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FURTHER NICE EQUATIONS FOR NICE GROUPS

SHREERAM S. ABHYANKAR

Abstract. Nice sextinomial equations are given for unramified coverings of
the affine line in nonzero characteristic p with PΩ−(2m, q) and Ω−(2m, q) as
Galois groups where m > 3 is any integer and q > 1 is any power of p > 2.

1. Introduction

Let m > 3 be any integer, let q > 1 be any power of a prime p > 2, consider
the polynomials F− = F−(Y ) = Y n + T q

2
Y u
′

+ XqY u − XY w − TY w′ − 1 and
F ∗ = F ∗(Y ) = Y n

∗
+XY +1 in indeterminates T,X, Y over an algebraically closed

field k of characteristic p, where n = 1+q+ · · ·+q2m−1, u′ = 1+q+ · · ·+qm+1, u =
1+q+· · ·+qm, w = 1+q+· · ·+qm−2, w′ = 1+q+· · ·+qm−3, n∗ = 1+q+· · ·+qm−1,
and consider their respective Galois groups Gal(F−, k(X,T )) and Gal(F ∗, k(X)).
Both these are special cases of the families of polynomials giving unramified cov-
erings of the affine line in nonzero characteristic which were written down in
my 1957 paper [A01]. In my “Nice Equations” paper [A04], as a consequence
of Cameron-Kantor Theorem I [CaK] on antiflag transitive collineation groups, I
proved that Gal(F ∗, k(X)) = the projective special linear group PSL(m, q). In the
present paper, as a consequence of Kantor’s characterization of Rank 3 groups in
terms of their subdegrees [Kan], supplemented by Cameron-Kantor Theorem IV
[CaK], I shall show that Gal(F−, k(X,T )) = the projective negative orthogonal
group PΩ−(2m, q).1 Note that Kantor’s Rank 3 characterization depends on the
Buekenhout-Shult characterization of polar spaces [BuS] which itself depends on
Tits’ classification of spherical buildings [Tit]. Recall that the Rank of a transitive
permutation group is the number of orbits of its 1-point stabilizer, and the sizes of
these orbits are called subdegrees.

As a corollary of the above theorem that the Galois group of F− is PΩ−(2m, q), I
shall show that the Galois group of a more general polynomial f− is also PΩ−(2m, q).
Moreover, by slightly changing f− and F−, I shall show that we get polynomials
φ− and φ−2 whose Galois group is the negative orthogonal group Ω−(2m, q). The
polynomials f−, φ− and φ−2 are also special cases of the families of polynomials
giving unramified coverings of the affine line in nonzero characteristic written down
in [A01].
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As in [A03] and [A04], here the basic techniques will be MTR (the Method of
Throwing away Roots) and FTP (Factorization of Polynomials).

It is a pleasure to thank Bill Kantor and Ulrich Meierfrankenfeld for inspiring
conversations about this paper.

2. Notation and Outline

Let kp be a field of characteristic p > 0, let q > 1 be any power of p, and let
m > 1 be any integer.2 To abbreviate frequently occurring expressions, for every
integer i ≥ −1 we put

〈i〉 = 1 + q + q2 + · · ·+ qi (convention: 〈0〉 = 1 and 〈−1〉 = 0).

We shall frequently use the geometric series identity

1 + Z + Z2 + · · ·+ Zi =
Zi+1 − 1
Z − 1

and its corollary

〈i〉 = 1 + q + q2 + · · ·+ qi =
qi+1 − 1
q − 1

.

Let

f− = f−(Y ) = Y 〈2m−1〉 − 1 +
m−1∑
i=1

(
T q

i

i Y
〈m−1+i〉 − TiY 〈m−1−i〉

)
and note that then f− is a monic polynomial of degree 〈2m − 1〉 = 1 + q + q2 +
· · · + q2m−1 in Y with coefficients in the polynomial ring kp[T1, . . . , Tm−1]. Now
the constant term of f− is −1 and the Y -exponent of every other term in f−

is 1 modulo p, and hence f− − Y f−Y = −1 where f−Y is the Y -derivative of f−.
Therefore DiscY (f−) = −1 where DiscY (f−) is the Y -discriminant of f−, and
hence the Galois group Gal(f−, kp(T1, . . . , Tm−1)) is well-defined as a subgroup of
the symmetric group Sym〈2m−1〉.

For 1 ≤ e ≤ m− 1, let f−e be obtained by substituting Ti = 0 for all i > e in f−,
i.e., let

f−e = f−e (Y ) = Y 〈2m−1〉 − 1 +
e∑
i=1

(
T q

i

i Y
〈m−1+i〉 − TiY 〈m−1−i〉

)
and note that then f−e is a monic polynomial of degree 〈2m−1〉 = 1+q+q2 + · · ·+
q2m−1 in Y with coefficients in the polynomial ring kp[T1, . . . , Te] and, as above,
DiscY (f−e ) = −1 and the Galois group Gal(f−e , kp(T1, . . . , Te)) is a subgroup of
Sym〈2m−1〉. Note that if m > 2 and k = kp = an algebraically closed field (of
characteristic p > 0), then F− is obtained by substituting X,T for T1, T2 in f−2
and hence Gal(F−, k(X,T )) = Gal(f−2 , kp(T1, T2)).

2In the Abstract and the Introduction we assumed p > 2 and m > 3. But in the rest of the
paper, unless stated otherwise, we only assume p > 0 and m > 1.
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In Section 3, we factor f− as f− = ff∗ where f = f(Y ) and f∗ = f∗(Y ) are
monic polynomials of degrees (qm+1)〈m−2〉 and qm−1(qm+1) in Y with coefficients
in kp[T1, . . . , Tm−1], respectively, and in case of p 6= 2 we factor f∗ further as
f∗ = f∗∗f∗∗∗ where f∗∗ = f∗∗(Y ) and f∗∗∗ = f∗∗∗(Y ) are both monic polynomials
of degree qm−1(qm + 1)/2 in Y with coefficients in kp[T1, . . . , Tm−1]. In Section
3, we show that if p = 2 then f and f∗ are irreducible in kp(T1, . . . , Tm−1)[Y ],
and if p 6= 2 then f , f∗∗ and f∗∗∗ are irreducible in kp(T1, . . . , Tm−1)[Y ]. Given
any e with 1 ≤ e ≤ m − 1, by putting Ti = 0 for all i > e in f and f∗ we get
f−e = fef

∗
e where fe and f∗e are monic polynomials of degrees (qm + 1)〈m − 2〉

and qm−1(qm + 1) in Y with coefficients in kp[T1, . . . , Te] respectively. Likewise, if
p 6= 2 then by putting Ti = 0 for all i > e in f∗∗ and f∗∗∗ we get f∗e = f∗∗e f∗∗∗e

where f∗∗e and f∗∗∗e are both monic polynomials of degree qm−1(qm + 1)/2 in Y
with coefficients in kp[T1, . . . , Tm−1]. In Section 3, we also show that if p = 2 then
fe and f∗e are irreducible in kp(T1, . . . , Te)[Y ], and if p 6= 2 then fe, f∗∗e and f∗∗∗e

are irreducible in kp(T1, . . . , Te)[Y ].
In Section 4, we throw away a root of f to get its twisted derivative f ′(Y, Z),

and we let g(Y, Z) be the polynomial obtained by first dividing the Z-roots of
f ′(Y, Z) by Y and then changing Y to 1/Y . Assuming m > 2, in Section 4, we
factor g(Y, Z) into two factors; to motivate the calculations, we first do this for
m = 3. The Z-degrees of these factors turn out to be q(qm−1 + 1)〈m − 3〉 and
q2m−2. In Section 4, assuming m > 2, we show that these factors are irreducible
in case of f2 and hence also in case of f and fe for 2 ≤ e ≤ m − 1, and therefore
Gal(f, kp(T1, . . . , Tm−1)) and Gal(fe, kp(T1, . . . , Te)) for 2 ≤ e ≤ m− 1 are Rank 3
groups with subdegrees 1, q(qm−1 + 1)〈m− 3〉 and q2m−2. In Section 6, from this
Rank 3 description, we deduce the result that if m > 3 ≤ p and kp is algebraically
closed then Gal(f−, kp(T1, . . . , Tm−1)) = Gal(f−e , kp(T1, . . . , Te)) = PΩ−(2m, q) for
2 ≤ e ≤ m− 1.

Consider the monic polynomials

φ− = φ−(Y ) = Y q
2m−1 − 1 +

m−1∑
i=1

(
T q

i

i Y
qm+i−1 − TiY q

m−i−1
)

and

φ−e = φ−e (Y ) = Y q
2m−1 − 1 +

e∑
i=1

(
T q

i

i Y
qm+i−1 − TiY q

m−i−1
)

for 1 ≤ e ≤ m− 1

of degree q2m − 1 in Y with coefficients in kp[T1, . . . , Tm−1] and kp[T1, . . . , Te],
respectively, and note that, as before, DiscY (φ−) = DiscY (φ−e ) = −1. In Section 6,
as a consequence of the above result about the Galois groups of f− and f−e , we show
that if m > 3 ≤ p and kp is algebraically closed then Gal(φ−, kp(T1, . . . , Tm−1)) =
Gal(φ−e , kp(T1, . . . , Te)) = Ω−(2m, q) for 2 ≤ e ≤ m− 1.

In Section 5, we give a review of linear algebra including definitions of PΩ−(2m, q)
and Ω−(2m, q).

3. Factorization of the Basic Equation

We find a root hm(Y ) ∈ GF(p)[Y ] of the polynomial

Y q
m+1Rq −R−

(
Y 〈2m−1〉 − 1

)
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by telescopically putting

hm(Y ) =
m−1∑
µ=0

Y (qm+1)〈m−2−µ〉

and checking that then

Y q
m+1hm(Y )q − hm(Y )−

(
Y 〈2m−1〉 − 1

)
= 0

and, for any integer 0 < i < m, we find a root hi(Y, Ti) ∈ GF(p)[Y, Ti] of the
polynomial

Y q
m+1Rq −R−

(
T q

i

i Y
〈m−1+i〉 − TiY 〈m−1−i〉

)
by telescopically putting

hi(Y, Ti) =
i−1∑
µ=0

T q
i−1−µ

i Y q
m〈i−2−µ〉+〈m−2−µ〉

and checking that then

Y q
m+1hi(Y, Ti)q − hi(Y, Ti)−

(
T q

i

i Y
〈m−1+i〉 − TiY 〈m−1−i〉

)
= 0.

By summing the above equations, upon letting

f = f(Y ) =
m−1∑
µ=0

Y (qm+1)〈m−2−µ〉 +
m−1∑
i=1

i−1∑
µ=0

T q
i−1−µ

i Y q
m〈i−2−µ〉+〈m−2−µ〉,

we get
Y q

m+1f(Y )q − f(Y )− f−(Y ) = 0.

From the above equation it follows that

f− = ff∗ where f∗ = f∗(Y ) = Y q
m+1f(Y )q−1 − 1

and
if p 6= 2 then f∗ = f∗∗f∗∗∗

where
f∗∗ = f∗∗(Y ) = Y (qm+1)/2f(Y )(q−1)/2 − 1

and
f∗∗∗ = f∗∗∗(Y ) = Y (qm+1)/2f(Y )(q−1)/2 + 1.

Note that the (µ = 0) term in the above first summation is Y (qm+1)〈m−2〉 and its
exponent (qm + 1)〈m − 2〉 is strictly greater than the Y -exponent of every other
term in the above two summations. Hence f is a monic polynomial of degree
(qm + 1)〈m− 2〉 in Y with coefficients in kp[T1, . . . , Tm−1]. Therefore f∗ is a monic
polynomial of degree (qm + 1)[1 + (q − 1)〈m − 2〉] = qm−1(qm + 1) in Y with
coefficients in kp[T1, . . . , Tm−1], and if p 6= 2 then f∗∗ and f∗∗∗ are both monic
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polynomials of degree qm−1(qm + 1)/2 in Y with coefficients in kp[T1, . . . , Tm−1].
Thus
(3.0)

f− = ff∗ where f and f∗ are monic polynomials of degrees (qm + 1)〈m− 2〉
and qm−1(qm + 1) in Y with coefficients in kp[T1, . . . , Tm−1] respectively,
and if p 6=2 then f∗= f∗∗f∗∗∗ where f∗∗ and f∗∗∗ are both monic polynomials
of degree qm−1(qm + 1)/2 in Y with coefficients in kp[T1, . . . , Tm−1].

For 1 ≤ e ≤ m − 1, let fe = fe(Y ) and f∗e = f∗e (Y ) be obtained by putting
Ti = 0 for all i > e in f and f∗, respectively, and if p 6= 2 then let f∗∗e = f∗∗e (Y )
and f∗∗∗e = f∗∗∗e (Y ) be obtained by putting Ti = 0 for all i > e in f∗∗ and f∗∗∗,
respectively. Then by (3.0),
(3.1)

for 1 ≤ e ≤ m− 1 we have:
f−e = fef

∗
e where fe and f∗e are monic polynomials of degrees (qm + 1)〈m− 2〉

and qm−1(qm + 1) in Y with coefficients in kp[T1, . . . , Te], respectively,
and if p 6=2 then f∗e = f∗∗e f

∗∗∗
e where f∗∗e and f∗∗∗e are both monic polynomials

of degree qm−1(qm + 1)/2 in Y with coefficients in kp[T1, . . . , Te].

Now

f−e = AeT
q
1 −BeT1 + Ce

where

0 6= Ae = Y 〈m〉 ∈ kp[Y ] and 0 6= Be = Y 〈m−2〉 ∈ kp[Y ]

and

Ce = Y 〈2m−1〉 − 1 +
e∑
i=2

(
T q

i

i Y
〈m−1+i〉 − TiY 〈m−1−i〉

)
∈ kp[Y, T1, . . . , Te]

and hence in particular degT1f
−
e = q. Also clearly degT1fe = 1 and hence degT1f

∗
e =

q − 1 and if p 6= 2 then degT1f
∗∗
e = (q − 1)/2 = degT1f

∗∗∗
e .

In case of p = 2, the irreducibility of fe and f∗e will follow from Lemmas (4.2)
and (4.3) of [A05]. In case of p 6= 2, for establishing the irreducibility of fe, f∗∗e
and f∗∗∗e we now prove the following lemma.

Lemma (3.2). Let Q be a field of characteristic p and consider a univariate poly-
nomial g0 = A0T

q − B0T + C0 with A0, B0, C0 in Q such that A0 6= 0 6= B0.
Assume that g0 = g′0g

′′
0 g
′′′
0 in Q[T ] with degT g′0 = 1 and degT g′′0 > 0 < degT g′′′0 .

Also assume that for some real discrete valuation I of Q (whose value group is the
group of all integers) we have GCD(q − 1, I(B0/A0)) = 2. Then g′′0 and g′′′0 are
irreducible in Q[T ].

To see this, we note that by assumption g′0 = A′0T + B′0 with 0 6= A′0 ∈ Q and
B′0 ∈ Q. Now −B′0/A′0 is a root of g0/A0 = T q − (B0/A0)T + (C0/A0) and hence

[T − (B′0/A
′
0)]q − (B0/A0)[T − (B′0/A

′
0)] + (C0/A0) = T [T q−1 − (B0/A0)].
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Therefore, in view of the Q-automorphism T → T − (B′0/A
′
0) of Q[T ], we see

that g0/A0 factors into exactly one more nonconstant monic irreducible factor
in Q[T ] as T q−1 − (B0/A0), i.e., upon writing g0/A0 = θ1θ2 . . . θρ and T q−1 −
(B0/A0) = θ′1θ

′
2 . . . θ

′
ρ′ where θ1, θ2, . . . , θρ, θ

′
1, θ
′
2, . . . , θ

′
ρ′ are nonconstant monic ir-

reducible polynomials in Q[t], we have ρ = 1 + ρ′. By assumption 2 divides q − 1
and hence we must have p 6= 2. Also 2 divides I(B0/A0) and hence I(B0/A0) = 2s
where s is an integer. We can take an element Λ in Q with I(Λ) = 1, and then
we can take an element ∆ in an algebraic closure Q∗ of Q with B0/A0 = (∆Λs)2.
Now I((B0/A0)/Λ2s) = 0 and hence by the Discriminant Criterion we see that I is
unramified in Q(∆). Therefore upon taking an extension I∗ of I to Q(∆) we have
I∗(∆Λs) = s and hence GCD((q−1)/2, I∗(∆Λs)) = 1 = GCD((q−1)/2, I∗(−∆Λs)).
In Q(∆)[T ] we have T q−1 − (B0/A0) = [T (q−1)/2 −∆Λs][T (q−1)/2 + ∆Λs]. By tak-
ing ∆′ ∈ Q∗ with ∆′(q−1)/2 = ∆Λs and then taking an extension I ′ of I∗ to
Q(∆,∆′) and letting r be the reduced ramification exponent of I ′ over I∗, we
have I ′(∆Λs)/[(q − 1)/2] = rI∗(∆Λs)/[(q − 1)/2] = rs/[(q − 1)/2]. Consequently
rs/[(q−1)/2] must be an integer and hence, because GCD((q−1)/2, I∗(∆Λs)) = 1,
it follows that r divides (q − 1)/2. Since the field degree [Q(∆,∆′) : Q(∆)] is at
least r, we conclude that [Q(∆,∆′) : Q(∆)] ≥ (q − 1)/2. Since ∆′ is a root of the
polynomial T (q−1)/2 −∆Λs, this polynomial must be irreducible in Q(∆)[T ]. Sim-
ilarly the polynomial T (q−1)/2 + ∆Λs is also irreducible in Q(∆)[T ]. Consequently
ρ′ ≤ 2 and hence ρ ≤ 3. Therefore the polynomials g′′0 and g′′′0 must be irreducible
in Q[T ].

The following lemma is an easy consequence of the Gauss Lemma.

Lemma (3.3). Let κ be a field, and let g0 = g′0g
′′
0 g
′′′
0 where g0, g

′
0, g
′′
0 , g
′′′
0 are

monic polynomials of positive degrees in Z with coefficients in the (d+ 1)-variable
polynomial ring κ[X1, . . . , Xd, T ]. Assume that the polynomials g′0, g′′0 , and g′′′0 have
positive T -degrees and are irreducible in the ring κ(X1, . . . , Xd, Z)[T ]. Also assume
that the coefficients of g0 as a polynomial in T have no nonconstant common factor
in κ[X1, . . . , Xd, Z]. Then the polynomials g′0, g′′0 and g′′′0 are irreducible in the ring
κ(X1, . . . , Xd, T )[Z].

By letting I to be the Y -adic valuation of Q = kp(Y, T2, . . . , Te), i.e., the real
discrete valuation whose valuation ring is the localization of kp[Y, T2, . . . , Te] at the
principal prime ideal generated by Y , we see that I(Ae) = 〈m〉 and I(Be) =
〈m − 2〉 and hence I(Be/Ae) = 〈m − 2〉 − 〈m〉 = −qm−1(1 + q). Therefore
GCD(q − 1, I(Be/Ae)) = 1 or 2 according as p = 2 or p 6= 2. Also obviously
Ae and Ce have no nonconstant common factors in kp[Y, T2, . . . , Te]. Therefore, if
p = 2 then by Lemmas (4.2) and (4.3) of [A05], and if p 6= 2 then by the above
Lemmas (3.2) and (3.3), for 1 ≤ e ≤ m− 1 we have that

(3.4)
{

if p = 2 then fe and f∗e are irreducible in kp(T1, . . . , Te)[Y ], and

if p 6= 2 then fe, f∗∗e and f∗∗∗e are irreducible in kp(T1, . . . , Te)[Y ].

By taking e = m− 1 in (3.4) we see that

(3.5)
{

if p = 2 then f and f∗ are irreducible in kp(T1, . . . , Tm−1)[Y ], and

if p 6= 2 then f , f∗∗ and f∗∗∗ are irreducible in kp(T1, . . . , Tm−1)[Y ].
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4. Twisted Derivative and its Factorization

Recall that

f = f(Y ) =
m−1∑
µ=0

Y (qm+1)〈m−2−µ〉 +
m−1∑
i=1

i−1∑
µ=0

T q
i−1−µ

i Y q
m〈i−2−µ〉+〈m−2−µ〉.

Solving the equation f = 0, we get

T1 =

∑m−1
µ=0 Y

(qm+1)〈m−2−µ〉 +
∑m−1
i=2

∑i−1
µ=0 T

qi−1−µ

i Y q
m〈i−2−µ〉+〈m−2−µ〉

−Y 〈m−2〉

and hence

f ′(Y, Z) =
f(Z)− f(Y )

Z − Y (def of the twisted derivative f ′ of f)

=

∑m−2
µ=0

(
Z(qm+1)〈m−2−µ〉 − Y (qm+1)〈m−2−µ〉)

Z − Y

+

∑m−1
µ=0 Y

(qm+1)〈m−2−µ〉

−Y 〈m−2〉 × Z〈m−2〉 − Y 〈m−2〉

Z − Y

+

∑m−1
i=2

∑i−1
µ=0 T

qi−1−µ

i Y q
m〈i−2−µ〉+〈m−2−µ〉

−Y 〈m−2〉 × Z〈m−2〉 − Y 〈m−2〉

Z − Y

+
m−1∑
i=2

i−1∑
µ=0

T q
i−1−µ

i

(
Zq

m〈i−2−µ〉+〈m−2−µ〉 − Y qm〈i−2−µ〉+〈m−2−µ〉)
Z − Y .

Therefore

g =g(Y, Z)

=Y (qm+1)〈m−2〉−1f ′(1/Y, Z/Y ) (def of polynomial g obtained by dividing

roots of f ′ by Y and then changing Y to 1/Y )

=

∑m−2
µ=0

(
Z(qm+1)〈m−2−µ〉 − 1

)
Y (qm+1)qm−1−µ〈µ−1〉

Z − 1

+

∑m−1
µ=0 Y

(qm+1)qm−1−µ〈µ−1〉

−1
× Z〈m−2〉 − 1

Z − 1

+

∑m−1
i=2

∑i−1
µ=0 T

qi−1−µ

i Y q
m−1−µ+i〈m−1+µ−i〉+qm−1−µ〈µ−1〉

−1
× Z〈m−2〉 − 1

Z − 1

+
m−1∑
i=2

i−1∑
µ=0

T q
i−1−µ

i

(
Zq

m〈i−2−µ〉+〈m−2−µ〉−1
)
Y q

m−1−µ+i〈m−1+µ−i〉+qm−1−µ〈µ−1〉

Z − 1
.

For i = m, the powers of Z in the last summation coincide with the corresponding
powers of Z in the first summation; moreover, for µ = m − 1, by convention(
Z(qm+1)〈m−2−µ〉 − 1

)
= 0, and hence the first summation can be extended to

m− 1. Consequently, upon letting

Diµ =
Zq

m〈i−2−µ〉+〈m−2−µ〉 − 1
Z − 1

− Z〈m−2〉 − 1
Z − 1

for 2 ≤ i ≤ m and 0 ≤ µ ≤ i− 1
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we get

g =
m−1∑
µ=0

DmµY
(qm+1)qm−1−µ〈µ−1〉

+
m−1∑
i=2

i−1∑
µ=0

DiµY
qm−1−µ+i〈m−1+µ−i〉+qm−1−µ〈µ−1〉T q

i−1−µ

i .

It follows that if m = 2 then

g =
Z
(
Zq

2 − 1
)

Z − 1
− Y q2+1 with

Z
(
Zq

2 − 1
)

Z − 1
∈ (Zkp[Z]) \

(
Z2kp[Z]

)
and hence g is irreducible in kp(Z)[Y ] and therefore by the Gauss Lemma g is
irreducible in kp(Y )[Z]. Thus

(4.0)
{

if m = 2, then g is a monic polynomial of degree q2 in Z

with coefficients in kp[Y ], and g is irreducible in kp(Y )[Z].

Henceforth assuming m > 2, and displaying dependence on T2, we get

g =D20Y
qm+1〈m−3〉T q2 +D21Y

qm〈m−2〉+qm−2
T2

+
m−1∑
µ=0

DmµY
(qm+1)qm−1−µ〈µ−1〉

+
m−1∑
i=3

i−1∑
µ=0

DiµY
qm−1−µ+i〈m−1+µ−i〉+qm−1−µ〈µ−1〉T q

i−1−µ

i .

Now upon letting

T̃i = Y q
m〈m−1−i〉Ti for 2 ≤ i ≤ m− 1

we get

g =D20T̃
q
2 +D21Y

(qm+1)qm−2
T̃2

+
m−1∑
µ=0

DmµY
(qm+1)qm−1−µ〈µ−1〉

+
m−1∑
i=3

i−1∑
µ=0

DiµY
(qm+1)qm−1−µ〈µ−1〉T̃ q

i−1−µ

i .

Hence upon letting
Ŷ = Y q

m+1

and

T̂i =
{
T̃i for 2 ≤ i ≤ m− 1,
1 for i = m,
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we get

g = D20T̂
q
2 +D21Ŷ

qm−2
T̂2 +

m∑
i=3

i−1∑
µ=0

DiµŶ
qm−1−µ〈µ−1〉T̂ q

i−1−µ

i .

Expanding the exponents of Ŷ we get

g = D20T̂
q
2 +D21Ŷ

qm−2
T̂2 +

m∑
i=3

i−1∑
µ=0

DiµŶ
qm−1−µ+···+qm−2

T̂ q
i−1−µ

i

where the dots indicate geometric series with ratio q. Upon letting

D̂iµ = Di,i−1−µ for 2 ≤ i ≤ m and 0 ≤ µ ≤ i− 1

we get

D̂iµ =
Zq

m〈µ−1〉+〈m−1−i+µ〉 − Z〈m−2〉

Z − 1
for 2 ≤ i ≤ m and 0 ≤ µ ≤ i− 1

and arranging the terms according to descending powers of Ŷ we get

g = D̂20Ŷ
qm−2

T̂2 + D̂21T̂
q
2 +

m∑
i=3

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i

and simplifying the expression of D̂20 and D̂21 we have

D̂20 = −
Z〈m−3〉

(
Zq

m−2 − 1
)

Z − 1
and D̂21 =

Z〈m−2〉 (Zqm − 1
)

Z − 1
.

For a moment, assuming m = 3, we note that

g = D̂20Ŷ
qT̂2 + D̂21T̂

q
2 + D̂30Ŷ

1+q + D̂31Ŷ
q + D̂32

where

D̂20 =−Z (Zq − 1)
Z − 1

and D̂21 =
Z1+q

(
Zq

3 − 1
)

Z − 1
and D̂30 =−

(
Z1+q − 1

)
Z − 1

and

D̂31 =
Z1+q

(
Zq

3−q − 1
)

Z − 1
and D̂32 =

Z1+q
(
Zq

3+q4 − 1
)

Z − 1

and to factor g we try to find a T̂2-root E30Ŷ +E31 of g. To do this we first put

E30 =
D̂30

−D̂20

=
(Z1+q−1)
Z−1

−Z(Zq−1)
Z−1

=

(
Z1+q − 1

)
−Z (Zq − 1)

,
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then we put

E31 =
D̂31 + D̂21E

q
30

−D̂20

=

Z1+q
(
Zq

3−q−1
)

Z−1 +
Z1+q

(
Zq

3
−1
)

Z−1

(
(Z1+q−1)
−Z(Zq−1)

)q
Z(Zq−1)
Z−1

=
Zq
(
Zq

3−q − 1
)(

Zq
2 − 1

)
−
(
Zq

3 − 1
)(

Zq
2+q − 1

)
(Zq − 1)

(
Zq2 − 1

)
=

(
Zq

3+q2 − Zq3 − Zq2+q + Zq
)
−
(
Zq

3+q2+q − Zq3 − Zq2+q + 1
)

(Zq − 1)
(
Zq2 − 1

)
=
Zq

3+q2 − Zq3q2+q + Zq − 1
(Zq − 1)

(
Zq2 − 1

)
=

(Zq − 1)
(
−Zq3+q2

+ 1
)

(Zq − 1)
(
Zq2 − 1

)
=

(
−Zq3+q2

+ 1
)

(
Zq2 − 1

) ,

and finally we calculate the term free of Ŷ to be

D̂32 + D̂21E
q
31 =

Z1+q
(
Zq

3+q4 − 1
)

Z − 1
+

Z1+q
(
Zq

3 − 1
)

Z − 1


(
−Zq3+q2

+ 1
)

(
Zq2 − 1

)
q

=
Z1+q

(
Zq

3+q4 − 1
)

Z − 1
+
Z1+q

(
−Zq3+q4

+ 1
)

Z − 1
= 0.

Alternatively, for “the fictitious term” E32, we have

E32 =
D̂32 + D̂21E

q
31

−D̂20

=
D̂32

−D̂20

+

(
D̂21

−D̂20

)(
D̂31 + D̂21E

q
30

−D̂20

)q

= −D̂32

D̂20

+
D̂21D̂

q
31

D̂1+q
20

+
D̂1+q

21 Eq
2

30

D̂1+q
20

= −D̂32

D̂20

+
D̂21D̂

q
31

D̂1+q
20

− D̂1+q
21 D̂q2

30

D̂1+q+q2

20

and by substituting the values of D̂20, D̂21, D̂30, D̂31, D̂32, we see this to be 0.
Now, without assuming m = 3, but henceforth again assuming m > 2, to factor

g, for any 3 ≤ i ≤ m, we try to find a T̂2-root
i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i
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of

D̂20Ŷ
qm−2

T̂2 + D̂21T̂
q
2 +

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i ,

i.e., we try to find Eiµ in GF(p)(Z) such that
i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i =− D̂20Ŷ
qm−2

(
i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)

− D̂21

(
i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)q
.

Equating coefficients of
Ŷ q

m−i+µ+···+qm−2
T̂ q

µ

i

to zero, we try to find Eiµ in GF(p)(Z) such that

D̂iµ =


−D̂20Eiµ for µ = 0,

−D̂20Eiµ − D̂21E
q
i,µ−1 for 1 ≤ µ ≤ i− 2,

−D̂21E
q
i,µ−1 for µ = i− 1.

Since D̂20 6= 0, we can successively find the values of Eiµ for 0 ≤ µ ≤ i − 2 by
solving all except the last equation, and then get a condition by substituting these
in the last equation. Upon letting

Jiµ =
µ∑
j=0

(−1)〈µ−j〉
D̂
〈µ−j−1〉
21 D̂qµ−j

ij

D̂
〈µ−j〉
20

for 0 ≤ µ ≤ i− 1

these values are
Eiµ = Jiµ for 0 ≤ µ ≤ i− 2

and the condition is
Ji,i−1 = 0.

Substituting the simplified expressions of D̂20 and D̂21, for 0 ≤ µ ≤ i − 1 and
0 ≤ j ≤ µ we get

D̂
〈µ−j−1〉
21

D̂
〈µ−j〉
20

=

[
Z〈m−2〉 (Zqm − 1

)
Z − 1

]〈µ−j−1〉 [
Z − 1

−Z〈m−3〉
(
Zqm−2 − 1

)]〈µ−j〉

=
Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉∏µ−j−1

l=0

(
Zq

m − 1
)ql

(−1)〈µ−j〉(Z − 1)−qµ−j
∏µ−j
l=0

(
Zqm−2 − 1

)ql
=
Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉∏µ−j−1

l=0

(
Zq

m+l − 1
)

(−1)〈µ−j〉(Z − 1)−qµ−j
∏µ−j
l=0

(
Zqm−2+l − 1

)
=
Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉∏m+µ−j−1

l=m

(
Zq

l − 1
)

(−1)〈µ−j〉(Z − 1)−qµ−j
∏m+µ−j−2
l=m−2

(
Zql − 1

)
=

Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉
(
Zq

m+µ−j−1 − 1
)

(−1)〈µ−j〉(Z − 1)−qµ−j
(
Zqm−2 − 1

) (
Zqm−1 − 1

)
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where, for the last equation, a separate but trivial argument may be made in
the case of j = µ by noting that then the extra (purposefully inserted) term(
Zq

m+µ−j−1 − 1
)

in the numerator equals the extra term
(
Zq

m−1 − 1
)

in the de-

nominator. Therefore by substituting the values of D̂ij , for 0 ≤ µ ≤ i − 1 we
get

Jiµ =
µ∑
j=0

(−1)〈µ−j〉

 Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉
(
Zq

m+µ−j−1 − 1
)

(−1)〈µ−j〉(Z − 1)−qµ−j
(
Zqm−2 − 1

) (
Zqm−1 − 1

)
×

×
[
Zq

m〈j−1〉+〈m−1−i+j〉 − Z〈m−2〉

Z − 1

]qµ−j

=
µ∑
j=0

Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉+qm+µ−j〈j−1〉+qµ−j〈m−1−i+j〉
(
Zq

m+µ−j−1 − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)

−
µ∑
j=0

Z〈m−2〉〈µ−j−1〉−〈m−3〉〈µ−j〉+qµ−j〈m−2〉
(
Zq

m+µ−j−1 − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)
where

the first exponent of Z in the last summation

= 〈m− 2〉〈µ− j − 1〉 − 〈m− 3〉〈µ− j〉+ qµ−j〈m− 2〉
= [〈m− 2〉(〈µ− j〉 − qµ−j)− (〈m− 2〉 − qm−2)〈µ− j〉] + qµ−j〈m− 2〉
= qm−2〈µ− j〉

and

the first exponent of Z in the last but one summation

= 〈m− 2〉〈µ− j − 1〉 − 〈m− 3〉〈µ− j〉+ qm+µ−j〈j − 1〉+ qµ−j〈m− 1− i+ j〉
= [〈m− 2〉(〈µ− j〉 − qµ−j)− (〈m− 2〉 − qm−2)〈µ− j〉]

+ qm+µ−j〈j − 1〉+ qµ−j〈m− 1− i+ j〉
= [qm−2〈µ− j〉 − qµ−j〈m− 2〉] + qm+µ−j〈j − 1〉+ qµ−j〈m− 1− i+ j〉
= [qm−2〈µ− j〉+ qm+µ−j−1 + qm+µ−j〈j − 1〉]− qµ−j [〈m− 2〉 − 〈m− 1− i+ j〉]
− qm+µ−j−1

= qm−2〈µ+ 1〉 − qm+µ−i〈i− 2− j〉 − qm+µ−j−1.
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Hence

Jiµ =
µ∑
j=0

Zq
m−2〈µ+1〉−qm+µ−i〈i−2−j〉−qm+µ−j−1

(
Zq

m+µ−j−1 − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)
−

µ∑
j=0

Zq
m−2〈µ−j〉

(
Zq

m+µ−j−1 − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)
=

µ∑
j=0

Zq
m−2〈µ+1〉−qm+µ−i〈i−2−j〉(
Zqm−2 − 1

) (
Zqm−1 − 1

) − µ∑
j=0

Zq
m−2〈µ+1〉−qm+µ−i〈i−1−j〉(
Zqm−2 − 1

) (
Zqm−1 − 1

)
−

µ∑
j=0

Zq
m−2〈µ−j+1〉(

Zqm−2 − 1
) (
Zqm−1 − 1

) +
µ∑
j=0

Zq
m−2〈µ−j〉(

Zqm−2 − 1
) (
Zqm−1 − 1

)
=
µ+1∑
j=1

Zq
m−2〈µ+1〉−qm+µ−i〈i−1−j〉(
Zqm−2 − 1

) (
Zqm−1 − 1

) − µ∑
j=0

Zq
m−2〈µ+1〉−qm+µ−i〈i−1−j〉(
Zqm−2 − 1

) (
Zqm−1 − 1

)
−

µ∑
j=0

Zq
m−2〈µ−j+1〉(

Zqm−2 − 1
) (
Zqm−1 − 1

) +
µ+1∑
j=1

Zq
m−2〈µ−j+1〉(

Zqm−2 − 1
) (
Zqm−1 − 1

)
=
Zq

m−2〈µ+1〉−qm+µ−i〈i−2−µ〉(
Zqm−2 − 1

) (
Zqm−1 − 1

) − Zq
m−2〈µ+1〉−qm+µ−i〈i−1〉(

Zqm−2 − 1
) (
Zqm−1 − 1

)
− Zq

m−2〈µ+1〉(
Zqm−2 − 1

) (
Zqm−1 − 1

) +
Zq

m−2(
Zqm−2 − 1

) (
Zqm−1 − 1

)
=
Zq

m−2〈µ+1〉−qm+µ−i〈i−1〉
(
Zq

m+µ−i(〈i−1〉−〈i−2−µ〉) − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)
−
Zq

m−2
(
Zq

m−2(〈µ+1〉−1) − 1
)

(
Zqm−2 − 1

) (
Zqm−1 − 1

)
=

(
Zq

m−2〈µ+1〉−qm+µ−i〈i−1〉 − Zqm−2
)(

Zq
m−1〈µ〉 − 1

)
(
Zqm−2 − 1

) (
Zqm−1 − 1

) .

Therefore

Jiµ =

(
Z−q

m+µ−i〈i−3−µ〉 − Zqm−2
)(

Zq
m−1〈µ〉 − 1

)
(
Zqm−2 − 1

) (
Zqm−1 − 1

)
=
−
(
Zq

m+µ−i〈i−2−µ〉 − 1
)(

Zq
m−1〈µ〉 − 1

)
Zqm+µ−i〈i−3−µ〉

(
Zqm−2 − 1

) (
Zqm−1 − 1

) .
Now by putting µ = i− 1 we see that

Ji,i−1 = 0.

It follows that, upon letting

Eiµ=
−
(
Zq

m+µ−i〈i−2−µ〉 − 1
)(

Zq
m−1〈µ〉 − 1

)
Zqm+µ−i〈i−3−µ〉

(
Zqm−2 − 1

) (
Zqm−1 − 1

) for 3 ≤ i ≤ m and 0 ≤ µ ≤ i− 1
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we have

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i

= −D̂20Ŷ
qm−2

(
i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)

− D̂21

(
i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)q
for 3 ≤ i ≤ m.

By q-linearity, summing the above equations we get

m∑
i=3

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i

= −D̂20Ŷ
qm−2

(
m∑
i=3

i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)

− D̂21

(
m∑
i=3

i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

)q
.

Therefore recalling that

D̂20 = −
Z〈m−3〉

(
Zq

m−2 − 1
)

Z − 1
and D̂21 =

Z〈m−2〉 (Zqm − 1
)

Z − 1

and letting

D = −D̂21/D̂
q
20 and E = D̂20

m∑
i=3

i−2∑
µ=0

EiµŶ
qm−i+µ+···+qm−3

T̂ q
µ

i

we get
D = Z(Z − 1)(qm−1+1)(q−1)

and

E=
m∑
i=3

i−2∑
µ=0

(
Zq

m+µ−i〈i−2−µ〉 − 1
Z − 1

)(
Z〈µ〉 − 1
Z − 1

)qm−1

Z〈m+µ−i−1〉Ŷ q
m−i+µ+···+qm−3

T̂ q
µ

i

and

−DEq + Ŷ q
m−2

E +
m∑
i=3

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i = 0.

The above equation says that E/D̂20 is a T̂2-root of

g = D̂21T̂
q
2 + D̂20Ŷ

qm−2
T̂2 +

m∑
i=3

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i .
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Hence upon letting

g′ = E − D̂20T̂2 and g′′ = DEq−1 − Ŷ qm−2
+
q−1∑
l=1

DD̂l
20E

q−1−lT̂ l2

we obtain

g′g′′ =
(
DEq − Ŷ qm−2

E
)

+
q−1∑
l=1

DD̂l
20E

q−lT̂ l2

−
(
DD̂20E

q−1 − D̂20Ŷ
qm−2

)
T̂2 −

q∑
l=2

DD̂l
20E

q−lT̂ l2

=
(
DEq − Ŷ qm−2

E
)

+
(
DD̂20E

q−1
)
T̂2 +

q−1∑
l=2

DD̂l
20E

q−lT̂ l2

−
(
DD̂20E

q−1 − D̂20Ŷ
qm−2

)
T̂2 −

(
q−1∑
l=2

DD̂l
20E

q−lT̂ l2

)
−DD̂q

20T̂
q
2

= D̂21T̂
q
2 + D̂20Ŷ

qm−2
T̂2 +

(
DEq − Ŷ qm−2

E
)

= D̂21T̂
q
2 + D̂20Ŷ

qm−2
T̂2 +

m∑
i=3

i−1∑
µ=0

D̂iµŶ
qm−i+µ+···+qm−2

T̂ q
µ

i

= g.

Thus we get the factorization

(4.1) g = g′g′′

where by substituting the values of Ŷ and T̂i we have
(4.2)

g =D̂21Y
qm+1〈m−3〉T q2 + D̂20Ŷ

qm−2+qm〈m−2〉T2 +
m−1∑
µ=0

D̂mµY
(qm+1)qµ〈m−2−µ〉

+
m−1∑
i=3

i−1∑
µ=0

D̂iµY
(qm+1)qm−i+µ〈i−2−µ〉+qm+µ〈m−1−i〉T q

µ

i

and

(4.3) g′ = E − D̂20Y
qm〈m−3〉T2

and

(4.4) g′′ = DEq−1 − Y (qm+1)qm−2
+
q−1∑
l=1

DD̂l
20E

q−1−lY q
m〈m−3〉lT l2

and
(4.5)

E=
m−2∑
µ=0

ÊmµY
(qm+1)qµ〈m−3−µ〉+

m−1∑
i=3

i−2∑
µ=0

ÊiµY
(qm+1)qm−i+µ〈i−3−µ〉+qm+µ〈m−1−i〉T q

µ

i
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with

(4.6)
Êiµ =

(
Zq

m+µ−i〈i−2−µ〉 − 1
Z − 1

)(
Z〈µ〉 − 1
Z − 1

)qm−1

Z〈m+µ−i−1〉

for 3 ≤ i ≤ m and 0 ≤ µ ≤ i− 2,

and where we recall that

(4.7) D̂iµ =
Zq

m〈µ−1〉+〈m−1−i+µ〉 − Z〈m−2〉

Z − 1
for 3 ≤ i ≤ m and 0 ≤ µ ≤ i− 1

and

(4.8) D̂20 = −
Z〈m−3〉

(
Zq

m−2 − 1
)

Z − 1
and D̂21 =

Z〈m−2〉 (Zqm − 1
)

Z − 1

and

(4.9) D = −D̂21/D̂
q
20 = Z(Z − 1)(qm−1+1)(q−1).

By (4.6) we see that, for 3 ≤ i ≤ m and 0 ≤ µ ≤ i− 2, Êiµ is a monic polynomial
of degree

qm+µ−i〈i− 2− µ〉 − 1 + qm−1(〈µ〉 − 1) + 〈m+ µ− i− 1〉 = q〈m− 3〉+ qm〈µ− 1〉

in Z with coefficients on GF(p). Therefore, since Y (qm+1)qµ〈m−3−µ〉 = 1 for µ =
m− 2, by (4.5) we see that E is a monic polynomial of degree

q〈m− 3〉+ qm〈(m− 2)− 1〉 = q(qm−1 + 1)〈m− 3〉

in Z with coefficients in GF(p)[Y, T2, . . . , Tm−1]. Consequently, in view of (4.3) and
(4.8) we conclude that g′ is a monic polynomial of degree q(qm−1 + 1)〈m− 3〉 in Z
with coefficients in GF(p)[Y, T2, . . . , Tm−1]. Obviously g is a monic polynomial of
degree

(degY f)− 1 = (qm + 1)〈m− 2〉 − 1 = qm〈m− 2〉+ q〈m− 3〉

in Z with coefficients in GF(p)[Y, T2, . . . , Tm−1]. Hence in view of (4.1), (4.4), (4.8)
and (4.9) we see that g′′ is a monic polynomial of degree

qm〈m− 2〉+ q〈m− 3〉 − q(qm−1 + 1)〈m− 3〉 = q2m−2

in Z with coefficients in GF(p)[Y, T2, . . . , Tm−1]. Thus
(4.10){

g′ and g′′ are monic polynomials of degrees q(qm−1 + 1)〈m− 3〉 and q2m−2

in Z with coefficients in GF(p)[Y, T2, . . . , Tm−1] respectively.

Without assuming m > 2, for 1 ≤ e ≤ m− 1, let f ′e and ge denote the members
of GF(p)[Y, Z, T2, . . . , Te] obtained by putting Ti = 0 for all i > e in f ′ and g
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respectively. Then f ′e is the twisted derivative of fe, and dividing the Z-roots of f ′e
by Y and afterwards changing Y to 1/Y we get ge which is a monic polynomial of
degree qm〈m− 2〉+ q〈m− 3〉 in Z with coefficients in GF(p)[Y, T2, . . . , Te].

Again henceforth assuming m > 2, for 1 ≤ e ≤ m− 1, let g′e and g′′e denote the
members of GF(p)[Y, Z, T2, . . . , Te] obtained by putting Ti = 0 for all i > e in g′

and g′′ respectively. Then in view of (4.1) and (4.10),

(4.11)


for 1 ≤ e ≤ m− 1 we have ge = g′eg

′′
e where g′e and g′′e are

monic polynomials of degrees q(qm−1 + 1)〈m− 3〉 and q2m−2 in Z

with coefficients in GF(p)[Y, T2, . . . , Te] respectively.

By (4.2), (4.3), (4.5), (4.6), (4.7) and (4.8) we have

g2 = A2T
q
2 −B2T2 + C2 and g′2 = A′2T2 +B′2

where A2, B2, C2, A
′
2, B

′
2 are the nonzero elements in GF(p)[Y, Z] given by

A2 = D̂21Y
qm+1〈m−3〉 and B2 = −D̂20Ŷ

qm−2+qm〈m−2〉

and

C2 =
m−1∑
µ=0

D̂mµY
(qm+1)qµ〈m−2−µ〉

and

A′2 = −D̂20Y
qm〈m−3〉 and B′2 =

m−2∑
µ=0

ÊmµY
(qm+1)qµ〈m−3−µ〉.

By letting I to be the Z-adic valuation of Q = kp(Y, Z), i.e., the real discrete
valuation whose valuation ring is the localization of kp[Y, Z] at the principal prime
ideal generated by Z, we see that I(A2) = 〈m− 2〉 and I(B2) = 〈m− 3〉 and hence
I(B2/A2) = 〈m− 3〉 − 〈m− 2〉 = −qm−2 and therefore GCD(q− 1, I(B2/A2)) = 1.
In view of (4.7) and (4.8) we also see that A2 and C2 have no nonconstant common
factor in kp[Y, Z], because µ = m− 1 gives the nonzero term D̂m,m−1 of C2 which
is independent of Y , and µ = 0 gives the highest Y -degree term of C2 and its
coefficient is

D̂m0 =
1− Z〈m−2〉

Z − 1
.

Therefore by Lemmas (4.2) and (4.3) of [A05] we conclude that

(4.12) the polynomials g′2 and g′′2 are irreducible in kp(Y, T2)[Z].

As an immediate consequence of (4.12) we see that

(4.13)


the polynomials g′ and g′′ are irreducible in kp(Y, T2, . . . , Tm−1)[Z]
and, for 2 ≤ e ≤ m− 1,
the polynomials g′e and g′′e are irreducible in kp(Y, T2, . . . , Te)[Z].

Note that

(4.14) in (4.1) to (4.13) we assumed m > 2.

Recall that fe is irreducible in kp(T1, T2, . . . , Te)[Y ], its twisted derivative is
f ′e(Y, Z), and ge is obtained by dividing the Z-roots of f ′e(Y, Z) by Y and then
changing Y to 1/Y ; therefore by (4.0), (4.1), (4.10), (4.11), (4.13) and (4.14) we
get the following
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Theorem (4.15). If m = 2 then Gal(f, kp(T1)) = Gal(f1, kp(T1)) is a 2-tran-
sitive permutation group of degree qm + 1. If m > 2 and 2 ≤ e ≤ m − 1 then
Gal(fe, kp(T1, . . . , Te)) is a transitive permutation group of Rank 3 with subdegrees
1, q(qm−1 + 1)〈m − 3〉 and q2m−2. Hence in particular, if m > 2 then
Gal(f, kp(T1, . . . , Tm−1)) is a transitive permutation group of Rank 3 with subde-
grees 1, q(qm−1 + 1)〈m− 3〉 and q2m−2.

Notation. Recall that < denotes a subgroup, and / denotes a normal subgroup. Let
the groups SL(m, q) /GL(m, q) / ΓL(m, q) and PSL(m, q) /PGL(m, q) /PΓL(m, q)
and their actions on GF(q)m and P(GF(q)m) be as on pages 78-80 of [A03]. Let

Θm : ΓL(m, q)→ PΓL(m, q) = ΓL(m, q)/GF(q)∗

be the canonical epimorphism where we identify the multiplicative group GF(q)∗

with scalar matrices, which constitute the center of GL(m, q).
Now in view of Proposition 3.1 of [A04], by (3.0), (3.1), (3.4) and (3.5) we get

the following

Theorem (4.16). Assuming GF(q) ⊂ kp, for 1 ≤ e ≤ m− 1, in a natural manner
we may regard

Gal(φ−e , kp(T1, . . . , Te)) < GL(2m, q) and Gal(f−e , kp(T1, . . . , Te)) < PGL(2m, q)

and then
Θ2m(Gal(φ−e , kp(T1, . . . , Te))) = Gal(f−e , kp(T1, . . . , Te))

and Gal(f−e , kp(T1, . . . , Te)) has two or three orbits on P(GF(q)2m) of sizes
(qm + 1)〈m − 2〉, qm−1(qm + 1) or (qm + 1)〈m − 2〉, qm−1(qm + 1)/2,
qm−1(qm + 1)/2 according as p = 2 or p 6= 2. In particular, again assuming
GF(q) ⊂ kp, in a natural manner we may regard

Gal(φ−, kp(T1, . . . , Tm−1)) < GL(2m, q)

and

Gal(f−, kp(T1, . . . , Tm−1)) < PGL(2m, q)

and then

Θ2m(Gal(φ−, kp(T1, . . . , Tm−1))) = Gal(f−, kp(T1, . . . , Tm−1))

and Gal(f−, kp(T1, . . . , Te)) has two or three orbits on P(GF(q)2m) of sizes
(qm + 1)〈m − 2〉, qm−1(qm + 1) or (qm + 1)〈m − 2〉, qm−1(qm + 1)/2,
qm−1(qm + 1)/2 according as p = 2 or p 6= 2.

Recall that a quasi-p group is a finite group which is generated by its p-Sylow
subgroups. Since DiscY f−e = −1 = DiscY φ−e for 1 ≤ e ≤ m− 1, by the techniques
of the proofs of Proposition 6 of [A01] and Lemma 34 of [A02] we get the following

Theorem (4.17). If kp is algebraically closed then, Gal(f−e , kp(T1, . . . , Te)) and
Gal(φ−e , kp(T1, . . . , Te)) for 1 ≤ e ≤ m−1, are quasi-p groups. In particular, if kp is
algebraically closed then, Gal(f−, kp(T1, . . . , Tm−1)) and Gal(φ−, kp(T1, . . . , Tm−1))
are quasi-p groups.
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5. Review of Linear Algebra

Recall that we are assuming m > 1. Let ε ∈ {+,−}. Let ε′ = (1 − ε1)/2 and
note that then ε′ = 0 or 1 according as ε = + or − respectively.

Fix ν ∈ GF(q) such that T 2 + T + ν is irreducible in GF(q)[T ]. Consider the
quadratic forms ψ+(x) = x1xm+1 + · · · + xmx2m and ψ−(x) = x1xm+1 + · · · +
xm−1x2m−1 + x2

m + xmx2m + νx2
2m. Define the orthogonal group Oε(2m, q) as

the group of all e ∈ GL(2m, q) which leave the quadratic form ψε unchanged,
i.e., ψε(xe) = ψε(x). Let the general orthogonal group GOε(2m, q) be defined
as the group of all e ∈ GL(2m, q) such that for some λ(e) ∈ GF(q) we have
ψε(ξe) = λ(e)ψε(ξ) for all ξ ∈ GF(q)2m. Let the semilinear orthogonal group
ΓOε(2m, q) be defined as the group of all (τ, e) ∈ ΓL(2m, q), with τ ∈ Aut(GF(q))
and e ∈ GL(2m, q), such that for some λ(τ, e) ∈ GF(q) we have ψε(ξτe) =
λ(τ, e)ψε(ξ)τ for all ξ ∈ GF(q)2m. Define the special orthogonal group SOε(2m, q) =
SL(2m, q) ∩ Oε(2m, q). Let O′ε(2m, q) be the commutator subgroup of Oε(2m, q).
Let Ωε(2m, q) = O′ε(2m, q) if (m, q, ε) 6= (2, 2,+), and let Ω+(4, 2) be the subgroup
of SO+(4, 2) containing O′+(4, 2), as defined in Definition 4 on page 30 of [LiK], such
that [SO+(4, 2) : Ω+(4, 2)] = 2 = [Ω+(4, 2) : O′+(4, 2)]. Thus we get the sequence
O′ε(2m, q) < Ωε(2m, q) < SOε(2m, q) < Oε(2m, q) < GOε(2m, q) < ΓOε(2m, q)
of orthogonal groups and by applying Θ2m to them we get the corresponding se-
quence PO′ε(2m, q) < PΩε(2m, q) < PSOε(2m, q) < POε(2m, q) < PGOε(2m, q) <
PΓOε(2m, q) of projective orthogonal groups.3

Note that for any H < GL(2m, q) we have

(5.1) Ωε(2m, q) < H ⇔ PΩε(2m, q) < Θ2m(H).

In case (m, q, ε) 6= (2, 2,+), this follows exactly as in the proof of Lemma 2.3 of
[A04] because then by Theorem 11.46 of [Tay] Ωε(2m, q) is generated by Siegel
transformations. By the definition of a Siegel transformation (11.17 of [Tay]) we
see that its order is p or 1, and the said proof is based on the fact that the group
is generated by elements of p-power order, i.e., equivalently the fact that it is a
quasi-p group. So (5.1) holds also for (m, q, ε) = (2, 2,+) because by Proposition
2.9.1(iv) of [LiK] Ω+(4, 2) is a quasi-2 group.

3Instead of taking the specific quadratic form ψε, in [LiK] these groups are defined for each
quadratic form of “Witt defect ε′”. Dickson [Dic] defines these groups for p 6= 2 by taking a
different set of specific quadratic forms thus: if either ε = + and q ≡ 1 (mod 4) or ε = + and
q ≡ 3 (mod 4) with m even or ε = − and q ≡ 3 (mod 4) with m odd then take the quadratic
form to be x2

1 + · · · + x2
2m; if either ε = + and q ≡ 3 (mod 4) with m odd or ε = − and q ≡ 3

(mod 4) with m even then take the quadratic form to be x2
1 + · · · + x2

2m−1 − x2
2m; and finally

if ε = − and q ≡ 1 (mod 4) then take the quadratic form to be x2
1 + · · · + x2

2m−1 − µx2
2m with

µ ∈ GF(q) \GF(q)2. By the singular points of PΩε(2m, q) we mean the images in P(GF(q)2m) of
the nonzero ξ ∈ GF(q)2m at which the quadratic form vanishes. By Exercise 11.3 on page 174 of

[Tay] we see that the cardinality of the singular points of PΩε(2m, q) is (qm−1+ε′ +1)〈m−1− ε′〉,
and hence the cardinality of the nonsingular points of PΩε(2m, q) is qm−1(qm − 1 + 2ε′). By
11.24 and 11.27 on pages 150-151 of [Tay] we see that PΩε(2m, q) acts transitively on its singular
points, and by using Witt’s Lemma (page 81 of [Asc]) we see that if p = 2, then PΩε(2m, q)
acts transitively on its nonsingular points, whereas if p 6= 2, then PΩε(2m, q) has two equal size
orbits of nonsingular points. Finally, by the sixth line of Table 5.4.C on page 200 of [LiK] which

starts with D±l (q)), we see that if m > 3 and Φ < PGL(2m, q) is isomorphic to PΩε(2m, q), then

PΩε(2m, q) = δ−1Φδ for some δ ∈ PGL(2m, q).
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By 2.1.B, 2.10.4(ii) and 2.10.6(i) of [LiK], for any H < GL(2m, q) we have

(5.2) Ωε(2m, q) / H ⇔ Ωε(2m, q) < H < GOε(2m, q)

and by 2.1.C of [LiK] we have

(5.3) [GOε(2m, q) : Ωε(2m, q)]
{ 6≡ 0 (mod p) if p > 2,

= 2 if p = 2.

Since Ωε(2m, q) is quasi-p, it is generated by the p-power elements of
Ωε(2m, q)GF(q)∗, and hence these two subgroups have the same normalizer in
GL(2m, q). Also clearly GF(q)∗ < GOε(2m, q). Therefore by (5.2), for any G <
PGL(2m, q) we have

(5.4) PΩε(2m, q) / G⇔ PΩε(2m, q) < G < PGOε(2m, q)

and by (5.3) we get

(5.5) [PGOε(2m, q) : PΩε(2m, q)]
{ 6≡ 0 (mod p) if p > 2

= 2 if p = 2.

Finally, since GF(q)∗ < GOε(2m, q), for any H < GL(2m, q) we have

(5.6) H < GOε(2m, q)⇔ Θ2m(H) < PGOε(2m, q).

In view of Theorem IV of [CaK], by Corollary 1(iii) of Kantor [Kan] we get the
following:

Theorem (5.7) [KANTOR]. Assume that m > 3. Let G be a transitive permu-
tation group of Rank 3 with subdegrees 1, q(qm−2+ε′ + 1)〈m − 2 − ε′〉 and q2m−2.
Then the permuted set can be identified with the singular points of PΩε(2m, q) so
that PΩε(2m, q)1 / G < PΓOε(2m, q)1 where PΩε(2m, q)1 and PΓOε(2m, q)1 de-
note the permutation groups on the said singular points induced by PΩε(2m, q) and
PΓOε(2m, q) respectively.

For applying (5.7), we first prove the following

Lemma (5.8). Let G < PGL(m, q) have orbits ∆1 . . . ,∆e of sizes d1, . . . , de on
P(GF(q)m), and note that then

∑n
i=1 di = 〈m−1〉. Assume that there is no positive

integer r < m together with a proper subset ρ of {1, . . . , e} such that
∑
i∈ρ di =

〈r − 1〉. Also assume that there is no integral divisor s > 1 of m together with a
disjoint partition σ(1) ∪ · · · ∪ σ(s) = {1, . . . , e} of {1, . . . , e} into pairwise disjoint
nonempty subsets σ(1), . . . , σ(s) such that for 1 ≤ j ≤ s we have

∑
i∈σ(j) di =(

s
j

)
(q − 1)j−1〈(m/s)− 1〉j. Then G acts faithfully on each of its orbits.

Namely, the first assumption implies that Θ−1
m (G) does not map any proper

subspace of GF(q)m (of positive dimension r < m) onto itself.4 Therefore, regarding

4In view of this observation, by the last line of Table 5.4.A on page 199 of [LiK] which starts

with D±l (q), we see that if m = 3 and Φ < PGL(2m, q) is isomorphic to and has the same size

orbits as PΩε(2m, q), then PΩε(2m, q) = δ−1Φδ for some δ ∈ PGL(2m, q).
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P(GF(q)m) as the set of all 1-dimensional subspaces of GF(q)m, it follows that ∆1

spans GF(q)m. Let Ψ = {γ ∈ Θ−1
m (G) : γ(M) = M for all M ∈ ∆1}. Then

Ψ / Θ−1
m (G). Recall that a maximal eigenspace of Ψ is a maximal subspace L of

GF(q)m such that for some homomorphism αL : Ψ → GF(q)∗ we have γ(z) =
αL(γ)z for all γ ∈ Θm(Ψ) and z ∈ L. Since ∆1 spans GF(q)m, we get a direct sum
decomposition GF(q)m = L1 +· · ·+Ls where L1, . . . , Ls are maximal eigenspaces of
Ψ. Since Ψ/Θ−1

m (G), it follows that Θ−1
m (G) acts transitively on this decomposition,

and hence dim Li = m/s for 1 ≤ i ≤ s. For 1 ≤ j ≤ s let Λj be the set of all
M ∈ P(GF(q)m) such that, for every 0 6= z ∈ M , the cardinality of {1 ≤ i ≤ s :
proji(z) 6= 0} is j where proji : L1 + · · ·+Ls → Li is the natural projection. Then
the cardinality of Λj is

(
s
j

)
(q−1)j−1〈(m/s)−1〉j. Since Θ−1

m (G) acts transitively on
the above decomposition, there is a disjoint partition σ(1)∪ · · · ∪ σ(s) = {1, . . . , e}
of {1, . . . , e} such that for 1 ≤ j ≤ s we have Λj = ∪i∈σ(j)∆i. Therefore for
1 ≤ j ≤ s we have

∑
i∈σ(j) di =

(
s
j

)
(q − 1)j−1〈(m/s) − 1〉j . Consequently by the

second assumption we must have s = 1. Therefore Ψ = GF(q)∗ and hence G acts
faithfully on ∆1. Similarly G acts faithfully on each of its orbits.

In view of (5.8) and the previous two footnotes, we get the following corollary of
(5.7):

Corollary (5.9). Assume that m > 3. Let G < PGL(2m, q) have 2 or 3 or-
bits on P(GF(q)2m) of sizes (qm + 1)〈m − 2〉, qm−1(qm + 1) or (qm + 1)〈m − 2〉,
qm−1(qm + 1)/2, qm−1(qm + 1)/2 according as p = 2 or p 6= 2. Assume that G is
Rank 3 with subdegrees 1, q(qm−2+ε′ +1)〈m−2− ε′〉 and q2m−2 on the orbit of size
(qm + 1)〈m− 2〉. Then PΩε(2m, q) / δ−1Gδ for some δ ∈ PGL(2m, q).

As in (5.7), let PΩε(2m, q)1 denote the permutation group induced by PΩε(2m, q)
on its singular points (whose cardinality is (qm + 1)〈m − 2〉). In case of p =
2, let PΩε(2m, q)2 denote the permutation group induced by PΩε(2m, q) on its
nonsingular points (whose cardinality is qm−1(qm + 1)). In case of p 6= 2, the
permutation groups induced by PΩε(2m, q) on its two nonsingular orbits (whose
common cardinality is qm−1(qm + 1)/2) are easily seen to be equivalent and we
denote them by PΩε(2m, q)2. Now by (5.8) we see that

(5.10) PΩε(2m, q)1 ≈ PΩε(2m, q) ≈ PΩε(2m, q)2

where ≈ denotes isomorphism as abstract groups.

6. Galois Groups

By (4.15), (4.16), (5.1), (5.6) and (5.9) we get the following

Theorem (6.1). If m > 3 and GF(q) ⊂ kp, then, for 2 ≤ e ≤ m− 1, in a natural
manner, we have

Ω−(2m, q) < Gal(φ−e , kp(T1, . . . , Te)) < GO−(2m, q)

and
PΩ−(2m, q) < Gal(f−e , kp(T1, . . . , Te)) < PGO−(2m, q).

Hence in particular, if m > 3 and GF(q) ⊂ kp then, in a natural manner we have

Ω−(2m, q) < Gal(φ−, kp(T1, . . . , Tm−1)) < GO−(2m, q)
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and
PΩ−(2m, q) < Gal(f−, kp(T1, . . . , Tm−1)) < PGO−(2m, q).

By (3.0), (3.1), (3.4), (3.5), (4.17), (5.2), (5.3), (5.4), (5.5), (5.10) and (6.1) we
get the following

Theorem (6.2). If m > 3 ≤ p and kp is algebraically closed, then, for 2 ≤ e ≤
m− 1, in a natural manner we have

Gal(φ−, kp(T1, . . . , Tm−1) = Gal(φ−e , kp(T1, . . . , Te) = Ω−(2m, q)

and

Gal(f−, kp(T1, . . . , Tm−1)) = Gal(f−e , kp(T1, . . . , Te)) = PΩ−(2m, q)

and

Gal(f, kp(T1, . . . , Tm−1)) = Gal(fe, kp(T1, . . . , Te))

= PΩ−(2m, q)1 ≈ PΩ−(2m, q)

and

Gal(f∗∗, kp(T1, . . . , Tm−1)) = Gal(f∗∗e , kp(T1, . . . , Te))

= PΩ−(2m, q)2 ≈ PΩ−(2m, q)

and

Gal(f∗∗∗, kp(T1, . . . , Tm−1)) = Gal(f∗∗∗e , kp(T1, . . . , Te))

= PΩ−(2m, q)2 ≈ PΩ−(2m, q).

Remark (6.3). We shall discuss the m ≤ 3 or p = 2 case elsewhere.
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