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Abstract. In this paper we prove that, for 3 < k < n - 3 , none of the oriented

Grassmann manifolds, Gn k—except for G6 3 , and a few as yet undecided

cases—admits a weakly almost complex structure. The result for k = 1,2,

n — 1, «-2 are well known and classical. The proofs make use of basic concepts

in iT-theory, the property that Gn k is (n — fc)-universal, known facts about

K(RP ), and characteristic classes.

1. Introduction

For 1 < k < n , let Gn k denote the oriented Grassmann manifold of ori-

ented /c-dimensional vector subspaces of E" .   Gn k is a smooth manifold of

dimension k(n - k).  Note that Gn ¡ = Sn~{ , the (n - l)-sphere, and that

Gn k = Gn n_k under the diffeomorphism that sends an oriented A:-plane V

to V together with that orientation on V which induces the standard ori-

entation on V 0 v1 = R" .

Recall that a smooth manifold M is said to be (weakly) almost complex if its

tangent bundle xM is (stably) isomorphic to a complex vector bundle over M.

For example, Gn , = Sn~ is weakly almost complex for all n , but is almost

complex only when n - 3 or 7. (See [14, p. 217] and [5, 15.1].) It is a classical

result that Gn 2 = SO(n)/(SO(2) x SO(n - 2)) is a Hermitian symmetric space,

and is therefore almost complex for all n .

In this paper, we investigate which of the remaining Gn k's are weakly almost

complex. Since Gn k = Gn n_k, we assume, without loss of generality, that

2k < n . Our main result is

1.1.    Theorem. Let 3 < k < n/2. Then

(i) Gn k is not weakly almost complex if n is odd or if (n - k) > 16.

(ii) G6 j is weakly almost complex.  G6 3 x G6 3 is almost complex.
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Attempts by the author to settle the remaining cases for which n is even and

3 < k < (n - k) < 15, left unanswered in the above theorem, have failed.

Let yn k denote the canonical A;-plane bundle over Gn k, and let ßn k be

its orthogonal complement, whose fiber over a V e Gn k is the vector space

V± c Rn . One has the bundle equivalence

where e denotes a trivial line bundle.

It is well known that the tangent bundle xGn k of Gn k has the following

description (see [9]):

(1-3) &fitk*Kk**ßn,k-

Using (1.3) or [6], we obtain

(!-4) ^nJl®(ynk^ynk)^nynk.

For a topological space X, let r : K(X) —* KO(X) denote the homo-

morphism (of Abelian groups) gotten by restriction of scalars to R, and let

c : KO(X) —► K(X) denote the complexification, c[£] = [£, <8>R C], which is a

ring homomorphism.

One has the following identities:

(1.5) roc(x) = 2x       VxeKO(X)

(1.6) Cor(y)=y + y'       VyeK(X),

where y   stands for complex conjugation of y .

Note that a smooth manifold M is weakly almost complex if and only if

[xM] + ô is in the image of r, where ô — 0 or [e] according to whether

dim M is even or odd.

2.   .rv-THEORY OF QUATERNIONIC PROJECTIVE SPACES

Let HP" denote the quaternionic projective «-space. Let t]n denote the

canonical right H-vector bundle over MP" , and let £n denote the complex vec-

tor bundle obtained from nn by restriction of scalars to C . Let v = -c2(£,n) e

H4(UP" ; Z) c H4(BPn ; Q). Then v generates the ring H*(MPn ; Q). The

Chern character ch(^) of Çn is

ch(Çn) = exp(y{) + exp(y2),

where (1 + y{)(l + y2) - 1 - v = c(Çn), the total Chern class of Çn . Hence

yx+y2 = 0, and y{y2 = -v . Therefore y, = -y2, and y, = +v . Thus

(2.1) ch(£J = exp(v^) + expt-vM .
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2.2. Proposition. The Chern character ch : K(W>") -» H*(BPn ; Q) is a mono-

morphism. The image of the Chern character is freely generated over the integers

by {1, w , w , ... , w }, where

,./ r^    ■>           2v2 2v"
w - 2 cosh(vv) - 2 = v + —¡- H-h

4! (2«!)'

The proof can be found in [11]. (See also [2, 3.1].)

Note that w"+1 = 0.

Let n*n = HomH(f/n , H) be the dual of nn, which is a left H-vector bundle of

rank 1. Consider the bundle co = r\n ®e n*n over UP". Then co is a real vector

bundle whose rank is 4. The map (q) i-> q® j" , where f : qE. = (q) —► HI is

the H-linear map defined by f (q) = 1, is a well-defined, continuous, nowhere

vanishing section of the bundle co. Hence co splits as co « e © £, where Ç is

a 3-plane bundle.  £ is necessarily orientable, since HP" is simply connected.

2.3.    Lemma. Let n>4. Then [£ <8>E £] + [e] e KO(MPn) is not in the image

of r : K(MP") - KO(MPn).

Proof. Note that the rank of £ ®K £ is 9. Also, [co ®R w] = [£ ®R £] + [e] + 2[£],

and 2[£] e lm(r) by (1.5). Thus it suffices to show that [co]2 g lm(r).

Let, if possible, [co]2 = r(y), for some y e K(UP"). Then, by (1.6),

c([co]2) = c o r(y) = y + y'.

That is,

(2.4) c([co]2)=y + y'.

Now c[co] = c[nn ®H rfn] = [£n ®c £*], where £,*„ is the complex bundle

obtained from n* by restricting the scalars to C . The last equality follows from

the fact that there exists a functorial isomorphism between ( V <g>H W) ®R C and

V ®c W, where F is a right H-vector space, W is a left H-vector space and

they are regarded as C-vector spaces by restriction of scalars. (See [1, 3.7-3.9].)

Taking Chern characters on both sides of (2.4), we get

ch()0 + chO') = ch(cW) = (ch(cM))2 = ch([£J)2ch([0)2.

Since HJ(UP" ; Q) = 0 unless j = 0 mod 4, the total Chern class c(y) equals

c(y'), and c(£n) = c(£*). Therefore we get

ch0>) = l/2(ch([£J))4 = 1/2(2 cosh(v^))4
4

= l/2iü  + terms involving lower powers of w .

This is a contradiction because, by Proposition 2.2, ch(y) must be an integral

linear combination of powers of w and w ^ 0 for n > 4. This proves the

lemma.
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3. Proof of Theorem 1.1

Let 3 < k < n/2.

The manifold G6 3 is parallelizable [13]. Therefore, it is weakly almost

complex. (Note that dimG6 3 is odd.) It also follows that G6 3 x G6 3 is

almost complex.

Let n be odd. As 3 < k < n/2, we have n > 1. Let ^'-Gnk^Gnk

be the double covering map onto the Grassmann manifold Gn k of fc-planes

in E" . It can be seen from [3, Theorem 1.1] that the Stiefel-Whitney class

w3(Gn k) = n*(w3(Gn k)) = w3(yn k), for n odd and k > 3 . Using the Gysin

sequence of the double covering map n , and the knowledge of H*(Gn k ; Z2),

it can be shown that wi(yn k) ^ 0 for n > 7. Since the odd-dimensional

Stiefel-Whitney classes of any weakly almost complex manifold must vanish

[12], it follows that Gn k is not weakly almost complex.

Now let n be even, k > 3, and n - k > 16 = dim HP . Since Gn k is

(n - /c)-universal for orientable fc-plane bundles, there exists a map / : HP4 -»

Gn k such that f*(yn k) = £ © me, where m-k-3, and £ is the orientable

3-plane bundle of §2. One has

f*(yn,k ®k yn,k) « (C ®R 0 e 2m£ © m2e.

Using (1.4), (1.5), Lemma 2.3, and the fact that n is even, we see that Gn k is

not weakly almost complex. This completes the proof of Theorem 1.1.

We now turn to the Grassmann manifolds. Denote the unique (up to bundle

equivalence) nontrivial line bundle over Gn k by y/.  Note that the tangent

bundle of the real projective space RP"_1 s Gn { is stably isomorphic to the

bundle n y/. Hence Gn , is weakly almost complex for n even. For n odd

Gn ! is not orientable and hence it is not weakly almost complex.

3.1.    Lemma. Let 2<k< n/2.

(i) (Borel-Hirzebruch [4, p. 526]) For n > 5, Gn 2 is not almost complex.

(ii) Gn k is not weakly almost complex if n is odd, orifk>3, and n-k >

16.'
(iii) t74 2 and G6 3 are weakly almost complex. G4 2 is not almost complex.

Proof of (ii). For n odd, Gn k is not orientable, and is therefore not weakly

almost complex. The remaining cases now follow from Theorem 1.1, the natu-

rality of the homomorphism r, and the observation that xGn k « n*(xGn k),

where n : Gn k —> Gn k is the double covering map.

Proof of (iii). Denote by y and ß the canonical k- and (n - fc)-plane bundles

over Gn k . According to Lam [9], a stable normal bundle to Gn k is I (y) ©

k2(ß). When n = 4 and k = 2, l2(y) « A2(ß) « y/ . Hence the stable normal

bundle in this case is in the image of r. It follows that C?4 2 is weakly almost

complex.
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On G6 3, A2(y) « y ®R y/, and A2(ß) « ß ®R ̂  as can be shown using [7,

Proposition 10.3, Chapter 12] the Hodge duality X"~ (v) « v for orientable

«-plane bundles, and 8 ®R 8 « e for any line bundle 8 . Thus, on G6 3,

A2 (7) © k2(ß) « (y ®R ^) © (ß ®R ^) « (y © /?) ®R ^ « 6e ®R ^ « 6y/,

which is in the image of r. It follows that G6 3 is weakly almost complex.

To see that G4 2 is not almost complex, notice, first, that H'(G4 2 ; Q) = Q

for / = 0, 4, and is zero for i ^ 0, 4. Since 2^ is a stable normal bundle for

G4 2, we have the following formula for the rational Pontrjagin class PX(G4 2) e

H4'(G42;Q):

(3.2) PX(G42) = -Pl(2y/)=c2(2y/®R£) = (cx(y/ ®RC))2 = 0

because // ((74 2 ; Q) = 0. On the other hand, if t = tG4 2 were a complex

vector bundle, then [12],

-P](G42) = 2c2(x)-(Cl(x))2 = 2c2(x).

Since the top Chern class of x is its Euler class, we must have -\(p{(G4 2),

[G4,2]) = (c2(x), [G4>2]) = X(G4>2) = 2, the Euler characteristic of G41.

Hence PX(G4 2) ■£ 0, contradicting (3.2). This shows that G4 2 is not almost

complex.

As a corollary to the above theorem and Theorem 1.1., we obtain the follow-

ing:

3.3.    Theorem.

(i) A product of any finite number of oriented Grassmann manifolds, Gn ks,

(resp. the Grassmann manifolds Gm   's) is not weakly almost complex

if, for one of the factors,  n > 1 is odd,  3 < k < n - 3; or k > 3,
(n - k) > 16 ; (resp. m is odd; or p > 3, (m - p) > 16).

(ii)  The oriented flag manifold

G(nx ,n2,...,ns) = SO(n)/(SO(nx) x SO(n2) x ■ ■ ■ x SO(ns)),

where n = nx-\-\-ns is not weakly almost complex if for some i ^ j,

any one of the following holds: (a) nt+H¡ is odd, n¡, n}> 3; (b) «, > 3,

nL> 16.

(iii) (Korbas) Let s >3. The flag manifold

G(nx ,n2,...,ns) = 0(n)/(0(n,) x • ■ • x 0(ns))

is weakly almost complex if and only if n ¡ = • • ■ = ns — 1.    M =

G(l, ... , I) is almost complex if dim M = ( 2 ) is even.

Proof, (i), (ii), and parts of (iii) follow from the observation that in each of the

cases the manifold in question can be regarded as the total space of a differ-

entiable bundle with fiber, an oriented Grassmann manifold, or a Grassmann

manifold which is not weakly almost complex by Theorem 1.1 or 3.1 (cf. [13]).
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Korbas proves (iii) by a Stiefel-Whitney class argument.  The positive results

follow from the fact that C7(l, ... , 1) is parallelizable. See [15] for details.

3.4.   Remarks.

(i) M. Markl [10] has observed using his ' /-genus' that (G7 3)" is not al-

most complex. He shows, also, that none of the quaternionic flag mani-

folds other than HG(1, ... , 1) admits a weakly almost complex struc-

ture, using the corresponding negative results of Hsiang and Szczarba

[6] for quaternionic Grassmannians.

(ii) J. Korbas [8] has shown that G(nx, ... , ns), s > 2, nl = • • • = «i_1 =

0 mod 4, «2 = 1 mod 2, is not almost complex. For «i > 3, this is

weaker than the result of Theorem 3.3(a), whereas our theorem does

not cover completely the case ns — 1.
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