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Abstract

Of the ,4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally
determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution
understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational
methods. Structural models were obtained and validated for ,2877 ORFs, covering ,70% of the genome. Functional
annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand
association. New algorithms for binding site detection and genome scale binding site comparison at the structural level,
recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and
sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an
opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular
metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as
the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated
with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.
iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a
genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported
annotation pipeline is fairly generic and can be applied to other genomes as well.
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Introduction

Tuberculosis continues to be a major burden, causing about 4500

deaths per day [1]. The problem is worsened due to the deadly

synergy of Mycobacterium tuberculosis (TB) with HIV and the

emergence of multi-drug resistant varieties. Clearly, there is an

urgent need for a better understanding of the bacillus. The

annotation of the genome sequence of MtbH37Rv identified 4047

genes, which comprises of 3988 protein coding genes [2,3]. From a

protein function standpoint, a practical way to convert vast quantities

of raw sequence data into meaningful information is through transfer

of annotation from known proteins to homologues in the target

genome [4]. Indeed, advances in sequence-based bioinformatics

approaches have become more reliable in transferring functional

annotation, integrating sequence and protein family classifications.

However, a finer appreciation of the molecular mechanisms within

the cell is possible only with the structural information. Where

available, protein structures provide much better functional insight

than their sequences alone, for two reasons: (a) they provide a much

higher resolution of information and (b) a much more sensitive

approach for detecting similarities among proteins.

Currently, structures for 312 TB proteins have been determined

through experimental methods [5], including those from commu-

nity-wide structural genomics efforts [6,7], amounting to a

coverage of only 0.8% of the proteome. On the other hand,

methods for structure prediction have improved tremendously in

applicability, speed and confidence, which can be used to bridge

the wide gap between sequence and structure [8,9]. Here we

describe an effort to annotate the structures of the TB proteome.

Annotation has been achieved through a pipeline that integrates a

number of different computational approaches. Obtaining the

models at a genome scale provides one of the first opportunities to

view the structural profile of the proteins in the organism and

understand the cellular functioning in terms of structural scaffolds

that facilitate the underlying molecular recognition events.

Results and Discussion

The structural annotation pipeline
To obtain a structural proteome of M. tuberculosis H37Rv, an

integrated structural annotation pipeline was developed. Each

model is annotated with metrics rating its quality, high and low

confidence regions in the model and a range of features suggestive

of its function. High-quality molecular models for 2511 proteins

were derived from Modbase [10] and an additional 54 were

derived through remote homology detection methods. Put

together with 312 crystal structures from PDB, structural models

for 2877 proteins are thus available. Functional annotation
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procedures as applied to the 2877 models involved detection of

conserved residues in the protein family, location of ligand or

DNA binding site(s), similarity with enzyme active sites, and finally

possible ligand associations. In all, 1728 ligand associations have

been found, providing functional clues.

Given the genome-wide nature of this study, two types of

coverage are considered. First, the coverage of the genome or

the number of different proteins modeled and second, the

coverage of each protein or the number of residues in the

individual polypeptides that could be modeled was analyzed.

2877 proteins, which is ,70% of the proteome, have been

modeled (Figure 1). 1427 of these showed complete length

coverage, (.90%) (Figure S1), whereas 2233 models had length

coverage of at least 50%. Typically coverage is lower for proteins

in cell wall processes or insertion sequences categories. The

proteins showing least coverage belonged to PE/ PPE and other

membrane proteins, since in these, quite often only a domain

could be modeled.

Figure 1. Schematic view of structural annotation. The figure corresponds to that of the circular map of the chromosome of M. tuberculosis
H37Rv, similar to that reported earlier with its complete genome sequencing[2]. On both the outer and inner circles, radiating lines are drawn to
indicate the parameters of the structural model for the corresponding protein in the genome view. The outer circle represents the model coverage in
terms of the % of its polypeptide chain whereas the inner circle represents % sequence identity shared by each model with its corresponding
template. The length of the lines in both cases are proportional to their values in %. The 100% mark is also shown for both the circles. In the outer
circle, those models that had greater than 40% length coverage are drawn outside the circle where as those with a coverage of less than that are
drawn inside the circle (for clarity). Length coverage is binned into 5 classes and color coded as indicated, while the levels of sequence identity are
binned into 4 classes and color coded as indicated. The most commonly occurring folds in the modeled proteome are shown surrounding the outer
circle and its frequency of occurrence in the modeled proteome is also mentioned.
doi:10.1371/journal.pone.0027044.g001
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1500 unique structural templates from PDB were used for

modeling the proteome, of which 1173 were from bacteria, 243

from eukaryotes including 44 from plants, 116 from archaea and

74 from viruses (Table S1).

Confidence and Quality of the Structural Proteome
The procedures for modeling protein structures are now well

established [11,12,13,14,15], most often resulting in models

correct to an RMSD of ,2 Å. As a validation exercise, crystal

structures of proteins (312) that are solved have been compared

with the corresponding models obtained through Modpipe

workflow by excluding the crystal structures in the template

search step. Folds of all the proteins were also obtained through

3D BLAST [16] and all the models indeed have the correct fold as

that of the corresponding crystal structure, with an average RMSD

of about 2 Å (Table S2), indicating high levels of confidence in the

methodology used.

An important aspect of the annotation pipeline involved

assessment of each model through different estimates of confi-

dence. These include (a) statistical significance of alignments and

extent of sequence similarity (b) geometry and stereochemistry (c)

consistency in residue contacts and solvent accessibility profiles

with high resolution crystal structures [17]. A large number of

proteins (30%) could be modeled based on obvious homology to

known structures, while another 33% could be modeled based on

reasonable sequence identity of 20–30%, yet with statistically

significant E-values (,0.0001 from PSI-Blast). Less than 30% of

the models were derived from templates without significant

sequence similarities, but based on high compatibility with the

structural folds [18,19,20].

Criteria that were considered for evaluation included DOPE

scores output by Modeller [11] and E-values obtained from

BLAST [21] and PSI-BLAST [22], whereas the geometry of

structure was assessed using Procheck [23]. The, geometric

parameters of each model were within acceptable ranges for bond

lengths, bond angles, planarity and dihedral angles and the Q, y
dihedral angles of the peptide bonds were predominantly in highly

favored regions of the Ramachandran plot. DOPE scores are

found to be reliable since they are based on residue environments

of the query sequence and structural compactness [18]. The

correctness of the models in the last category was assessed

independently through a fold prediction exercise using Genthrea-

der [24]. Computation of inter-residue contacts, consistency with

secondary structure predictions, solvent accessible surface area

distribution and radius of gyration of the model was carried out

using ProQ [17,25] which uses a neural-network based method to

test the quality of the protein. The quality of the protein models

was also evaluated by ERRAT that works by analyzing the

statistics of non-bonded interactions between different atom-types.

Details of various criteria used are provided in Table S3.

Fold Distribution in the Proteome
The availability of the structural models spanning the complete

genome of TB gives us the opportunity to analyze the fold content

and fold preferences of this organism. From another perspective, it

can help identify the set of folds that are sufficient for sustaining

life in the bacterium. Conversely, useful insights can be drawn

from folds that are not represented in the genome. Assessments

involving the SCOP database [26] show that all the seven major

structural classes are observed in the modeled proteome

(Figure 2A). Of the 1195 known folds, 419 (,30% of all known

folds) are seen in the proteome, with a preference for domains

from a/b class (36.5%). Similarly, 20% and 24% of all folds at the

family and super-family levels are observed. It must be noted, that

the methodology used for obtaining the structural models could

not have captured novel folds in TB. However, we anticipate that

this may not be a high number since the coverage of the genome is

significant. For the proteins whose structures could not be

determined through above methods, a threading exercise assigned

an existing fold with high confidence for 143 of 1211 proteins [27]

(Table S4). This suggests that more proteins not included in the

current dataset, may in fact exhibit one of the known folds.

The top folds (Figure 1) (full list in Figure S2 & Table S5) in the

modeled TB proteome include ferritin-like, DNA/RNA-binding

3-helical bundle, P-loop containing nucleoside triphosphate

hydrolases, TIM beta/alpha barrel, NAD(P)-binding Rossmann-

fold, SAM-dependent methyl transferases, ferredoxin-like and

alpha/beta-hydrolase folds. Together, these constitute 887 pro-

teins (,30% of all modeled structures in the proteome). A power-

law distribution of the folds has been reported in many genomes

[28], consistent with the trend seen here in terms of some folds

occurring many more times than most other folds. Interestingly, a

majority of the most common folds in the TB proteome are

involved in metabolism, consistent with the trends of distribution

of protein fold categories in prokaryotes [29].

Although folds associated with metabolism rank highly in TB,

the topmost occurrence is a ferritin-like fold adopted by the N-

terminus of the PE and PPE proteins. This is not surprising, since

nearly 180 proteins of these families are known to exist in TB. The

high representation of this fold, which is known to be associated

with iron storage, can perhaps explain the adaptation mechanism

of the microorganism to overcome oxidative stress [30] and

protect it from iron–dependent killing by hydrogen peroxide in

macrophages.

Analysis of the distribution of models across the 12 Tuberculist

[31] functional categories indicates that all classes are covered,

although to varying extents (Figure 2B).The least modeled

category corresponds to the class of insertion sequences and

phages (16%), while the most covered categories are those

involved in metabolism (94.7%) and information pathways

(95.2%). About 262 fold types are associated with enzymes and

hence with metabolism, 47 fold types with regulation and 87 fold

types with information pathways. Since the coverage of proteins

involved in metabolism is almost complete, it is significant to note

that merely 206 different fold types are sufficient to propel the

organism’s metabolism while others are involved in different types

of regulation. 741 proteins were associated with DNA-binding

folds. Of the remaining 1121 ORFs that could not be modeled at

this time, 600 are annotated as conserved hypotheticals, while

another 314 are associated with cell wall processes. A sequence

analysis based prediction of trans-membrane helices [32],

indicated that 850 proteins contained at-least one membrane-

associated segment. Of these, structural models are available for

251, many of which participate in cell-wall processes. Further, of

the membrane associated proteins, the cytochrome C oxidase

subunitI-like fold occurs most often (38 occurrences), followed by

glycerol-3-phosphate transporter and SNF like folds, (15 occur-

rences each). Among the least commonly occurring folds, 9 folds

are associated with extracellular processes such as toxin-anti toxin

system (YefM-like) and that are implicated in cell adhesion.

Inferring protein function from structures
Functional annotation has been carried out by broadly three

different approaches: first through known fold-function associa-

tions, second through identification of known sub-structural motifs

and third through binding site identification, comparison with sites

of known ligands and a subsequent ligand association. Fold to

function assignments have been possible for 2832 different

Structural Annotation of Mtb Proteome
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proteins, using the classification scheme reported earlier [33,34].

Seven broad functional categories associated to 50 different

functions have been linked to the models of TB. Validation for

this part of the annotation pipeline has been carried out on the 312

protein test set. Binding site prediction, comparison and ligand

association computed using PocketDepth and PocketMatch were

compared with that in their corresponding crystal structures

(Table S6), which indicated that ligand associations and hence

annotations were in most cases correct, when the detected

similarity was atleast moderately high (above the threshold of

0.4 Pmax PocketMatch Score). Similarly a comparison between the

fold-based function annotation and the GO terms, also indicated

broad agreement (Table S7).

While the annotations and a broad functional category were

available in the databases for many proteins based on literature

and sequence analyses, several new associations have been possible

through modeling and structural analyses, some examples are

described later. Of the 639 conserved proteins annotated as

hypothetical proteins in the TB genome, 560 proteins can now be

associated with fold-based function annotation through the

pipeline reported here. While 282 of these 639 proteins have an

association with one or more functional categories of COG, our

Figure 2. Structural Proteome Coverage. Coverage of models across (A) SCOP classes and (B) Tuberculist functional classes associated with the
TB genome sequence (C) Function Characterization through fold association and ligand association. In (A), a histogram showing the distribution of
folds, their super-families and families across the major SCOP classes are shown in the left for each class. A corresponding bar is shown on the
immediate right to indicate the number of such occurrences in the modeled part of the TB proteome. In (B) the number of proteins in different
categories of Tuberculist are shown as red bars and the numbers of proteins modeled in each category are highlighted as blue bars respectively. In
(C) number of proteins that have been characterized through fold association and ligand association through different categories of tuberculist are
shown. The values in % of proteins in modeled proteome have been highlighted in red, and % in total genome is highlighted in black and shown
radially across each category.
doi:10.1371/journal.pone.0027044.g002

Structural Annotation of Mtb Proteome

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e27044



protocol has provided an annotation for 560 proteins through

structural analysis.

A list of weakly annotated proteins with terms such as

‘‘PROBABLE’’ or ‘‘POSSIBLE’’ and largely derived through

sequence comparisons are available in Tuberculist [31]. Such

proteins have not been experimentally characterized. This

includes around 1134 with ‘‘PROBABLE’’ functional term

associated and 386 proteins with ‘‘POSSIBLE’’ functional term

associated with its function in the database. Structural studies

performed on such proteins have increased the confidence of

annotation. The mode and level of annotation is highlighted in the

database.

Modeled proteins when queried against Pfam database show the

presence of 1165 different Pfam domains. Scanning for various

structural motifs using ProFunc [35], showed the presence of 441

known ligand binding motifs, 741 DNA binding motifs, and 647

patterns of enzyme active sites. Surface clefts and binding pockets

were computed in all the models, using multiple methods. The

predicted sites when compared with a representative set of binding

pockets from PDB structures in a massive computational exercise

involving 3,92,75,635 comparisons, resulted in 771 ligand

associations for 1728 proteins. Associating a ligand (Figure 2C)

through prediction of recognition capability at the structural level

is extremely useful in confirming putative functional associations

for proteins and can also provide new functional clues. Highly

conserved residues in each protein family, have been identified

through sequence analysis, and made available in the database as

heat maps.

489 modeled proteins were observed to be in the ‘multi-domain’

category, since they contained more than one fold in their

polypeptide chains, as judged from their corresponding templates.

An analysis of SCOP domain associations indicated that certain

domain combinations were often re-used. A network constructed

to visualize the fold associations (Figure 3), has 207 nodes (fold

types) and 228 edges (fold combinations). P-loop containing

nucleoside-triphosphate hydrolases was the most highly associated

fold in the network, while the C-terminal domain of tetracylin

repressor-like fold associated with DNA/RNA-binding 3-helical

bundle fold, was the most highly recurring fold pair (full list in

Table S8). Tetracycline repressor proteins are known to play an

important role in ribosomal protection and help in regulation of

various efflux proteins [36,37].

Broad classification of functional annotation into four
categories

An example annotation of well characterized protein Rv1485 is

illustrated in Figure 4. Rv1485 (P0A576: 344 residues), is

annotated as a Ferrochelatase that is involved in Porphyrin

metabolism. This enzyme (4.99.1.1), catalyzes Ferrous insertion

into Protophyrin IX to form Proto-heme [38]. While well

characterized in animals, bacterial ferrochelatases were discovered

much later and seen to differ from animal homologues. Eukaryotic

ferrochelatases, typically possess three regions, an N-terminal

organelle targeting region that is proteolytically cleaved, a second

core region of 330 residues sharing homology with bacterial

ferrochelatases and a C-terminal region that contains the

dimerization motif as also three of the four cysteine ligands of

the 2Fe-2S cluster [39]. It is suggested that mycobacterial

ferrochelatases differ from their eukaryotic counterparts in that

they are monomers that are not membrane-associated. Rv1485,

was hence selected as an ideal test case for whom annotation

through our structural pipeline was determined and compared

with existing information. Firstly, 1HRK (A chain, human

ferrochelatase, 359 residues) was selected as a template to model

Rv1485 (Figure S3). The generated model could be superposed on

the template with less than 0.9 Angstrom RMSD (Figure 4A).

Further, other quality checks were performed to asses the quality

of the model using ProCheck, ProQ and ERRAT (Figure 4C).

Multiple sequence alignments of Rv1485 and homologues from

other mycobacteria, Caulobacter crescentus (a bacterial ferroche-

latase that is dimeric), S. pombe and human ferrochelatases

showed a high conservation of residues in the protein core

(Figure 4D). The alignments show that like the eukaryotic

ferrochelatases, such heme synthases also possess a C-terminal

region with some of the Cysteine ligands of the 2Fe-2S clusters.

The alignments show that S. pombe ferrochelatase contains

cysteines analogous to the [2Fe–2S] four cluster-ligating cysteines

that are found in animal ferrochelatases. However, C. crescentus

ferrochelatase does not possess cysteines in these same position and

mycobacterial ferrochelatases possess four-cysteine ligation resi-

dues involving C158, C332, C339, and C341 (Figure 4D).

Examination of the substrate-free and bound forms of the

template enzyme show an open active site pocket that is closed

through conformation change in the substrate-bound enzyme.

Indeed, studies have shown that the active site pocket is closed

around the porphyrin macrocycle with a number of active site

residues that have reoriented side chains. An important role for a

hydrogen bond network involving H263, H341, and E343 has

been suggested in the reorganization of active site side chains.

Interestingly, a similar network of residues is also seen in the

mycobacterial ferrochelatase. PocketDepth [40] and LigsiteCSC

[41] predictions, made on the modeled protein identified two

pockets that overlap with the template pockets harboring the 2Fe–

2S cluster and the co-crystallized ligand (cholic acid, 1HRK_A).

These sites are also detected by the cleft predictions of the ProFunc

[35] server (Figure 4E). An overlap of the binding sites show an

independent comparison of the pocket overlap with a known

binding sites (Figure 4F). These comparisons further show an

extensive overlap with the binding pocket of other ferrochelatases.

Such annotations lead to insights about protein functions at

different levels (Figure 5). Some enrich available information of the

protein while others provide finer detail such as identifying

substrate specificities. More importantly, new annotations of

function for completely uncharacterized proteins are obtained in

some cases. In some, functional regions in the proteins are

identified, while in some others higher order interactions and

assemblies can be inferred. Some examples to illustrate these are

listed in Figure 5. Most of the proteins from a genome sequence

get their initial identification through an automated process by

transferring annotation from a sequence homologue with known

function. There can be several instances where sequences

similarities on the whole are significantly high, but where the

function has diverged considerably. A typical example would be a-

lactalbumin, which is similar to lysozyme, in sequence and overall

fold, but differs from the latter in function, due to mutation of key

residues at the binding site [42]. A structure-based confirmation of

the annotation, especially by comparing the binding sites and

ligand binding ability, is therefore more meaningful.

Thus the broad categories of annotation are:

(i) Augmenting confidence of sequence-based annotation-

confirming existing annotation: Rv0469 (Figure S4), a

possible mycolic acid synthase, was modelled in Modbase

with 1KPG_A as template. 1KPG (P0C5C2) is a

cyclopropane-fatty-acyl-phospholipid synthase1. Mycolic

acids are major components of the cell wall of Mycobacterium

tuberculosis. Several studies indicate that functional groups

in the acyl chain of mycolic acids are important for

Structural Annotation of Mtb Proteome
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pathogenesis and persistence. There are at least three

mycolic acid cyclopropane synthases (PcaA, CmaA1, and

CmaA2) that are responsible for these site-specific

modifications of mycolic acids [43]. Each enzyme acts at

specific positions in the proximal or distal end of the

mycolic acid fatty acyl chain. All three enzymes are

structurally similar and have a seven-stranded a/b fold,

similar to other methyltransferases, with the location and

Figure 3. Fold combinations observed in modeled proteome. A weighted undirected network representing fold associations in the modeled
part of the TB proteome. Each node (circle) represents a fold which is weighted based on the frequency of occurrence in the modeled proteome
whereas an edge (line) represents the co-occurrence of those fold types in various proteins. The thicker the edge, the more number of times the pair
of domains co-occur. The coloring scheme is based on the function assignment for topmost occurring folds (as indicated in the color key).
Distribution of super-families in each of the 5 topmost occurring folds are also shown as labeled pie-charts.
doi:10.1371/journal.pone.0027044.g003
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interactions with the cofactor S-adenosyl-l-methionine

conserved. The structures of ternary complexes demon-

strate the position of the mycolic acid substrate-binding

site. Comparison of the structures also suggests that these

enzymes catalyze methyl transfer via a carbocation

mechanism in which the bicarbonate ion acts as a general

base. 1kpgA also adopts a seven-stranded alpha/beta fold

similar to other methyltransferases with the location and

interactions of cofactor S-adenosyl-l-methionine conserved.

The crystal structure of 1KPG_A is available with cetyl

trimethylammonium bromide (CTAB) bound in the acyl-

lipid binding pocket of the enzyme [43]. The active site

pocket of 1kpgA is known to be lined with hydrophobic

residues and interactions between the lipid and the protein

are described as entirely hydrophobic in nature. Therefore,

the ligand and cofactor-binding pockets in 1kpgA were

compared with the predicted binding pockets of modeled

Rv0469. Further, earlier experiments have suggested that

the carbocation intermediate of the reaction mechanism

may be stabilized by cation-p interactions during catalysis,

specifically by the aromatic ring of the Tyr-33 in 1kpgA.

Multiple sequence alignments of Rv0469 with other known

mycolic acid cyclopropane synthases such as cmaA2

(P0A5P0), pcaA (Q7D9R5), mmA2 (Q79FX6), mmA3

(P72027), mmA4 (Q79FX8) and cmaA1 (1KPG_A)

P0C5C2, show a high conservation of residues involved

in binding S-adenosyl methioinine (cofactor), as also

residues involved in ligand interactions. Ligand binding-

site predictions using PocketDepth [40] and cleft predic-

tions in the ProFunc [35] server when applied to the

modeled Rv0469, identify potential substrate binding and

co-factor binding sites with high confidence. Indeed 86%

of the cofactor-binding residues in 1kpgA are seen at

topologically equivalent positions in Rv0469. E124 that

shows hydrogen bonds with N6 of SAH is replaced with

D123 in Rv0469. Assessments of the substrate-binding

pocket show 85% of the ligand-binding residues in 1kpgA

are also conserved in Rv0469. Further, cation-p interac-

tions mediated by Y33 to stabilize the carbocation

intermediate are conserved (Y32) in Rv0469 as well. Since

the ligand-binding pocket is 9 Å from the surface, it has

been suggested that longer chain length mycolic acids can

also be accommodated into the pocket. Indeed, more

detailed assessments involving the actual substrate (mycolic

acids of varying chain length) within the predicted ligand

binding pockets of Rv0469 are required to shed further

light on the mode of action of Rv0469 and nature of

interactions.

Figure 4. Aspects of Annotation. Example of Rv1485 showing different kinds of analysis carried out to derive the annotations. (A) Superposition
of Rv1485 with its template 1HRK_A. (B) Binding Site prediction using LigsiteCSC and PocketDepth. (C) Errat output of the Rv1485 showing overall
quality factor of ,70% by evaluating the non-bonded interactions between different atom types. (D) Multiple sequence alignment with selected
sequence neighbors, highlighting conserved catalytic site residues (in triangles) (E) Predicted ligand binding pockets in red surface, the expected
ligand binding site as determined by superposing the template shown as sticks and (F) Association of the heme ligand to the predicted binding site
(residues in red) based on high similarity to a known heme binding site by searching against PDB pockets (blue).
doi:10.1371/journal.pone.0027044.g004

Structural Annotation of Mtb Proteome
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(ii) Providing higher resolution information to support anno-

tation-details in terms of binding site residues, presence or

absence of motifs: More detailed annotation with better

resolution can be obtained in certain cases. For example,

the model of Rv3340 (O55390) was obtained by consid-

ering 2ctz_A as template having 54% sequence identity.

Figure 5. Different facets of annotation. Different levels of annotations are shown in the table, from assigning the putative function to
uncharacterized protein (Rv1752), to increasing the confidence of putative and uncharacterized proteins (Rv0469,Rv2503c), assigning the binding
sites of ligand to most proteins(Rv3340) and predicting the quaternary structure of proteins as well(Rv1492-Rv1493).
doi:10.1371/journal.pone.0027044.g005

Structural Annotation of Mtb Proteome
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2CTZ_A is a probable o-acetyl homoserine sulfhydralase,

which has PLP bound to it. The active site information was

obtained from CSA [44] shows that Tyr107 and Asp180

are important residues involved in catalysis and the

corresponding residues in the model are also conserved

and occupied the same 3D co-ordinates. The co-factor

used by this enzyme as also the template is PLP. The

residues that constituted the PLP binding site were

conserved, these residues (within 4 Å radius of PLP) were

extracted and compared to all known binding sites of

ligands (residues within 4 Å of the ligand atom) in PDB

using PocketMatch [45], in this case the topmost scoring

site was PLP binding site of 1e5f which is a methionine

gamma-lyase from Trichomonas vaginalis. The alignment of

the binding site residues can be visualized in Figure 5C and

MSA in Figure S5.

(iii) New annotation: There are still a number of proteins in the

TB database, for which no functional information is

available. The strategy used here for the functional

annotation can be applied to such proteins to gain new

insights. Rv1752 (O06789), being one such putative

uncharacterized protein that was modeled, based on PSI-

BLAST searches against the PDB database, with a

mammalian dimeric dihydrodiol dehydrogenase (DD) as

template (2poq: Macaca fascicularis: 7e 230, 33% identity,

53% positives). The structure of DD, an oxidoreductase,

shows two domains, an N-terminal co-enzyme (NADPH)-

binding domain and a C-terminal substrate-binding

domain. Earlier investigations have shown that DD,

identical to NADP+-dependent D-xylose dehydrogenase,

is a close homologue of prokaryotic NADP(H)-dependent

glucose-fructose oxidoreductase (GFO) and 1,5-anhydro-

D-fructose reductase (AFR), although these enzymes differ

in their coenzyme-binding affinities [46]. Further, it has

been suggested that the C-terminal domain of DD shows

striking resemblance to bacterial oxidoreductases and

conserves a specific sequence motif GGX3DX3Y in its

catalytic domain. DD is known to oxidize a broad range of

substrates (pentoses, hexoses, 3-deoxyglucasone etc.,) We

find that alignments of Rv1752 and DD involve only the

C-terminal substrate binding domain of DD and exclude

its N-terminal co-enzyme binding (NADPH-binding)

domain. Interestingly, gene-neighborhood studies and

searches in PFAM database show that Rv1751 (O65936)

is a putative monoxygenase that potentially binds FAD.

Figure 5A shows a superposition of the C-terminal

domains of DD and modeled Rv1752. The superposition

shows a conservation of the catalytic residue Y180 in

topologically equivalent positions in the two proteins. F99,

D2, Y6 and F43 of Rv1752 are also seen to be equivalent

to the substrate-binding residues F279, D1176, Y180 and

Y217 of DD. Other residues that line the inhibitor-binding

pocket of DD and implicated in determining its broad

substrate specificity include Trp125, Phe154, Trp254 and

Phe279 [46]. We have compared the predicted clefts from

ProFunc [35], the top–five predicted pockets from

PocketDepth[40] and inhibitor-bound template crystal

structure and show that these regions overlap appreciably.

Our findings suggest that Rv1752 is perhaps an oxidore-

ductase whose co-enzyme binding requirements are met by

its gene-neighbor Rv1751, a potential FAD-binding

monoxygenase. Further, multiple sequence alignments of

Rv1752 with homologues identified in searches in Uniprot

and PDB show high similarities with other proteins from

Mycobacteria (Figure S4). Also, the sequence motif

conserved in DD and related homologue (GFO and

AFR) is seen to be partially conserved in Rv1752.

(iv) Functional assemblies: In some cases, a protein-protein

assembly mimicking the quarternary state of the protein in

another species, can also be obtained from the structural

proteome. Rv1493 (P65487) has been functionally annotat-

ed as a probable methylmalonyl-CoA mutase large subunit.

Methymalonyl-CoA mutase catalyses the isomerization of

the succinyl-CoA to methylmalonyl-CoA during synthesis of

propionate from tricarboxylic acid-cycle intermediates using

adenosylcobalamin as co-factor. Through our annotation

pipeline we can improve the confidence in the function

assignment and also gain insights in the active site of the

enzyme along with ligand and co-factor binding sites. This

protein has no derived crystal structure; hence the model

generated would be of value as methylonyl-CoA enzymes

are known to be important due to their interaction with the

metabolite succinyl-CoA and methymalonyl-CoA that are

utilized in many essential pathways. The modeled structure

available would help us in computer aided drug design and

might prove to be a useful target as no human homologue

was detected in BLAST searches against UniProt [47]

database.

The modeled structure having a sequence coverage of 98.27%

was generated by using the A chain of Methylmalonyl CoA

Mutase[48] from Propionibacterium freudenreichii (1REQ) as template

(71% sequence identity). The template used also has adenosyl

cobalamin (Vitamin B12) along with Desulfocoenzyme A (DCA)

bound to it. This would help us map the binding site residues on

our protein of interest. The active site residues of the template was

obtained from CSA (Catalytic Site Atlas) [49] that includes Tyr89,

His244, Lys604, Asp608, His610 which aligns well with the

modeled protein residues Tyr98, His253, Lys616, Asp620 and

His622 respectively using MUSTANG[50] (Figure S6). After

superposing the model generated with the template, it was seen

that cobalamin binding site was clearly predicted from Pock-

etDepth [40] Algorithm and perfectly overlaps with SURFNET

[51] predicted highly conserved cleft. The active site residues are

also possess the same projection as their template.

1REQ, the template used here was found to be a heterodimeric

protein [48] with alpha and beta chain. Rv1493 here represents the

alpha chain. For it to be functional and stable it would need its

corresponding beta chain. Since in prokaryotes, the genes which are

tightly linked functionally end up being in the same operon, a gene

neighborhood analysis was performed and Rv1492 (P65845) was

seen to be present in the upstream. Interestingly, the model of

Rv1492 (with no known crystal structure till date) was generated

using B chain of 1req protein itself. And hence even quaternary

structure of essential proteins can be determined through such

studies to get interface interacting residues which would be of very

high importance as sometimes protein-protein interface can also be

targeted [52] to disrupt the functioning of the enzyme. Although no

experimental studies have been done to confirm the binding of

cobalamin to this protein or show the presence of heterodimer, such

structural studies improves our confidence in prediction. Further the

assembly structure of Rv1492 and Rv1493 was built and evaluated

using Protein Interaction Calculator [53] to obtain the list of interacting

residues at the interface as seen in Figure 5D.

Conclusion
In summary, the structural annotation reported here covers a

significant portion of the TB proteome. The resource, providing
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functional clues for about 2877 proteins is likely to be very useful

to tuberculosis, genomics and structural biology researchers. The

annotation has provided insights about the folds that predominate,

common fold combinations and more interestingly indicate that

cellular metabolism can be achieved with only 219 folds.

The large-scale annotation pipeline used here to derive biological

insights about M. tuberculosis is fairly generic and can be readily

applied for other organisms as well. High confidence molecular

models can now be obtained for several proteins, which together

with the experimental structures available for that species can

provide a first glimpse of the structural proteome of that organism.

The MODBASE database already has genome scale protein

structures for several organisms including that of human. The

structural model of the protein can then be used for identifying

possible function at different levels. Starting with fold-based

function annotation, analysis can be followed up by sub-structure

searches, binding-site detection through PocketDepth and ligand

associations through PocketMatch and ProFunc, which can be

applied for all the proteins to gain a deeper level of understanding

about functioning of the organism. Besides providing new functional

associations through modeling and structural analyses, our pipeline

augments confidence of sequence-based annotations. More impor-

tantly, it provides annotation at a higher resolution by identifying

key residues and motifs in the functional sites of protein molecules.

Thus genome-scale structural modeling and analyses can be widely

used for higher-resolution genome scale annotation.

Materials and Methods

Pipeline for Structure Annotation
The pipeline is illustrated in Figure 6. Broadly, it starts with

obtaining structural models of the individual proteins, followed by

Figure 6. Structural annotation pipeline. Pipeline for annotation that was used for the individual proteins in the dataset, showing different steps
of quality check followed by various techniques used to annotate the protein.
doi:10.1371/journal.pone.0027044.g006
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subsequent steps of structure validation. The models are then

subjected to different types of analyses as a means to obtain

functional annotation. The individual steps are described in detail.

Obtaining Models
Of the 3998 predicted protein coding genes in Mycobacterium

tuberculosis, experimentally determined structures [54] are available

for 312 proteins. Structural models were hence derived for the

remaining proteins using Modpipe (Figure S7), a widely used

software suite and its associated database ModBase. The latest

version of MODBASE (ftp://salilab.org/databases/modbase/

projects/tdi/models/) included 5913 models (2808 TB proteins)

for TB [10]. Since multiple models were available, they were

ranked considering sequence identity and query length coverage

(ranking score (Z) = product of % sequence identity and % length

of query sequence in the alignment), DOPE score [18,19]

(Discrete Optimized Protein Energy) and MPQS (ModPipe

Quality Score). For proteins where no models were available in

Modbase, templates were identified for through remote homology

detection techniques using PSI-BLAST [22] searches against the

PDB, with E and H-values of 0.0001 and up to five iterations. The

hits identified in the searches were further filtered for alignment

coverage of at least 50% of the query length or a minimum

domain length of seventy residues. In each case, the topmost hit

was selected as a template for each query and modeled using

modeler 9v7. Each such model was subjected to quality checks, as

described in the earlier section. Modpipe was also used to assign

the structures through sequence-profile search for these proteins

wherein the templates obtained matched with the hits obtained

from protocol mentioned above.

Quality estimation of Protein Structures
The proteins for which crystal structures became available

eventually (312 proteins) were selected and modeled separately

through Modpipe 2.2 (care was taken to rule out the possibility of

solved crystal structure being used as template itself). The models

obtained were compared to actual crystal structures using DALI.

The fold of the crystal structures and the model structures was

evaluated using 3D-BLAST which searches for longest common

substructure called SAHSPs (structural alphabet high-scoring

segment pair). In 290 cases the fold obtained matched with the

corresponding crystal structure (Table S2).

Each model was subjected to several quality checks. First, gross

errors in the modeling process were ruled out, superimposing each

model onto its corresponding template using CE [55]. The main

criterion used to judge the quality of the protein model is the

normalized Z-dope score, where a negative score always represents

a better model. Almost all the models included have negative

normalized Z-DOPE [18,19] score with an average value of -0.89.

Z-dope is based on score obtained from statistical potential. There

are various other criteria to judge the quality of the protein model,

for example ProQ [17] is a neural network based predictor

depending upon number of structural features to predict the

quality of the protein model. ProQ reports two scores – LGscore

and MaxSub score, both having an average of 3.16 and 0.29,

which can be considered to be good. ERRAT [56] is another such

program that works by analyzing the statistics of non-bonded

interactions between different atom types, an average quality

factor of 64.931%. Moreover PROCHECK [23] algorithm used

helps to check the stereochemical parameters of the protein

models and for all the models more than 90% of the residues were

found to be in the allowed region of the Ramachandran Plot

(Figure S8). Though there is a possibility that one of these quality

estimation methods gives a low score when compared to others,

but none of the models are excluded, the scores of each model

obtained from these programs are highlighted in appropriate color

and appropriately displayed in the database with their guiding

values (Table S3).

Binding Site Identification and comparison
Potential ligand and DNA-binding sites in the various models

were identified through a consensus ranking of PocketDepth [40]

(Figure S9), a geometry-based pocket identification method and

LIGSITEcsc [57], that analyses conserved surface residues and

predicts the functional site located to be around a point without

giving any boundary definition to pocket unlike PocketDepth

(Figure 4B).All the pockets predicted by PocketDepth within 5 Å

zone of LigsiteCSC predicted site were selected. Further, the

predicted binding sites were compared to known sites in PDB

using PocketMatch [45]. This algorithm, also developed recently

by us, compares the binding sites in a frame invariant manner by

representing and comparing each site by 90 lists of sorted distances

capturing shape and chemical nature of the site. An alignment

score between a pair of sites is the net average of the number of

matching distance elements in the 90 lists as a fraction of total

number of distance elements in the bigger set, for a chosen

threshold t, as shown where |S| indicates cardinality of the set.

PMScore~

P90

i~1

Counti

maximum DS1D,DS2Dð Þ

Counti represents the number of distance elements matched in the

90 lists and represents maximum (|S1|, |S2|) the number of

distance elements in the larger site (either S1or S2) is followed by a

ligand assignment to each pocket and hence to a protein, when a

high scoring matching pocket is found.

Structural Motif searches
Sub-structure searches were performed using the ProFunc

server’s local 3D template searches [58]. The templates are defined

as the 3D conformations of 3–6 neighboring amino acid residues.

ProFunc has three precompiled databases of templates (Figure S10):

first is a manually curated set of enzyme catalytic residues obtained

from the Catalytic Site Atlas [49] (CSA); second is an automatically

compiled set of templates consisting of groups of three residues

interacting with ligands in protein-ligand complexes in the PDB;

and the third is the same, but for residues interacting with DNA or

RNA. In addition to these searches, ProFunc also returns the best-

matching ‘‘reverse template’’ hits. These templates are compiled

from the model protein itself and are then searched against a

representative subset of PDB structures.

Quaternary structure
Quaternary structure information for the 1637 templates used

for modeling the proteome in this study, were obtained through

PQS [59]. Residues present at the interfaces in the templates were

compared in the corresponding models. Different types of

interactions are calculated in example cases using the PIC server

[53]. 35 potential quaternary structures were identified in the

modeled proteome as sequential gene-products.

Supporting Information

Figure S1 (A) Plot showing the distribution of coverage of all

protein models. The plot shows majority of proteins having
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coverage of 90-100%. (B) Distribution of template resolution

structures that have been used for modeling, around 80% of the

templates have resolution below 3 Å.

(TIF)

Figure S2 (A) Distribution of RMSD between modeled structure

and its template is shown. (B) CE Z-score values between the

modeled structure and its template has been plotted with majority

of them showing score of more than 6. (C) Plot showing the

distribution of various folds in the modeled proteome. The

number of different folds observed the modeled database is

arranged alphabetically on the x-axis, where the y-axis represents

the frequency of the corresponding folds.

(TIF)

Figure S3 Modeling and Functional Characterization of

Rv1485, Ferrochelatase HEMZ. The homology model was built

by utilizing (PDB 1HRK) Human ferrochelatase, chain A (E.C.

4.99.1.1) as template having a sequence identity of 27%. Given (A)

is structure based sequence alignment obtained through MUS-

TANG between the template and the model. Surface cleft analysis

is shown (B), the coloring of the surface is based on the volume of

the cleft in Å3. Residues conserved in the protein are shown on

right (C), the residues colored in red are highly conserved and the

ones in grey are least conserved.

(TIF)

Figure S4 (A) A superposition of the modeled Rv1752 (in green)

and 2 poq (in blue) shows an alignment spanning the C-terminal

substrate-binding domain. Residues lining the active site pocket in

2 poq and Rv1752 (in sticks, red in color) are seen to lie in

structurally equivalent positions. Conserved sequence motifs in

DD and related homologs are partially conserved in Rv1752

(highlighted in yellow). PocketDepth predictions suggest a binding

pocket (in gray) that overlaps with the template binding pocket. (B)

A superposition of modeled Rv0469 (in green) and 1 kpgA (in

orange) shows an appreciable conservation (,85%) of both

substrate binding residues (in blue) and co-factor binding residues

(in red). PocketDepth predictions (in grey surface) overlap with the

bound ligand in the crystal structure.

(TIF)

Figure S5 MSA of query protein Rv3340 (O5339O) with the

top most blast hit against Uniprot. The template 2 ctz A

(Q5SK88) is highlighted in red. The CSA residues are marked

as circles and the important residues at the binding site are marked

as square.

(TIF)

Figure S6 (A) Binding site of Rv1492 (shown as red sticks)

predicted (depicted as surface) as the residues that are known to

interact with the cofactor Vitamin B12 in the template 1REQ_B

are also conserved (shown in green). (B) The residues that are

conserved at the interface in the template (green) and the modeled

structures (blue) are shown here (i). The superposition of Rv1492

with 1req_b chain residues at the interface. (ii). Superposition of

Rv1493 with 1req_A chain residues at the interface. (C) Different

types of interaction found at the interface. Sticks in magenta

represent the residues from Rv1492 and in blue from Rv1493.(i)

Salt-bridges, (ii) Main chain – Main chain interactions, (iii) Side

chain - Side chain interactions & (iv) Main chain – Side chain

interaction.

(TIF)

Figure S7 Flowchart describing the method of comparative

modeling used. The DOPE score expression had been mentioned

wherein NREF
m,n rð Þ and NOBS

m,n rð Þ are the numbers of atom type pairs

(m,n) at a distance r within [r, r+Dr] for the ‘‘interacting’’ real

system and the ‘‘non-interacting’’ reference state respectively.

(TIF)

Figure S8 Procheck details along with Ramachandran Plot of

all the models in the structural proteome and the various plots

obtained from Procheck are shown below as example for

Rv0001.

(TIF)

Figure S9 Flow chart depicting the basic idea behind the

PocketDepth algorithm. The algorithm involves construction of

grid having cell dimension of 1 Å to enclose the query protein.

The constructed grid-cells are then labeled to distinguish between

internal, external and surface grid cells. Grid bars are constructed

across surface cells after finding connected list of surface cells and

defining putative boundary atoms. Depth-factor values are

calculated for each cell depending upon number of grid-bars that

pass across them, later the cells are clustered using DBSCAN

algorithm to report the clusters of predicted binding site.

(TIF)

Figure S10 A schematic representation of the residue template-

matching methods used in ProFunc. At the top are the three

precompiled template databases. The Catalytic Site Atlas (CSA)

templates correspond to catalytic residues found in enzymes.

These templates are manually curated and, currently, the

database contains templates corresponding to 584 different E.C.

numbers. The ligand- and DNA-binding templates are automat-

ically derived from protein/small-molecule and protein/DNA

complexes in the PDB, respectively. There are over 96,000 of the

former and over 3,500 of the latter. The red rings and joining

lines represent template matches. The bottom half of the figure

shows the principle behind the ‘reverse template’ method. These

3-residue templates are generated from the query structure and

then scanned against a representative set of PDB structures. To

filter out random hits returned by any of the above template

methods, the template structure is superposed on the matching

structure by fitting the template and matching residues. The

quality of the match is assessed according to the numbers of

identical and similar residues that are superposed in the

neighborhood of the match.

(TIF)

Table S1 Taxonomic distribution of template protein structures

used to model the proteome of TB.

(CSV)

Table S2 List of protein models compared to its corresponding

experimentally determined structure through structural superpo-

sition (DALI). The RMSD between the structures along with z-

score, sequence identity of model with its template and coverage of

the model is reported. The superposition of structures are also

shown, modeled protein is cyan in color whereas corresponding

crystal structure is green in color. The models and corresponding

crystal structures were also checked for their fold assignments by

using 3D-BLAST.

(PDF)

Table S3 The various criteria and cut-offs used in the pipeline

have been mentioned along with the statistics.

(DOC)

Table S4 Genome Threader results for the entire proteome

reporting the confidence, PDB template ID and SCOP associa-

tion.

(CSV)
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Table S5 Frequency of different folds observed in the modeled

proteome is shown.

(CSV)

Table S6 Of the 312 crystal structures taken as the test set for

validation, 105 of them are complexes with biologically relevant

ligands, forming 179 different binding sites. 154 of these sites in 97

of the proteins were predicted correctly by PocketDepth (as shown

in Column 2) and 46 ligand associations that could be predicted

using PocketMatch alone (above the threshold used) were all found

to be correct. There were of course many other ligand associations

that appear correct, but fall below the stringent thresholds chosen

in this study and hence have not been counted.

(PDF)

Table S7 The fold information of the crystal structures were

obtained from 3D-BLAST. The fold based function annotation for

each of the chains of the protein structure was obtained through

superfamily database and compared against existing GO func-

tional terms through manual inspection. In the 60% of the cases

both the annotation matched and in the remaining 40% of the

cases either of the annotations had no detailed functional term

associated and hence could not be compared readily.

(XLS)

Table S8 Different co-occurences of domains occurring in the

modeled proteome. Frequency of different domain combination

observed in the modeled proteome is reported.

(CSV)
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