frequency soft material,
whereas thicker films can be unstable when the lower film is a Maxwell fluid; (ii) the wavelength of
instability is insensitive to the shear modulus or the relaxation times.

B. Electric field induced instabilities

The application of an electrostatic field across the interfaces of a bilayer (Figure 1(b)) of
dielectric materials generates additional stresses because of the induced charge separation near the
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TABLE II. Typical values used for the electric field instability.

ε0(C2/N m2) ψ(V) γ 21(N/m) γ 2(N/m) μ1,μ2(Pa s) d (nm) h10(nm) h30(nm)

8.85 × 10−12 150 0.0007 0.03 1 1000 150 100

interfaces. The bulk is always electro neutral for the purely dielectric bilayers. To minimize the
excess free energy because of the charge separation at the interface arising from the applied field, the
free surface of a bilayer always deforms more in the direction of the upper electrode because of the
larger dielectric constant of the upper layer compared to air that it displaces. However, the confined
interface can deform in either direction depending upon the difference in the dielectric constants of
the two films (ε1 > ε2 or ε1 < ε2). The hydrodynamic factors play an important role in the growth of
instability. For example, an increase in the strength of the elastic, viscous or capillary forces leads to
a slower kinetics of destabilization whereas an increase in the relaxation time of the material leads
to a faster growth of the instabilities. The wetting film discussed above can be unstable only when
it is ultrathin (<100 nm) because the fast decay of the intermolecular forces. However, electric field
can engender instability in the films of any thickness. In this section, we discuss the LSA results
of the electric field induced instabilities in the ultrathin to thick viscoelastic bilayers. In particular,
we demonstrate the role of the interfacial, rheological, and electrical properties of the films on the
time and length scales of instabilities. The typical parameters employed for the plots related to the
electric field induced instabilities are provided in the Table II.

1. Influence of dielectric properties

The electrical properties of the films play a crucial role in the stress distribution across the
interfaces. Here we discuss the influence of the dielectric permittivities on the length and time
scales of instabilities in the linear viscoelastic bilayers. The permittivity of a dielectric medium is a
measure of its ability to polarize induced dipoles in presence of an external electric field. To extract
the influence of dielectric properties, the elastic modulus and the relaxations times of the films are
kept similar in all the figures.

a. Zero-frequency linear viscoelastic solid. Figure 6 shows the LSA results for this case.
Figure 6(a) shows ω vs. k plots and Figures 6(b) and 6(c) show the variations of ωm and λm

with the ratio of the dielectric permittivities, Er (=ε2/ε1). Curve 1 in Figure 6(a) shows that when
the dielectric-contrast between the viscoelastic layers is high, a larger electrical stress and lower
interfacial tension at the confined interface ensure a large wavenumber dominant mode of instability.
In such a situation, the instability evolves by a larger deformation of the confined interface. It may
be noted here that these finite-wavenumber electric field induced instabilities of thin viscoelastic
bilayers originate only beyond a critical value of the electric field when the destabilizing electric field
induced stresses overcome the stabilizing elastic and capillary forces. Decrease in the dielectric-
contrast between the layers (curves 2 to 4) causes a reduction in the electric field induced stress
at the confined interface which results in: (i) decrease in the growth rate of instability (curve 1 in
Figure 6(b)) and, (ii) shift of the dominant mode from the larger wavenumber (shorter wavelength)
to the shorter wavenumber (larger wavelength) mode (curves 1a and 1 in Figure 6(c)). The shifting
of the dominant mode is reflected in the discontinuities of the curves shown in Figures 6(b) and 6(c).

Interestingly, when the electric field induced stresses at the confined and free interfaces are
comparable to the stabilizing elastic and surface tension forces, a bimodal instability curve is
observed as shown in the curves 2 and 3 of Figure 6(a). In such situation, the two interfaces are
found to evolve with two different wavelengths.98, 99 Here, the larger (smaller) wavelength mode
corresponds to the free (confined) surface because of the larger (smaller) interfacial tension as
compared to the confined interface (free surface). Figures 6(b) and 6(c) more clearly show that
when the dielectric-contrast is high because of either ε2 � ε1 (curve 1a, at low Er) or ε2 	 ε1

(curve 2a, at high Er), the dominant mode of instability is at the confined interface and the wavelength
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FIG. 6. LSA results for viscoelastic bilayers under the influence of electrical fields. Plots (a)-(c) are for zero frequency
viscoelastic solids when G1 = 1000 Pa, G2 = 100 Pa, and ψb = 200 V. Plots (d)-(f) are for Maxwell fluids when
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the variation of λm with Er (=ε2/ε1). In all the plots γ 12 = 0.000015 N/m. The other necessary parameters used in the plots
are given in Table II.

of instability is smaller. However, for intermediate values of Erboth the curves 1 and 2 show that,
the dominant mode shifts to the free surface and the instability grows with a larger wavelength.

The results shown in Figure 6 clearly depict a shift in the controlling interface accompanied
by a switchover of the wavelength when the dielectric permittivities of the layers are tuned. The
phenomenon is also associated with the change in the length scale as discussed for the wetting
instability. It may be noted that similar to the wetting bilayers, the Kelvin-Voigt soft bilayers under
electric field also show a finite elastic stiffness and show a finite wavenumber instability (not shown
here). The soft solids undergo deformation only beyond a critical strength of the external field.

b. Maxwell fluid. Interestingly, a Maxwell fluid is also found to respond in the similar man-
ner when the dielectric-contrast between the viscoelastic films is varied. The only difference for a
Maxwell bilayer is that the films have zero elastic stiffness and the instabilities can initiate under the
influence of a vanishingly small external field (kc = 0), as compared to the finite-wavenumber
instability in the zero-frequency viscoelastic bilayers. Figure 6(d) shows ω vs. k plots and
Figures 6(e) and 6(f) show the variations of ωm and λm with Er (=ε2/ε1). Curve 1 in Figure 6(d)
shows that when the dielectric-contrast between the viscoelastic layers is high, the confined interface
evolves with a large wavenumber dominant mode of instability. With progressive reduction in the
dielectric-contrast between the layers (curves 2 to 4), the growth rate of instability reduces (curve 1
in Figure 6(e)) and the dominant mode shifts from the larger to shorter wavenumber mode (curves 1a
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and 1 in Figure 6(f)). Again, the shift occurs by the bimodal nature of the instability as observed in
the curves 2 and 3 in Figure 6(d). Figures 6(e) and 6(f) clearly show that when the dielectric-contrast
is very high, either ε2 � ε1 (curve 1a, at low Er) or ε2 	 ε1 (curve 2a, at high Er), the dominant
mode of instability is at the confined interface and the wavelength of instability is smaller. However,
the dominant mode shifts to the free surface and the instability grows with a larger wavelength for
the intermediate values of Er.

A comparison between the results obtained for the Kelvin-Voigt soft materials and Maxwell
bilayers under electric field leads to the following observations: (i) the Maxwell bilayers can deform
faster and at much lower external fields; (ii) when the dominant mode is at the confined interface, a
short-wave (500 nm to 1 μm) instability is expected even when the films are fairly thin (100 nm to 150
nm); (iii) Maxwell material behaves elastically with instantaneous response when its relaxation time
is comparable to the viscous time scale, which is shortened by imposition of large destabilizing fields.
In such cases, the elastic inertia needs to be included in the analysis to capture the fast time scale.

2. Influence of rheological properties

Figures 7 and 8 summarize the results for the bilayers with fixed dielectric constants and varying
rheological properties. Starting with a viscous bilayer, we demonstrate the influence of the shear
modulus and the relaxation times of the films on the growth rate and wavelength of instability.
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a. Zero-frequency linear viscoelastic solid. Figures 7(a) and 7(b) show the variations of ωm

and λm with G1 and Figures 7(c) and 7(d) show the same with G2. Curves 1 (ε2 < ε1) and 3 (ε2 > ε1)
in all the figures show that when the shear modulus of one of the layers is increased for a bilayer with
two viscoelastic films, ωm rapidly reduces in a narrow window of G to impart greater thermodynamic
stability. Beyond a finite critical stiffness of the elastomer films (higher G), the bilayer becomes
thermodynamically stable. In contrast, the curves 2 (ε2 < ε1) and 4 (ε2 > ε1) in all the figures show
that when only one of the films of the bilayer is viscoelastic and the other is viscous, the reduction
in ωm is not catastrophic with increase in the shear modulus of the viscoelastic film. This is because
even though the elasticity imparts greater stability to the viscoelastic film, the viscous film remains
unconditionally unstable.

Thus, the bilayers with one viscous layer show a zero elastic stiffness against the destabilizing
electric field. Importantly, when G1 is increased when the upper layer is viscous, λm shifts from
lower to higher values when ε2 < ε1 (curve 2 in Figure 7(b)). However, curve 4 in Figure 7(b) shows
that λm shift from the higher to lower values when ε2 > ε1. As discussed previously for the other
cases, the shift of λm is again associated with the switchover of the dominant mode of instability from
the confined interface to the free surface. The variation in λm is more pronounced when the lower
layer is viscous and G2 is progressively increased as shown by the curves 2 and 4 in the Figure 7(d).
This is because an increase in the upper layer elasticity affects deformations at both the interfaces.
Figure 7(e) shows that the electric field induced instabilities of the viscoelastic bilayers can undergo
a long- to short-wave transition as the film thickness is changed from a few hundred nm (thin) to a
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few microns (thick). This is similar to the single layer scenario.30 For ultrathin bilayers, the dominant
influence of the surface tension shifts the length scale to the long-wave regime. However, as the
film thickness is progressively increased, the influence of surface tension decreases leading to the
transition from the long- to short-waves.

b. Maxwell fluid. Figures 8(a) and 8(b) show the variations of ωm and λm with λ1 and
Figures 8(c) and 8(d) show the same with λ2. Curves 1 (ε2 < ε1) and 3 (ε2 > ε1) in all the
figures show that when the relaxation time of one of the layers is increased for a bilayer with
viscoelastic films, ωm rapidly increases and kinetically destabilizes the system.

Increase in relaxation time promotes a faster response to the destabilizing electric field, which
imparts stronger instability to the bilayer. In contrast, the curves 2 (ε2 < ε1) and 4 (ε2 > ε1) in all
the figures show that when one of the films of the bilayer is viscous, the increase in ωm is not that
rapid with increase in the relaxation time of the viscoelastic film. Importantly, when λ1 is increased
under a viscous/viscoelastic upper layer, λm shifts from a lower to higher values when ε2 < ε1 and
also when ε2 > ε1 (curve 1 to 4 in Figure 8(b)). In comparison, when λ2 is varied at constant λ1, λm

is found to marginally increase (decrease) when ε2 < ε1 (ε2 > ε1). Figure 8(e) shows that similar to
the Kelvin-Voigt material, the Maxwell bilayer can also show a short- to long-wave transition when
the film thickness is reduced from a few microns to a few nanometres.

C. Contact instabilities

The contact instabilities are engendered by the attractive interaction between the upper film and
an approaching rigid contactor from the top, as shown schematically in Figure 1(c). The strength
of the interaction is now governed by the ultrathin (<100 nm) air gap, rather than by the film
thicknesses. Previously, Tomar et al.93 have studied the contact instabilities of purely elastic bilayers
and shown interesting interfacial morphologies through simulations. Importantly, for relatively thick
single films,38 the wavelength of instability is only dependent on the film thickness and independent
of its elastic modulus. Tomar et al.93 reported that for elastic bilayers, the length scale depends
on the ratios of the film thicknesses and shear moduli. Thus, bilayers provide greater flexibility to
control the length scale of patterns formed. The contact instabilities can be engendered in ultrathin
to thick bilayers when the air gap between the contactor and the upper layer is kept ultrathin
(<100 nm) and the van der Waals interaction is strong enough. In what follows, we consider both
thin and relatively thick bilayers when discussing the key features of the contact instability induced
by an external contactor. The bilayers considered here can be both elastomeric solids and Maxwell
liquids. Figures 9–11 summarize the LSA results for the contact instability of viscoelastic bilayers.

1. Zero-frequency linear viscoelastic solid

The contact instabilities in viscoelastic bilayers can be experimented in two different pathways,
(i) critical mode: when the contactor is gradually brought towards the bilayer from a large separation
distance and the instability initiates when the destabilizing inter-surface attractive force marginally
overcome the stabilizing forces, and (ii) dominant mode: the contactor is rapidly brought in the
contact proximity such that the destabilizing force in the initial configuration is already much stronger
than the stabilizing forces. In the former case, the instability is initiated following the wavelength
λc (=2π /kc) at the neutral stability condition (ω = 0) and the instability evolves following the
dominant wavelength λm (=2π /km) corresponding to ωm in the later case.

Figures 9(a) and 9(b) show the neutral stability plots for elastomeric bilayers undergoing
contact instability with G1 > G2 and G1 < G2, respectively. As in the case of electric field, the
contact instability is initiated beyond a critical strength of the destabilizing attractive force (φc)
with a wavelength λc. Figures 9(a)–9(d) show that this wavelength depends on the ratios of the
thicknesses (β = h1/h2) and the ratio of shear moduli (Gr = G2/G1) of the films. When the films
are of comparable thicknesses, the bifurcation diagrams show a single critical mode (curves 1 in
Figures 9(a) and 9(b). However, bimodal bifurcation diagrams are also observed when one of the
layers is very thin (curves 2 and 3 in Figures 9(a) and 9(b)).
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FIG. 9. LSA results for the contactor problem with zero frequency viscoelastic solid. Plots (a) [(b)] show the bifurcation
diagrams (φ vs. k) when G1 = 106 Pa and G2 = 104 Pa [G1 = 104 Pa and G2 = 106 Pa] while β

(
h10

/
h20

)
is varied. Plot (c)

[(d)] shows the variation of kc with β at different Gr = (G2/G1) and at constant G1 = 106 Pa [G2 = 106 Pa]. Plot (e) shows
the variation of φc with β at different Gr. In plot (e) the curves 1-3, correspond to Gr = 1, 0.01 and 0.0001, respectively when
G1 = 106 Pa and the curves 4 and 5, correspond to Gr = 10000 and 100, respectively when G2 = 106 Pa. Plot (f) shows the
variation of ω with k when G1 = 106 Pa and G2 = 104 Pa. In all the plots, h20 = 1 μm, γ 21 = 0.00385 N/m, γ 2 = 0.03 N/m,
A = 10−19 J, and (d − h20) = 7 nm.

Figures 9(c) and 9(d) show that length scales of instability can be readily tailored by chang-
ing the ratio of shear moduli and film thicknesses. For example, when the bilayers have equal
elastic modulus (Gr = 1) the instability evolves with the length scale similar to the single films
(kc = 2.12).34 In comparison, when the upper layer is relatively thick and less elastic (curves 1
and 2 in Figure 9(c)) the length scale of instability is larger than the single layer length scale.
However, a thinner and softer upper layer can evolve with a much smaller length scale as shown
by the curves 1 and 2 in the Figure 9(c). Whereas when upper layer is more elastic than the lower
layer, the length scale of instability is always larger than the single layer length scale (curves 1-4
in Figures 9(d)). Figure 9(e) shows that the critical force required to initiate instability in a bilayer
(curves 2-5) is much smaller than for a single layer (broken line 1). The figure depicts that as the
thickness of the film with the smaller shear modulus increases, φc progressively reduces because
of the decreased elastic stiffness of the bilayer. The bimodal bifurcation plots shown in Figure 9(a)
also correspond to finite wavenumber instabilities when the films evolve by picking up the dominant
mode. The ω vs. k plots in Figure 9(f) clearly shows the bimodal nature of the contact instability,
in which both the larger (curve 2) and smaller (curve 3) wavenumber maxima can be the dominant
modes depending on the ratios of thicknesses and the shear moduli of the films.

Figure 10 shows the variations in ωm and λm with the ratio of thicknesses and the shear moduli.
Plot (a) shows that the ωm rapidly reduces if the thickness of the film with larger elastic modulus
is increased (curves 1, 4). Also, when the film is thin and less complaint, ωm progressively decays
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(curves 3, 5). Plot (b) shows that by varying the thicknesses and shear moduli, a wide range of length
scales can be achieved, including much larger to smaller length scales compared to the single films
of similar configurations (broken line 2).

2. Maxwell fluid

In contrast to zero-frequency linear viscoelastic solid, the Maxwell fluids show long-wave
contact instabilities as shown in the Figure 11. The curves 1-4 in the Figures 11(a) and 11(b) and
the curves 1-3 in Figure 11(c) depict that with progressive increase in the relaxation time of any of
the layers of a viscous-viscoelastic or a viscoelastic bilayer, ωm rapidly increases. The sensitivity of
λm with the relaxation times is also shown through the curves 1-3 in plot (d).
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V. CONCLUSIONS

We present a unified theory for thin viscoelastic bilayers undergoing wetting, electric field
induced and contact induced instabilities. Under a single framework, the influences of rheological
properties on the instabilities of two different types of linear viscoelastic materials, zero-frequency
viscoelastic solid (characterized by its frequency independent elastic modulus and viscosity) and
Maxwell fluid (characterized by its elastic relaxation time and viscosity) are discussed. The major
conclusions are:

(i) For the dewetting instability induced by the van der Waals forces, the bilayers are classified into
three different cases depending on the individual dewetting and stability behavior of the two
films. Only ultrathin (<100 nm) bilayers can undergo a wetting instability and this instability
is always long-wave for both Kelvin-Voigt and Maxwell materials owing to the overwhelming
influence of interfacial tension. By changing the elasticity and the relaxation time of the films,
the instabilities of one of the films can be suppressed or enhanced. For example, both the films
can be unstable in the case 1 type bilayer. However, changing the shear modulus or relaxation
time of the lower layer (upper layer) the instability can be shifted entirely to the upper layer
(lower layer). It is observed that the switchover of the instabilities from one interface to the
other leads to the significant change in the instability length scales. In the case 2 type bilayers,
where the upper film is unstable on the stable lower film, the dominant mode of instability can
still be switched from the upper to the lower interface or vice versa when the shear moduli or
the relaxation times of the films are changed. In the case 3 type bilayers, where the lower film
is unstable under a stable upper layer, show instability characteristics parallel to a single film
as the rheological properties can only alter the time scale but not the length scale of instability.

(ii) Similar to the van der Waals force induced instabilities, the viscoelastic films under the influence
of electric field often show bimodality when the films have significantly dissimilar dielectric
permittivities and interfacial tensions across the interfaces. However, a single wavelength mode
at both the interfaces can be achieved when the dielectric contrast of the two films is not too
large. The electric field induced instabilities for zero-frequency viscoelastic material has been
found to be finite wavenumber instabilities that initiate beyond a critical applied field. The
time and length scales of such instabilities can be altered by changing the elasticity of any
of the layers and patterns with a wide range of length scales can be obtained as compared to
similar single films. In contrast, the bilayers with Maxwell fluids are unconditionally unstable
to any applied field owing to a lack of permanent elasticity. The dominant mode can be shifted
from one interface to the other by changing the relaxation times of the films. Importantly, both
the Kelvin-Voigt and Maxwell bilayers show a transition from the short- to long-waves when
the film thickness is changed from a few hundred nm to a few micron because of decreased
influence of the stabilizing surface tension force.

(iii) Two different types of contact instabilities for bilayers are discussed. Firstly, for the critical
mode, the length scales for the instabilities are identified from the neutral stability conditions
and it is shown that the interfaces can deform in two different wavelengths when the lower layer
is very thin and elastically stiff. In addition, unlike the single film scenario where the length
scale is independent of the physical properties, the length scale for the bilayers is found to vary
with the ratio of shear moduli and the thicknesses of the films. Further, presence of a complaint
layer reduces the elastic stiffness of a bilayer, which helps it to undergo contact instability at a
smaller applied contact force. Secondly, the dominant mode of contact instabilities in a bilayer
is characterized when the destabilizing attractive interactions are initially much stronger than
the stabilizing elastic and surface tension forces. The growth rate can show both mono-modal
and bimodal characteristics - the latter engenders a sudden shift in the wavelength for small
changes in the parameters. The contact instabilities for Maxwell fluid bilayers are always found
to have long-wave characteristics and show that variations in the relaxation times of the layers
can greatly alter the length and the time scale of instabilities.

(iv) For all the spinodal instabilities, the length and time scales change significantly with the ratio
of shear moduli or the elastic relaxation time of the films. This is in contrast to the single film
systems where the length scale is independent of the rheological properties of the films. Thus,
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viscoelastic bilayers provide far more flexibility in tuning the wavelength as compared to the
single film systems. The Kelvin-Voigt viscoelastic bilayer always shows a finite wavenumber
bifurcation at a critical destabilizing force. However, replacing any of the layers with a viscous
layer removes the elastic-stiffness and thus it becomes unstable to vanishingly small field
strengths. Purely Maxwell bilayers are also unstable to vanishingly small fields with critical
wavenumber approaching zero.

In summary, the general theory and the linear stability analysis presented here addresses many
interesting scenarios of instabilities in thin viscoelastic bilayers made unstable by the van der Waals
forces and electric fields that are of interest in a host of applications such as self-organized patterning,
multilayer coatings, micro- and nano-fluidics. The detailed morphology of the nonlinear patterns
beyond the onset of instability has to be addressed by nonlinear simulations, which need to be
investigated in future.
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APPENDIX: DISPERSION RELATIONS

The dispersion relation for the zero-frequency viscoelastic solid:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1
k

1
k 0 0 0 0

1 1 0 0 0 0 0 0

P1 −P2
P1 P5

k − P2 P6
k −P1 P2 − P1 P5

k
P2 P6

k

P1 P2 h1 P1 h1 P2 −P1 −P2 −h1 P1 −h1 P2

k P1 P14 k P2 P14 k P1 P5 P14 k P2 P6 P14 −k P1 P15 −k P2 P15 −P1 P5 P15 −P2 P6 P15

0 0 0 0 k P3 P15 k P4 P15 P3 P7 P15 P4 P8 P15

P1 P9 P2 P10 P1 P9h1 P2 P10h2 P16 P17 P18 P19

P1φ2 P2φ2 h1 P1φ2 h1 P2φ2 P3 P12 P4 P11 h2 P3 P12 h2 P4 P11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(A1)

where P1 = ekh1 ; P2 = e−kh1 ; P3 = ekh2 ; P4 = e−kh2 ; P5 = (1 + kh1); P6 = (−1 + kh1); P7

= (1 + kh2); P8 = (−1 + kh2); P9 = −2kG1 − 2kωμ1 + φ1; P10 = 2kG1 + 2kωμ1 + φ1; P11

= 2kG2 + 2kωμ2 + φ4; P12 = −2kG2 − 2kωμ2 + φ4; −P13 = 2kG22kωμ2 − φ4; P14 = G1 + ωμ1;
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+ [∂π1/∂h1] − [∂π2/∂h1]); φ2 = (∂π2/∂h1); φ4 = −γ 2k2 + [∂π2/∂h2].
The dispersion relation for the Maxwell fluid:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Here P1 = ekh1 ; P2 = e−kh1 ; P3 = ekh2 ; P4 = e−kh2 ; P5 = (1 + kh1); P6 = (−1 + kh1); P7 = (1
+ kh2); P8 = (−1 + kh2); P9 = 1 + ωλ1; P10 = 1 + ωλ2; P11 = −2kμ1/P9 + φ1/ω; P12

= 2kμ1/P9 + φ1/ω; P13 = −2kωμ1 + P9φ1; P14 = 2kωμ1 + P9φ1; P15 = 2kP1μ2/P10 + P3φ2/ω; P16

= −2kP2μ2/P10 + P4φ2/ω; P17 = 2kh1P1μ2/P10 + h2P3φ2/ω; P18 = −2kh1P2μ2/P10 + h2P4φ2/ω;
P19 = −2kμ2/P10 + φ4/ω; P20 = 2kμ2/P10 + φ4/ω; P21 = −2kωμ2 + P10φ4; P22 = 2kωμ2 + P10φ4;
φ1 = (−γ 21k2 + [∂π1/∂h1] − [∂π2/∂h1]); φ2 = (∂π2/∂h1);φ4 = −γ 2k2 + [∂π2/∂h2].
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