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Entropy increase during physical processes for black holes in Lanczos-Lovelock gravity
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We study quasi-stationary physical process for black holes within the context of Lanczos-Lovelock
gravity. We show that the Wald entropy of the stationary black holes in Lanczos-Lovelock gravity
monotonically increases for quasi-stationary physical processes in which the horizon is perturbed by
the accretion of positive energy matter and the black hole ultimately settles down to a stationary
state. This result reinforces the physical interpretation of Wald entropy for Lanczos-Lovelock models
and takes a step towards proving the analogue of the black hole area increase-theorem in a wider
class of gravitational theories.

Pioneering work by Bekenstein [1], Hawking [2], Davies
[3] and Unruh [4] in the seventies showed that there is a
consistent manner in which one can associate thermo-
dynamical variables with horizons in general relativity
(GR). This association gave substance to the formal con-
nection between the laws of black hole dynamics and
thermodynamics.

A natural question is whether this analogy is a pecu-
liar property of GR or a robust feature of any generally
covariant theory of gravity. Pursuing this line of thought
Wald and collaborators [5, 6] established the equilibrium
state version of first law for black holes for any arbitrary
diffeomorphism invariant theory of gravity. Comparing
the form of a differential identity with the first law of
thermodynamics, the entropy of the black hole was ex-
pressed as an integral over a space-like cross section of
the horizon of a local geometric quantity and is identified
with the Noether charge of Killing isometry that gener-
ates the horizon.

The standard results in the case of general relativity
concerning the entropy of horizons rely, in one way or
another, on the fact that the entropy is proportional to
the horizon area. This proportionality does not hold for
the Wald entropy in more general theories and, therefore,
it is quite intriguing that many of the results connecting
gravitational dynamics to horizon thermodynamics still
allows a natural generalization to a more general class of
models.

Recent work suggests that this connection may indi-
cate a far deeper truth regarding the nature of gravity
viz. that it could be an emergent phenomena like, for ex-
ample, fluid mechanics [7, 8]. Studies show that this cor-
respondence, between gravitational dynamics and hori-
zon thermodynamics, transcends general relativity and
holds true for a much wider class of theories called the
Lanczos-Lovelock models of gravity [9]. These are the
only natural generalization of Einstein’s theory to higher
dimension if we insist that the equations of motion should
not be of degree higher than two. The Lanczos-Lovelock

gravity is also free from perturbative ghosts [10] and ad-
mits consistent initial value formulation. As a result,
Lanczos-Lovelock theories can be thought of as a natu-
ral extension of general relativity in higher dimensions.
On the other hand, while Lanczos-Lovelock models show
remarkable structural similarity with Einstein’s theory,
the form of the horizon entropy in the Lanczos-Lovelock
models is quite complicated and in general entropy is not
proportional to any simple geometric quantity.

Implicit in the investigations which uses the Wald
entropy in these theories is the assumption that the
entropy associated with a horizon behaves like ordinary
thermodynamic entropy. But, the equilibrium state ver-
sion of first law for black holes, established by Wald and
collaborators [5, 6] requires the existence of a stationary
black hole with regular bifurcation surface. As a result,
from the equilibrium state version of first law, it is not
immediately clear whether the Wald entropy always
increases under physical processes, except for black holes
in GR, in which the “area theorem” asserts that area of
a black hole can not decrease in any process provided
null energy condition holds for the matter fields [11].
The area theorem, in turn, follows from Raychaudhuri
equation and crucially depends on the contracted Ein-
stein’s equation Rabk

akb = 8π Tabk
akb where ka is the

tangent to the horizon. Since the entropy of black holes
is no longer proportional to area in Lanczos-Lovelock
models of gravity, there is no obvious assurance that the
entropy still obeys an increase theorem. As a result,
the question of validity of the second law of black hole
thermodynamics for arbitrary theory of gravity remains
an unresolved issue. Except for the case of f(R)-gravity
[12], there is no proof of the analog of Hawking’s area
theorem beyond GR. In the quasi-stationary case, an
argument for second law valid for all diffeomorphism
invariant gravity theories was given in [12]; but it is
based on the assumption that the stationary comparison
version of the first law implies the physical process
version for quasi-stationary processes.
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For the thermodynamic interpretation to be valid, we
would expect horizon entropy to increase when a black
hole in the Lanczos-Lovelock model participates in some
physical process, like, e.g., accretion of matter. Recently,
a direct proof of the physical process version of first law is
proposed for Einstein-Gauss-Bonnet (EGB) gravity [13]
which establishes that the net change of black hole en-
tropy during a physical process is positive as long as mat-
ter satisfies null energy condition.
In this paper, we investigate this question for general
Lanczos-Lovelock models and show that during a phys-
ical process, the Wald entropy of stationary black holes
in general Lanczos-Lovelock gravity monotonically in-
creases provided the matter stress energy tensor obeys
null energy condition. As a result, not only the net
change of the entropy is positive, but the entropy is in-
creasing at every cross section of the horizon. Our result,
therefore provides a crucial step towards (possibly) prov-
ing an analogue of the area theorem in Lanczos-Lovelock
models.
Let us start with a brief review of the properties of sta-
tionary, non-extremal, Killing horizons. (We adopt the
metric signature (−,+,+,+, ...) and our sign conventions
are same as those of [14].) In a D-dimensional spacetime,
the event horizon is a null hyper-surface H parametrized
by an affine parameter λ. The vector field ka = (∂λ)

a is
tangent to the horizon and obeys geodesic equation. All
λ = constant slices are space-like and foliate the horizon.
Any point p on such slices have coordinates {λ, xA} where
xA, (A = 2, · · · , D) are the coordinates of a point on
λ = 0 slice connected with p by a horizon generator. We
can construct a basis with the vector fields, {ka, la, eaA}
where la is a second null vector such that laka = −1.
The induced metric on any slice is γab = gab + 2k(alb)
and kaγab = 0 = laγab. The change of the induced met-
ric from one slice to another can be obtained from the
metric evolution equation [14],

Lkγab = 2

(

σab +
θ

(D − 2)
γab

)

, (1)

where σab is the shear and θ is the expansion of the hori-
zon. If the event horizon is also a Killing horizon [15],
i.e. the horizon generators are the orbits of a Killing field
ξa = (∂/∂v)a, which is null on the horizon, then the sur-
face gravity κ of the horizon is defined as ξa∇aξ

b = κ ξb.
For stationary spacetimes with a Killing horizon, both
the expansion and shear vanish and using Raychaudhuri
equation and the evolution equation for shear, we obtain
[14, 17],

Rabk
akb = ξaγb

i γ
c
jγ

d
kRabcd = kakcγb

mγd
nRabcd = 0. (2)

Note that, in order to derive these relationships, we have
only used the fact that the horizon is stationary Killing

horizon with zero expansion and shear without any fur-
ther symmetry.
We would like to consider the situation when a sta-

tionary black hole is perturbed by a weak matter stress
energy tensor and ultimately settle down to a stationary
state in the asymptotic future. Since the black hole is sta-
tionary in the asymptotic future, the vector field ξa is an
exact Killing vector at late times. The accretion process
is assumed to be slow such that all changes of the dynam-
ical fields are first order in some suitable bookkeeping
parameter ǫ and that we can neglect all viscous effects.
More specifically, we assume that, θ ∼ σab ∼ O(ǫ).
In GR, a concrete example of such a physical process

is a black hole of mass M slowly accreting matter for
a finite time and ultimately settle down to a stationary
state. Then a linearized version of the Raychaudhuri
equation gives,

dθ

dλ
≈ −Rabk

akb = −8 π Tabk
akb, (3)

where, we have used Einstein’s equation to get the second
equality. If the matter stress tensor satisfies null energy
condition, i. e. Tabk

akb ≥ 0, the rate of change of the
expansion is negative on any slice prior to the asymp-
totic future. Since the expansion vanishes in the future,
the generators must have positive expansion during the
accretion process. As a result, the area is monotonically
increasing in the physical process. Note that, the result
is crucially dependent on the field equation. As a result,
the monotonicity of the horizon area is only valid in case
of GR. Our aim is to prove a same statement for the Wald
entropy during a dynamical change of the black holes in
Lanczos-Lovelock gravity.
We shall now turn our attention to the features of

Lanczos-Lovelock gravity. As discussed before, a natu-
ral generalization of the Einstein-Hilbert Lagrangian is
provided by the Lanczos-Lovelock Lagrangian, which is
the sum of dimensionally extended Euler densities,

LD =

[D−1)/2]
∑

m=0

αmLD
m, (4)

where the αm are arbitrary constants and LD
m is the m-th

order Lanczos-Lovelock term given by,

LD
m =

1

16π

[D−1)/2]
∑

m=0

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1

a1b1
· · ·Rcmdm

ambm
,

(5)
where Rcd

ab is the D dimensional curvature tensor and
the generalized alternating tensor δ...... is totally anti-
symmetric in both set of indices. The Einstein-Hilbert
Lagrangian is a special case of Eq. (5) when m = 1. The
field equation of Lanczos-Lovelock theory is, Gab/(16π)+
αmE(m)ab = (1/2)Tab where,

Ei
(m)j = − 1

16π

1

2m+1
δia1b1...ambm
jc1d1...cmdm

Rc1d1

a1b1
· · ·Rcmdm

ambm
,(6)



3

and m ≥ 2. For convenience, we have written the GR
part (i.e. for m = 1) separately so that the GR limit can
be easily verified by setting all αm’s to zero.
Spherically symmetric black hole solutions in Lanczos-

Lovelock gravity was derived in [18, 19] and the Wald
entropy associated with a stationary Killing horizon is
[20–22],

S =
1

4

∫

ρ
√
γ dA, (7)

where the entropy density

ρ =



1 +

[D−1)/2]
∑

m=2

16πmαm
(D−2)L(m−1)



 . (8)

The integration is over (D − 2)-dimensional space-like
cross-section of the horizon and (D−2)L(m−1) is the in-
trinsic (m− 1)-th Lanczos-Lovelock scalar of the horizon
cross-section. We would like to prove that this entropy
always increases when a black hole is perturbed by a weak
matter stress energy tensor of O(ǫ) provided the matter
obeys null energy condition.
The change in entropy is [12],

∆S =
1

4

∫

H

(

dρ

dλ
+ θ ρ

)

dλ
√
γ dA. (9)

We define a quantity Θ as,

Θ =

(

dρ

dλ
+ θ ρ

)

. (10)

In case of GR, Θ is equal to the expansion parameter
of the null generators. But, in case of a general gravity
theory, Θ is the rate of change of the entropy associated
with a infinitesimal portion of horizon (see [12] for similar
construction in f(R) gravity). We would like to prove
that given null energy condition holds, Θ is positive on
any slice in a physical process. To proceed further, we
note that the change of the (D − 2)-dimensional scalar
(D−2)L(m−1) can be thought of due to the change in the
intrinsic metric. Then, we can calculate this change by
using the standard result of variation of Lanczos-Lovelock
scalar. The variation of (D−2)L(m−1) simply gives the
equations of motion of (m−1)-th order Lanczos-Lovelock
term in (D − 2) dimensions. Therefore, for a general
Lanczos-Lovelock gravity, we can write

dρ

dλ
=

[D−1)/2]
∑

m=2

16πmαm ka∇a(
(D−2)L(m−1))

= −
[D−1)/2]
∑

m=2

16πmαm
(D−2)Rab

(m−1) Lkγab, (11)

where we have ignored a surface term which does not con-
tribute because the sections of the horizon are compact

surfaces without boundaries. (D−2)Rab is the generaliza-
tion of Ricci tensor for (m− 1)-Lanczos-Lovelock gravity
and is given by [23],

(D−2)Ra
b (m−1) =

1

16π

(m− 1)

2m
δa1b1...ambm
bc1d1...cmdm

(D−2)Rad1

a1b1
· · ·

· · · (D−2)Rcmdm

ambm
. (12)

Then using Eq. (1), we obtain,

Θ = θ + 16π

[D−1)/2]
∑

m=2

αm

[

−2

( (D−2)R(m−1)θ

(D − 2)

+ (D−2)Rab
(m−1)σab

)

+ θ (D−2)L(m−1)

]

. (13)

We would like to study the rate of change of Θ along the
congruence using Raychaudhuri equation and the evolu-
tion equation of shear [14]. We are only interested in
quantities first order in perturbation over a background
stationary spacetime. Therefore, when we encounter a
product of two quantities X and Y , to extract the part
linear in perturbation, we will always express such a
product as,

XY ≈ X(B) Y (P ) +X(P ) Y (B), (14)

where X(B) is the value of the quantity X evaluated
on the stationary background and X(P ) is the per-
turbed value of X linear in perturbation. Note that, on
the stationary background, Raychaudhuri equation de-

mands R
(B)
ab kakb = 0 and since T

(B)
ab kakb = 0, we have

E
(B)
(m)abk

akb = 0. Also, to simplify the calculation, we use

diffeomorphism freedom to make the null geodesic gen-
erators of the event horizon of the perturbed black hole
coincide with the null geodesic generators of the back-
ground stationary black hole [24].
Using the perturbation scheme mentioned above and

the evolution equation of θ and σab to linear order as

dθ/dλ ≈ −R
(P )
ab kakb and dσab/dλ ≈ C

(P )
acdbk

ckd and fur-
ther using the relationships in Eq.(2) for the background,
the evolution equation of Θ to linear order in perturba-
tion can be written as

dΘ

dλ
= −8π Tabk

akb +Dabk
akb, (15)

in which we have defined

Dabk
akb =

[D−1)/2]
∑

m=2

16παm

[

E
(P )
(m)abk

akb

+ 2m (D−2)E
(B)ab
(m−1) R

(P )
acbdk

ckd
]

. (16)

Here, we have used expression of the perturbed Weyl ten-
sor in terms of curvature and Ricci tensors and the re-
lation (D−2)E(m)ab = (D−2)R(m)ab − (1/2)γab

(D−2)L(m).

We will next prove that the first order part of Dabk
akb

vanishes identically. To show this let us start with the
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first term in Eq.(16) and write its first order perturbed
part as:

E
(P )
(m)abk

akb = − m

16π

1

2m+1
δ
ia1b1...am−1bm−1ab
jc1d1...cm−1dm−1cd

R
(B)c1d1

a1b1
· · ·R(P )cd

ab kjki. (17)

Then, we first expand the background curvature tensors
in the basis {ka, Na, γa

b } on the horizon and use Eq.(2).
We also use the fact that due to the antisymmetry of the
generalized alternating tensor δ...... , any component of a
curvature tensor along the direction of the generator of

the horizon in the expression of E
(P )
(m)abk

akb will not con-

tribute. These constrains ensure that the only surviving
contribution will be from the transverse components and
we will finally obtain,

E
(P )
(m)abk

akb = − m

16π

1

2m+1
δiA1B1...ab
jC1D1...cd

(D−2)R
(B)C1D1

A1B1
· · ·R(P )cd

ab kjki, (18)

where we have the fact that for stationary spacetimes [25]

γm
a γn

b γ
c
pγ

d
qR

(B)pq
mn

H≡ (D−2)R
(B)cd
ab , (19)

which holds for any spacelike cross section of the station-
ary horizon. Next, we use the technique in [23] to write
the alternating tensor in a factorized form as,

δ
iA1B1...Am−1Bm−1ab
jC1D1...Cm−1Dm−1cd

R
(P )cd
ab kjki

= −4 δicδ
a
j δ

A1B1...Am−1Bm−1b
C1D1...Cm−1Dm−1d

R
(P )cd
ab kjki. (20)

Using this, we finally get,

E
(P )
(m)abk

akb = −2m(D−2)E
(B)ab
(m−1) R

(P )
acbdk

ckd. (21)

Eq. (21) immediately shows that the first order part of
Dabk

akb vanishes identically and we finally arrive at,

dΘ

dλ
= −8π Tabk

akb +O(ǫ2). (22)

Eq.(22) shows that if the null energy condition holds, the
rate of change of Θ is always negative during a slow clas-
sical dynamical process (i.e. ignoring the terms which
are higher order in the perturbation) which perturbs the
black hole and leads to a new stationary state. Since,
the final state is assumed to be stationary, both θ and σ
and as a consequence, Θ vanishes in the asymptotic fu-
ture. Hence, we can use the same argument as with the
expansion parameter in case of GR to conclude that Θ
must be positive at every slice during the physical pro-
cess. As a result, we conclude that the horizon entropy
of black holes in Lanczos-Lovelock gravity is a mono-
tonically increasing function during any quasi-stationary
physical process, i.e.

dS

dλ
≥ 0. (23)

which is what we set out to prove.
In case of a dynamical scenario, it is possible to write
down several candidates for the black hole entropy be-
yond GR [26], such that all the expressions have same
stationary limit. We have actually chosen a particular ex-
pression and the validity of Eq.(23) favors such a choice.
In fact, in ref. [6], a local and geometrical prescription
for the entropy of dynamical black holes is proposed.
This proposal is based on a boost invariant construc-
tion and agrees with the Wald’s Noether charge formula
for stationary black holes and their perturbations. In-
terestingly, for Lanczos-Lovelock gravity, the entropy ex-
pression used in this work matches with the expression
obtained from the boost invariant construction. Conse-
quently, our result provides a strong justification in favor
of the prescription for dynamical entropy as proposed in
ref. [6]. This may also be important to decide the right
candidate for the entropy of non stationary black holes
for non Lanczos-Lovelock gravity models.

From quantum gravitational point of view, a natural
interpretation of the black hole entropy is that it counts
the micro-states of the black hole. For any reasonable
theory of gravity, which has stable black holes, the den-
sity of states must be of the form exp (SW ), where SW

is the corresponding Wald entropy. For example, in the
context of string theory, it has been shown at least for
extremal and near-extremal black holes, that the micro-
scopic computations exactly matches with the Wald for-
mula [27, 28]. Hence, it is quite desirable that the Wald
entropy satisfies an increase theorem.

Some obvious further investigations suggested by this
work are the following: First, one would like to relax
the quasi-stationarity physical process assumption and
calculate the full change of the Wald entropy along the
horizon to understand the validity of classical second law
for Lanczos-Lovelock models. The possible conclusions
depend crucially on the signs of the higher order terms in
Eq.(22). As in case of GR, if all the higher order terms
are negative, this would imply that Θ has to decrease
monotonically. Further, it cannot be negative on any
cross section of the horizon which otherwise will lead to
Θ → −∞ and hence the existence of a caustic on the
event horizon which is prohibited by the fact that the
event horizon is future complete [29]. Then, to avoid the
contradiction, Θ must be positive on any arbitrary slice
of the horizon which would lead to classical second law
for Lanczos-Lovelock gravity.

The second issue worth exploring is the following: A
crucial assumption in our derivation is that there exists
a quasi-stationary physical process in which the black
hole ultimately settle down to a final stationary state.
Although such an assumption is quite reasonable, one
should not overlook an extreme possibility that the black
holes in a general Lanczos-Lovelock gravity may not be
stable under a small perturbation. While the linear
stability around flat spacetime of the Einstein-Gauss-
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Bonnet gravity is demonstrated in [30], the positive en-
ergy theorem has not been extended to a general Love-
lock theory and even if such an extension is possible,
there may be other instabilities. This requires further
investigation.
Finally, we would like to note that the techniques used

in this work are specific to Lanczos-Lovelock gravity. As
a result, it would be worthwhile to find a general ap-
proach which can answer whether classical second law
holds in a physical process for any diffeomorphism invari-
ant gravity theory or applies to a special class of action
functionals.
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