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Krishnan loved mathematics and those who knew him
had great respect and even awe for his skill as a
mathematician. However, he chose to publish in mathe-
matics just once, and for future generations this
particular work of Krishnan remains just about the
only source from which to gain a glimpse of his
mathematics. This work is outlined, and it is shown
that his main result is essentially equivalent to the
sampling theorem of Shannon that appeared a little
later. While conventional wisdom viewed the sampling
theorem as a powerful engineering tool in signal
processing, Krishnan saw in his main result a rich
source of deep mathematical identities.

‘KrisunaN loved mathematical reasoning and his skiil
as a mathematician would have gained him international
recognition even without his great ability as an experi-
mental physicist’ — observed Lonsdale and Bhabha' in
their biographical notes on Krishnan. The present note
is an attempt by one who has had no personal knowledge
of Krishnan to understand and appreciate this curious
remark on the mathematics of one of the greatest
experimental physicists this country has ever seen'. Such
an effort can well be a losing game, for 1t is hkely
that the content and spirit of the above remark based
on personal knowledge can never be fully grasped by
just reading Krishnan’s published works, but one must
try.

Anyone who scans through the titles of Krishnan’s
collected works is sure to notice one piece of work
that is singularly and manifestly different from the
others: every other work 1involves a physical phenomenon,
right from the title, whereas this one makes virtually
no reference to physics. This work was published 1n
1948, when Krishnan was Director of the National
Physical Laboratory, through a short note in Nature?,
titled ‘A simple result in quadrature’, followed by a
detailed one in the Journal of the Indian Mathematical
Sociery’ under the title ‘On the equivalence of certain
infinite series and the corresponding integrals’. The
mathematical issue Krishnan pursues in this work arose
during his study of a physical problem with Bhatia®,
and this if any is the only connection with physics.
Thus, what Lonsdale and Bhabha were referring to when
they continued their remark to say, ‘Krishnan was deeply
moved by a by-product of purely mathematical interest
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thrown up during the course of a physical investigation’,
1s transparent. The present article, written in honour of
the memory of Professor K. S. Krishnan on the occasion

of his birth centenary, is confined exclusively to this
particular work of his.

Krishnan’s main result

Bhatia and Krishnan studied in 1947 light-scattering in
homogeneous media by considering it as reflection from

appropriate thermal elastic waves, and encountered the
infinite series

¥

sin® (na + 0)

), ;

(na + 6)

] = — oo
where 0,a are real parameters. Under the physical
conditions governing their study, a was positive and
much smaller than unity. Hence the above sum can be
replaced, to a good approximation, by the corresponding
integral whose value is well known:

. sin? (na + 6) = sin’ x
= dx =7,
a;‘ (na +6)° '[_H X
for a<x 1. (1)

Thus 7 will be expected to approximate the above sum
better and better as the magnitude of a becomes smaller
and smaller. It may be remarked that the above argument
is standard, and can be traced to at least as far back
as Einstein’. But Bhatia and Krishnan discovered to
their surprise that the above sum equals 7w exactly tor
every finite value of a in the range ~n <« <a, nol
just in the limit ¢ — 0

— sinf (na+6) " . sinlx
az (na + 0)° _HJ‘__,CLI e

= —
for —m S s (2)

Krishnan begins his paper’ by giving a prool of the
above identity. Consider the well known scries

y sin(n+f5)z _
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valid for any real f, and real z in the range
D<z<27t. At a fundamental level, the origin of this
identity is the same as the identity in eq. (2), as will
become clear in the course of this article. This series
can be integrated term by term with respect to z in any
closed interval [y, 0], where 0 <y <9 <27, since it is
uniformly convergent in this interval. We thus obtain

- - 5
2. ngn(:;f) -3 msn(i;g) =@0-yx.  (3)

Keeping 0 constant and making y — 0, eq. (3) reduces
{0

1 —cos (n+ o
2 (n+ By

=m0 ,

since the first series on the left side of eq. (3) is
uniformly convergent and therefore represents a
continuous function of y. Putting now 0 =2,
aff =0, and dividing both sides by 2a (#0), we obtain
eq. (2).

The above proof of Krishnan is reproduced here
verbatim just to give a flavour of the rigour and style
of his arcument. According to the above result (2), if
the graph of sin’ x/x? is rectangulated (see Figure 1),
the area under the graph (the integral of sin®x/x*) and
the area under the rectangulated version (the sum in
eq. 2) will be exactly equal, as long as the finite spacing
of the rectangulation is less than or equal to s; the
rectangulation need not even be centred about x=0 (i.e.
¢ need not be zero). Clearly, this curious property is
characteristic of the function sin’x/x?, and will not be
expected to be shared by every function.

For instance, the Gaussian function g (x) =exp (—ax’)
does not possess this property, as can be seen from the
following identity®:

ad exp(-anta’)= Y exp (—an*/a?). (4)

H=—ooa == oo

These sums can be recognized as the theta function
evaluated at specific values of its arguments, and hence
the identity itself may be considered as an instance of
the celebrated transformation formula for the theta func-

tion. Equivalently, this identity may be viewed as a -

particular case of the Poisson summation theorem. Now,
the right side of eq. (4) is manifestly greater than unity
for every nonzero value of ¢, and approaches unity
only in the limit a — 0,. But the integral of the Gausstan
function corresponding to the left side equals unity.
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Thus,

az exp (—nnzaz)ijn deexp(—nx®) =1, (5)

which may be compared with eq. (2).

Let us return to Krishnan who is intrigued by the
two symmetries the sum in eq. (2) possesses, namely
translation (&) by arbitrary amount and scaling (a) by
a restricted amount. He sets forth two questions for him
to answer: Can the above symmetries be understood in
terms of some generic property of the function under
consideration? Are there other functions exhibiting these
symmetries? It is clear that the two questions are related.
Indeed, the generic property should necessarily be such
that the second question is automatically answered.

Krishnan recognizes that his proof of eq. (2) reproduced
above is too specific to a particular function, sin® x/x?,
and hence it is unlikely to help in identifying the generic
property he was after. And so he considers a second
proof, with a footnote: ‘We are thankful to Professor
Norbert Wiener for the following elegant alternative proof’.

Consider, instead of sin® x/x’, a generic real even function

f(x)=f(—x) whose Fourier transform defined by
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Figure 1. lllustrating the identity eqg. {2): (@) corresponds 1o a=1,
6 =025, and (b) corresponds to @=2, 8=0.25. In either case the
area under the dotted curve representing the integral on the right side

of eq. (2) equals the area under the rectangulated version representing
the sum on the left.
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sy =p=] dx f()exp(-ivn) (6)

is assumed to exist. It follows from the definition that
g(v) too will be real and even. We see from eq. (6)
that translation of a function manifests i1n the Fourier
transform as a phase linear in the argument. That js,
if g(v) is the Fourier transform of f(x), then the Fourier
transform of f(x +8) is g(v) exp(ivf). Applying Poisson’s
summation formula to f(x+8), we have

_ = [2am) [ 2amO
az f(na+9)=\12:rz g am exp |1 ﬂam .
§o——— m=—o N / \ J

(7)

It is seen from eq. (6) that the integral of f(x) equals
V27 times g (0), the Fourier transform of f(x) evaluated
at v=0. Thus, the series on the left side of eq. (7)
will equal the integral of f(x) if g(v) possessed the
property that g (27 m/a) =0 whenever the 1nteger variable
m#0, so that only the term corresponding to m=0
contributes to the sum on the right side (the phase
factor makes no contribution at m=0). Clearly, a suf-
ficient (but not necessary) condition for this to happen
is that g (\)=0 for vl = 2x/a. This leads to the result
Krishnan was deeply moved by.

Theorem: If f(x) is a real even function whose Fourier
transform g (v) vamishes for Ivl 2v,, then

oy fna+0)=] dxf(,

n==—1ng

for O<a<2n/v,. (8)

Ifg(v)#0atv==xy, then ais restricted by O < a < 27/v,.

A function whose Fourier transform (spectrum) outside
a finite range (band) vanishes 1s said to be band-limited
and the closed interval outside of which the band-limited
function vanishes is the band-width of the function’.
Thus Krishnan found that band-limitedness is the generic
property he had been after, and for any band-limited
function the identity eq. (8) expressing the equivalence
of the series and the corresponding integral will be
valid, provided « 1s less than 2n/band-width.

Examples

With the generic property thus identified as band-limit-
edness, the answer to Krishnan's second question is
ymmediate: scan through a source which tabulates known
Fourier transform pairs and look for band-limited func-
tions. Indeed Krishnan does list a set of band-limited
functions picked from a popular monograph on Fourier

CURRENT SCIENCE, VOL. 75, NO. 11, 10 DECEMBER 1998

SPECIAL SECTION: K. S. KRISHNAN BIRTH CENTENARY

integrals. Interestingly, he does not stop with this list,
but produces another list of examples of band-limited
functions, this time from a work” of the man who knew
infinity! One is struck by this famous experimental
physicist’s familiarity with the works of Ramanujan.
This familiarity is not a superficial one, as will become
clear when we return to this aspect. If we define

f )y =sin* x/x* = (f (),

then f, (x) is band-limited and has band-width k, for
every finite integer value of k. This may be seen from
the convolution property of Fourier transforms. If g (v),
g'(v), g”(v) are the Fourier transforms of f(x), f'(x),
f7(x) respectively (primes do not refer to differentiation)
and if f7(x)=f(x) f'(x), then it is an immediate conse-
quence of the definition eq. (6) that

g () =gy W=p=] dgW)g =)
=g’ ()5 (). ©)

That 1s, pointwise multiplication of functions translates
into the convolution operation % in the Fourier transform
domain. Let g, (v) be the Fourier transform of f,(x).
From the definition of Fourler transform we have

- iNms2, for lvigi,
gl(")‘{ 0, forlvi>1, (10)

which is essentially the characteristic function for the
interval [ -1, 1]. Now g, (v) for higher values of k can
be computed using the convolution property, eq. (9).
For 1nstance,

r
- for 1v1<2,
g, (V=g kg (V)= « /2 (2-\v)/2, for tv

0, for Iviz2;
£ (V)=g| (v)*gz (v)
va/2 3~-vH)/4, forlivigl,
= {Nm/2 3-1vly’/8, for 1<lvi<3,
0, for Ivlz3;

8, (v)=g,(v) *g, (v)=g, (V) k g,(v)

N2 (32120 + 31y )4, for lvi<,

I

for 2<lvisg 4,

= NT/2 (4 =tv ),
0, for lvl24;

(11)
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These functions are illustrated in Figure 2. It 1s clear
that g, (v) is piecewise polynomial, with support
[ — k, k). Further, g, (v) becomes smoother with increasing
value of &, consistent with the fact that f, (x} becomes

sharper.
Having computed g, (v), we may as well use 1t to

evaluate the integral of sin™ x/x**. Since Fourier trans-
formation is a unitary operation, we have

f-drl_ﬂ(.r)lz=j-dv!gt(v)l:", (12)

for any Fourier parr f, (x), g, (v). Using the piecewise
polynomial form of g, (v) to evaluate the integral on
the right side of eq. (12), we obtain

=, sin’x =, osinfx 2

I__d‘t Z = J-"dx o =37

=, sinfx 11 ", sinx_ 15]

Iﬂdx =g I__dx =g (13)

We may conclude this scction with the positive note
that there does exist a copious supply of band-limited
functions, for these functions have a knack of cross as
well as self-breeding. Clearly, a linear combination of
two band-limited functions is band-limited, with band-
width equal to the larger of the individual band-widths.
From the convolution property it is transparent that the
product of two band-limited functions is band-limited,
with band-width equal to the sum of the individual
band-widths. Since convolution translates under Fourier
transformation into pointwise multiplication, it follows
that the convolution of two band-limited functions results
in a band-limited function whose band-width is the
smaller of the individual band-widths. We can make a
stronger statement, for band-limited functions have the
following ‘ideal’ property: convolution of a band-limited

gx(V)

-5 -4 -3 -2 -] 1 2 3 4 5
Figure 2. Showing g (v), for k=1, 2, 3, 4. Note that g, (v') becomes
smoother and broader with increasing k&, and vanishes outside the

interval Wl <k
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function with any function is band-limited! Finally, if
f(x) is band-limited, then f(x —a) and f(x) exp (icx), for
any real a, ¢, are band-limited as well. Thus, for instance,
sin"x/x" 1s band-hmited with band-width m, for every
m=2n, for sin”""x and sin" x/x" are band-limited with
band-widths (m—n) and n respectively. (There is a
misprint in this regard following eq. (11) of ref. 2, but
ref. 2 is free of such a misprint.) Indeed, a reader who
is not very familiar with Fourier transforms will find
it interesting to graph the Fourier transform of sin"*?

x/x" for n=1, 2, 3, 4.

More identities

Krishnan saw in his main result eq. (8) a rich source
of mathematical identities, and he exploited eq. (8) in
this regard in several different ways. While we shall
now outline a few of these, it should be remarked at
the outset that each identity Krishnan so derives is a
‘type’ 1dentity in the sense that it applies to every.
function in the infinite dimensional family of band-limited
functions or, in some cases, to an infinite dimensional
sub-family thereof.

For instance, suppose we have a band-limited function
fix) whose integral is ‘standard’ in the sense that it is
known. For each such function eq. (8) can be viewed
as an identity that sums a series and, moreover, the
resulting identity will exhibit invariance under restricted
scaling a and unrestricted translation 6. Indeed, the
tdentity eq. (2) and the unnumbered one following it
serve as examples of this fact, corresponding respectively
to filx)=sin’ x/x* and f{x)=sinx/x. Since the Gaussian
is not band-limited, there exists no such identity corre-
sponding to it, and this explains the nonidentity eq. (5).

Now consider the family of band-limited functions
fix) that are odd. Their Fourier transforms g(v) will be
odd as well. What is important for Krishnan is the fact
that g(v) will necessarily vanish at v=0. Krishnan
considers the example

BcosfBx sinpPx
x 2

fx)=

whose Fourier transform turns out to be

(v)z;;'\/yz/z, for IviI<S,
5 0, forlvi>p

The main result, eq. (8), applied to this function reads

—

- | .,
p cos B (na + 6 ___smﬁ(ncr+0)
az 4 na+0 (na+0)

p=—0a \ A
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= ' A

=J‘ dx ﬁCZSﬁx_SII;Iﬁx

=\ y
=27 g(0) =0,

for 0<a<2n/p.

That the integral above is zero follows from the fact
that the integrand is odd. Thus Krishnan obtained the
following identity:

_ cos B (na+8) _ sinf (na+06)
B> =Y

na + 0 (na + 6)3

n==—wea

for 0<a<2a/p,

notwithstanding the fact that the integrals corresponding
to the left and right sides, namely

j“dx cosf3 x

= sinfix
. and _[_de .

diverge! It is to be understood that «, @ are chosen
such that n+0 is not equal to zero for any integer
value n.

The Fourier pair f(x), g(v) in the above example is
among the list of band-limited functions Krishnan had
picked from the monograph on Fourier integrals referred
to earlier. The following remark is intended to show
that there is nothing mysterious regarding the band-
limitedness of this f(x). This remark will also help to
make it transparent that the above identity is a ‘type’
identity, by showing that the family of odd band-limited
functions is simply ‘as large as’ the even one.

If g(v) is the Fourier transform of f(x), then ivg (v)
is the Fourier transform of the derivative of f(x). It
follows that the derivative of a (odd/even) band-limited
function is a (even/odd) band-limited function [In ret-
rospect, we should have added differentiation to the
operations which take band-limited functions to band-
limited functions, already listed following eq. (13)]. The
above Fourier pair is precisely of this type: f(x) is the
derivative of f, (x) and hence g(v) is iv times g, (v)
defined in the previous section.

Krishnan’s fascination for and familiarity with the
works of Ramanujan are well known. The latter had
derived” several formulae of the Poisson summation
formula type. Recall that Krishnan’s main result, eq.
(8), was a direct consequence of the interplay between
Poisson’s summation formula and band-limitedness of
a function, By applying Ramanujan’s more general for-
mulae to band-limited functions, Krishnan was able to
derive several interesting identities, Unfortunately, due
to the constraint to keep the length of this note within
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reasonable limits, I am not able to detail here this pretty
part of Krishnan’s work. I hope this article will motivate
the reader to consult the original.

Sampling theorem

I wish to conclude this note by showing that Krishnan’s
main result 1s essentially equivalent t0 the celebrated
sampling theorem. Note that eq. (8) which is a direct
consequence of the Poisson summation formula is valid
even when f(x) is neither real nor even. It says that
g (0), the Fourier transform of any band-limited function
f(x) evaluated at zero ‘frequency’, can be faithfully
reconstructed from the samples of the function at regular
intervals a, if the sampling interval @ is bounded above
by the reciprocal of the bandwidth of f (x). The sampling
theorem, on the other hand, asserts that the band-limited
function itself can be faithfully reconstructed from its
samples, provided the sampling interval is bounded
above by the reciprocal of twice the bandwidth.

Now, multiplication of f(x) by a phase factor linear

in x goes over to translation in the Fourier transform
domain:

fAx)y= f(x) EMF? gv)=g(v—v) (14)

Clearly, if f(x) is band-limited with band-width v,, then
f,(x), 1s band-limited as well with band-width

< (v, + V1), and hence the result eq. (8) applies to f, (x).
We have (with @ =0),

Q E f(m) eftr'nmr'___Jl- do f(-x) e—-r’v’x

= —0n

=\2r . g2 (v)),

for O<a<2a/(v,+1v'1l). (15)

Since the relevant range of V' is |V 1<y, , it is now
clear from eq. (13) that if O<a<n/y, then g(v) over
the entire range vl <v, can be fully reconstructed from
the samples of f(x). Since faithful reconstruction of
2(v) is the same as faithful reconstruction of f{x), one
indeed finds that Krishnan’s result, eq. (8), is equivalent
to the sampling theorem,

A pictorial representation may help to clarify why
the critical sampling rate (Nyqvist rate) required for
faithful reconstruction of a function is twice as tight as
the one required for reconstruction of its integral alone.
To this end it is useful to consider a function consisting
of an array of equispaced Dirac delta functions of equal
‘heights’. This function is given the descriptive name
comb tunction:
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comb (x) = z O (x — n).

FE N

(16)

It is clear that a comb function goes to another comb
function under Fourier transformation:

omb {=]— d_(4v
- d gy N2 |\Wr

NI S (v-“ m]

(17)

A comb function is simply a lattice of points, and under
Fourier transformation a lattice with spacing d goes to
the reciprocal lattice with spacing 2n/d, a result that
generalizes to higher dimensions.

We may now use the comb function to conveniently

express all the samples { f(na)} of f(x) in a single
function

_ fqam (x) = cOmb (ﬁ] fO)=a), fna)d(x-na)(18)

= on

If g (v) is the Fourier transform of f(x) and g__ (v) that

of the sampled function f_,_ (x), we have from the
convolution property and eq. (17)

g.. (v)=FT. of {comb (—é—]} * g (v)

\
* g (v)

\f_z:é [V—Zﬂr \
/

m=—o

W [v—%m).

Thus, sampling at regular intervals renders the Fourier
transform periodic, by producing, in addition to the
original Fourier transform g (v), perfect copies centred
at 2tmla, m=+1, 2, ... as side bands at regular
intervals on both sides (Figure 3); g (v) 1s the super-
position of all these side bands and the original. If
these are mutually nonoverlapping, as will happen it
a<alv, then sampling leaves the spectrum basically

undistorted, notwithstanding the multipleﬁmpies, and so

multiplication of g__ by a filter function A (v) possessing

(19)

the property
) 1, for lvli<vy,
AW)= 0, for Ivi2Qn/a)-v,
arbitrary,  for v, <lvl<2a/a)-yv,,
(20)
1244

will reconstruct the original g (v) exactly:

A

Zam N A (M) =g ). (21)
On the other hand, if our Interest is restricted to g (0),
the integral of f(x), then we will require the side bands
not to overlap with the original at v=0, and we can
afford to allow overlap elsewhere. This leads to the
condition a < 2n/v,, twice weaker than the condition for
reconstruction of g (v) in full.

Under inverse Fourier transformation the reconstruction
eq. (21) takes the convolution form

fx) = o () XA (X)

\

= az f(na)o (x—na)

J

==2, f(1a) A(x=na)

*xA(x)

N =—an
g(v)
|
{
=¥y Vo
Zsam(V)
:" \ :' 1‘ : 1‘ :" \1
' 1 ! \
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Figure 3. Effect of sampling on the Fourier spectrum of a band-limited
function. (a) Spectrum g (v) of the original function f(x) before sampling,
with band-width v, (b) spectrum g, (v) of the sampled function f__

(x). The side bands are centred at 2Jmh:z n=+1, +2, There is

no overlap if a<alv, But no overlap at v=10 requnres* the weaker
condition a < 2na/lv,.
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where A{x) isnthe inverse Fourter transform of the
filter function A(v).

We see that A(x) plays the role of an inrerpolation
function. The {reedom [see eq. (20)] available 1n the
choice of A(v) [and hence of A(x)] should be appreciated,
each choice for the interpolation function obedient to
eq. (20) will faithfully reconstruct f (x) from its sampies
{ f(na)}. This interpolation or reconstruction algorithm,
which Krishnan did not consider, 1s often viewed as
part of the statement of the sampling theorem.

An example of filter function that satisties the require-
ment, eq. (20), is the ideal low pass filier, defined by

R 1, for lvi<p,
AW=10, forlvl2p, (23)
W< <(2a/a)-v,

The corresponding interpolation function is the familiar
sinc function

20 sinfx
A(x)-—-%—'/jx : (24)

so that the reconstruction formula, eq. (22), reads

sin [ (x— na)]
Blx—na)

f@=%73 foa (25)

N = - oo

Clearly, A(x) is the output the filter ﬂ(v) will yield
for a d-function input. In the case of electronic circuitry,
where the Fourier pair (x, v) corresponds to (tirne, angular
frequency), the o-function will correspond to an ideal pulse
(or impulse), and so the filter Green’s function A(x) is
given the descriptive name impulse response function (In
the case of optical systems, where the o-function corre-
sponds to the field amplitude of a point source, the Green’s
function is called the point spread function). If one simply
sends In the time scries of pulses corresponding to the
samples {f(na)} through the low pass filter, eq. (23) or
eq. (20), the continuous time signal that appears at the
output will be f(x), exactly! This 1s what the reconstruction
algonthm, eq. (22), asserts. |

Commenting on a draft of this article, N. Kumar rephrased
in an interesting manner Krishnan's main result and the
sampling theorem which reconstruct, under certain physi-
cally meaningful conditions, the whole from its parts: A
band-limited function is ‘implicated” by any lattice whose
lattice spacing does not exceed a characteristic value. He
found this reminding of the implicate nature of the true
works of the human mind on the one hand, and a theorem
of F. Carlson which characterizes the holomorphic functions
which are implicated by the set of integer points O, 1, 2,
... (bounded on one side) on the other",

Shannon’s sampling theorem'', whose influence in the
field of signal processing cannot be over-emphasized,
appeared in 1949, It turns out that the sampling theorem
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was known to Whittaker'?, But it is only after the work
of Shannon that the sampling theorem became popular
as a powerful tool in signal processing. For this reason,
the theorem is often referred to as the Whittaker-Shannon
sampling theorem. We may note in passing that with
the appearance in 1968 of Goodman’s book”, whose
system approach revolutionized the teaching of classical
wave optics, the sampling theorem became part of the
folklore in optics as well.

It is interesting that the mathematical result Krishnan
was deeply moved by is equivalent to the sampling
theorem, and independent of Whittaker and Shannon.
While conventional wisdom viewed the sampling theorem
as an engineering tool in signal processing, Krishnan
saw it as a rich source of deep mathematical identities.
[ have not been able to trace the extent of the influence
this particular work of Krishnan had on the work of
others. It'seems Krishnan would not have cared. In any
case, he chose not to publish more in mathematics. His
interest in mathematics appears to have been a life long
affair of the heart. Only once did he choose not to
conceal it, or so it will seem to the future generations.

A colleague remarked, on seeing an earlier draft of
this note, that he was reminded of a celebrated world
class batsman, who would have deserved a place in any
international cricket team simply for his skills as a
bowler, but chose to bowl in public only once. And he
found this imagery irresistible.

1. Kathlcen Lonsdale and Bhabha, H. J., in Biographical Memnoirs of
Fellows of the Royal Society, 1967, vol. 13. Knshnan's published
works are listed. It has the following footnote of interest: ‘The first
draft of this notice was prepared by the late Dr Bhabha, H. J,, F.R.S,
and was found amongst his papers lae in 1966'. 1 am grateful to
Professor G. Rajasekaran for drawing my attention to this remark.

2, Krishnan, K. S., Narure, London, 1948, 162, 215.

. Krishnan, K. S., J. Indian Math. Soc., 1948, 12, 79.

4, Bbatia, A. B. and Krishnan, K. S., Proc. R. Svc., 1948, Al92,
[81. Professor N. Mukunda has been kind enough to remind me

of the following statement that occurs in the preface of M. Botn
and E. Wolf, Principlex of Optics (Pergamon Press, Oxford, 1959)
[some authors rightly prefer to refer to this treatise as rhe bible of
non-quantwun optics]: ‘This approach 18 of considerable physical
significance and 1ts power is illustrated in a later chuapter (Chapter
X1I) in connection with the diffraction of light by ultrasonic wawves,
first treated in this way by A. B. Bhatita and W, J. Nobie; Chapter
X1l was contributed by Prof. Bhatia himself”.

. Einstein, A., Ann. Phys., 1910, 33, 1294,

6. Bellman, R., A Brief Introduction ta Theta Functions, Holt, Rinchart

and Winston, New York, 1961, p. 1t.

7. Goodman, J. W., Introduction to Fourier Optics, 2nd edn. MeGraw-
Hill, New York, 1996, The first edition appeared in 1968,

8. Ramanwan, S, Q0. J Maih, 1920, 48, 2494,

9. Ramanujan, S,, Messenger Maths,, 1915, 44, 15,

10. Hille, E., Andalvtie Function Theory, Chelsea Publishing Co,, New
York, 1962, vol. II; Dadson, M., Cure. Sci., 1992, 63, 253,

1], Shannon, C. E., Proc, IRE, 1949, 37, 11,

12, Whittaker, E. T, Proc. R Soc. Edinbargh, 1913, A35, |5,

Lad

" |

ACKNOWLEDGEMENT, I am thankiul o i S Aun Kumay for
his assistance with the tlustrafions.,

345



