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Nonlinear fluctuating hydrodynamics and sequence of time
scales of relaxation in supercooled liquids
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Abstract. Nonlinear fluctuating hydrodynamic (NFH) models for relaxation in the supercooled |
liquid are considered. Recent results on self consistent mode coupling theory for the slow relaxation
of density fluctuations are analyzed to explain the glassy dynamics. The relaxation mechanisms for
different types of models with and without wave vector dependences are discussed. For the
schematic models where all wave vector dependences are dropped a sequence of time scales enters
the relaxation process. For the non-ergodicity parameter very close to the ideal transition point is
scaled by an exponent equal to 1 /2. This is demonstrated here through an analysis of the mode-
coupling equations for the wave vector dependent models that follow from equations of NFH.
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1. Introduction

In the last ten years a good amount of progress has been achieved on the understanding of
the dynamics of supercooled liquids using models derived from the nonlinear fluctuating
hydrodynamic equations for the compressible fluid [1,2]. In these models the transport
coefficients for the supercooled liquid are obtained in terms of self-consistent expressions
of the hydrodynamic correlation functions. This constitute a feedback mechanism [3,4]
giving rise to slow relaxation in the supercooled liquid. In the self consistent mode
coupling models for glass transition, the feed back effects from the terms involving the
slowly decaying density fluctuations are analyzed assuming that they produce the
dominant contribution at supercooled states. In this paper we will focus our discussion on
the nonlinear hydrodynamic models, specially with structural effects taken into account.

The present form of the mode-coupling theory (MCT) for supercooled liquid dynamics
was initiated from the work of Leutheusser by showing that a model obtained from the
kinetic theory of dense fluids exhibits an ergodic-nonergodic transition which has
features similar to a liquid-glass transition. The model leads to a viscosity which diverges
as (T — To) * as the temperature T approaches the ideal glass transition To. The exponent
o was found to take values a ~ 2. Later it was demonstrated [5] that the sharp transition
is cutoff due to a mechanism arising from coupling of density and current fluctuations in
a compressible fluid and this keeps the system ergodic at all temperatures. However the
analysis done in ref. [5] also showed that the feed back mechanism from the coupling of
density fluctuations does cause a substantial enhancement of the viscosity. Thus although
the sharp transition is cutoff there are some strong remnants of it with a qualitative
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change in the supercooled liquid dynamics around a temperature To higher than the usual
glass transition temperature. Indeed such behavior was observed in a number of liquids
[6,7] termed as the fragile liquids. In a number of subsequent works [7] the cutoff
mechanism responsible for ergodic behavior at the longest time scale in the supercooled
liquid was simply ignored and the relaxation behavior around the point which involves a
sharp transition from ergodic to non ergodic behavior was analyzed. The simplest
example of this type is the Leutheusser model which consider a schematic form of the
mode-coupling theory with all g dependence being dropped, but only the main
characteristics of the dynamic instability being preserved. A sequence of time scales enter
the relaxation process in the schematic model. However, when the full wave vector
dependence in the models are taken into account , through a realistic static structure
factor this aspect changes somewhat. We discuss these in the present work by presenting
a simple analysis of the wave vector dependent model here.

We will divide the discussion mainly into two parts namely the idealized models with a
sharp transition and the fully self-consistent model in which there is no sharp transition in
the dynamic behavior of the liquid. In §2 we first discuss the nonlinear fluctuating
hydrodynamic equations for a compressible fluid with a simple choice of conserved
densities as slow variables and discuss how the mode coupling model is obtained from
these equations. In § 3, we discuss the idealized model which has a dynamic instability
giving rise to the so called glass transition and discuss the various time scales that enter
the relaxation process. In the next section we discuss the fully self consistent model with
the cutoff mechanism for restoring ergodicity and discuss some recent results regarding

the nature of the kernel for the cutoff mechanism. We end the paper with a small
discussion. '

2. Fluctuating hydrodynamics of compressible liquid

In the present work we will consider the set of hydrodynamic variables [5] as the

mass density p, the momentum density g, and the flow velocity v defined through the
nonlinear constraint

The equations of motion for the hydrodynamic variables, are obtained using the well

known Zwanzig-Mori [8] formalism and are valid for small and finite wavelengths. The
equation for p is given by '

Op
%= VB - (2)

and that for g is the generalized nonlinear Navier Stokes equation with thermal noise
agi —_— 6Fu 1 / 6F
5 = —pV,—(S;—zj:Vj(givj) “;/dXLij(x—x)er@ia (3)
where F,[p(x)] is the potential energy part of the effective Hamiltonian F defined [9] as

F=%/d3xg2(x)/p(x)+Fu. (4)
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NFH in supercooled liquids

Following the usual forms common in the density functional theories, Fy is taken as an
expansion of an inhomogeneous equilibrium liquid

(Bm)Fulp(x)] = / dxp(){In]p(x)/c) — 1} +Fule] (5)

where the first term is the ideal gas entropy term and the interaction term Fiy to lowest
order can be obtained (up to a constant) as

Fulf =~ 5 / s c® (x — x)5p(x)8p() ()

with 8p(x, ) = p(x,2) — py and 8 = 1/ksT ¢(x) is the equilibrium two particle correlation
function for the liquid. In an isotropic fluid the bare transport matrix L;(x) is related to
the Gaussian noise ©; through the fluctuation dissipation relation

(@i(X, t)@j(x’, t’)) = 2kBTij(X)§(X - Xl)ﬁ(t - t,). ‘ (7)

For an isotropic fluid the bare transport matrix L;(x) or its Fourier transform
Lila) = [ e Ly() | ®)

can be expressed in terms of two indepeﬁdent transport coefficients given by

Ly(q) = aiaiT°(a) + 1465 = g’ (9)- )

In the small wavenumber limit, [°(g) and 7°(q) are the bare longitudinal and shear
viscosities respectively. Since we will be applying these equations for finite wavelengths
here, more generalized expressions for these quantities are obtained with the use of
Enskog type models [10]. These reflect the short time properties referring to uncorrelated
random collisions in the system. :

In order to investigate the effects the nonlinearities in the hydrodynamic equations will
have on the transport properties of the fluid, a field theory of the Martin—-Siggia—Rose
(MSR) [11] type was used in ref. []- The advantage of using the MSR field theory here i8
that the renormalized expressions for the various quantities are obtained in a self
consistent manner in terms of the full correlation functions and is very useful in
demonstrating the feedback mechanism that results in slow relaxation at supercooled
densities. The field theoretic treatment of the problem is done following the techniques
developed in the theories of dynamical critical point phenomena and for this the
interested reader is referred to the papers cited under ref. [11]. For the analysis as applied
to the theory of the compressible fluids see ref. [5, 12]. In the present discussion we give a
very brief account of the steps used in obtaining the mode coupling models as applied for
supercooled liquids. The fully renormalized theory of the hydrodynamic correlation
fanctions are obtained in terms of the self energy matrix & defined through the Dyson
equation

61 (q,w) = Go~ (@) — S(a,), | (10)

where Gy refers to the matrix of correlation functions obtained from the equations of
linearized hydrodynamics. The main quantity of interest here is the density auto
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correlation function whose Fourier transform is defined as

Golart) = [ e =)0~ 50,08, 0), (11)

where the angular bracket refers to the average over the stationary states. In ref. [5] the
following form for the Fourier-Laplace transform of Gp,(x, t) normalized withi respect to
its equal time value is obtained in the small g and w limit

_ z+iD*(¢,2)
$(a:2)=7— Q2 +iDR (g, 2)[e + iv(a,2)] "

Here Q2 = ¢*[BmS(g)]”" and D;%(g,z) is the renormalized longitudinal viscosity. The
Laplace transform of ¢(¢) is defined as

$(z) = (=) Aw dte(s), Im(z) > 0. (13)

Similarly the Laplace transform for the transverse current fluctuation (normalized with

respect to its equal time value) is given by

1

¢ (g,2) = Py e (14)

where 7%(g,z) is the renormalized shear viscosity. In the formulation of the MSR type

field theory the renormalized memory kernels on the R.H.S of (12) and (14) have the
mode coupling contributions at the one loop level respectively given by

D™ (g,t) =X /

djr‘)z Ha-k)e(®) + {a-(a - X)}e(la - k)P

(2
X Gop(q — k,1)Gpp(k, ) (15)
and
7(g,1) = X / (—;1:—)3 [c(k) — c(a— k)*K*(1 — 1) Gpplq — k, 1)Gpp(k;, 1),
(16)

where A = (2[:?m“,90)*1 and u = §-k while § is the unit vector along the direction
of q. The quantity y(g,z) in the RH.S of (12) arises from the coupling between
the density fluctuations and current fluctuations in a compressible fluid. In the asymp-
totic limit when the viscosity become large due to the feedback coming from mode
coupling contributions, the density autocorrelation function given by (12) develops a

pole at
z+iv(g,2) =0. 17)

Thus ergodicity is restored over a time scale of 1/-(0,0), representing the longest time
scale in the relaxation of the density correlation function. However, in the simple model
where all the nonhydrodynamic corrections coming from time scales of the order of g2
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NFH in supercooled liquids

are ignored the simplified model has a dynamic instability similar to the liquid-glass
transition. In the next section we will consider this model first to demonstrate the several
relaxation processes that can be included in the context of mode coupling theory and the
consequences of a proper wave vector dependence in the theory.

3. Effects of the feedback mechanism and sequence of time scales of relaxation

3.1 Schematic models without wavevector dependence

In this section we consider the simple model with the sharp instability showing a
transition to an ideal glassy phase. In this regard several different types of models
have been investigated. First we consider the schematic models where all the wave
vector dependences in the mode coupling kernels for transport coefficients are dropped
and the density autocorrelation function ¢(z) following (12) is given by the functional
equation

—o(z) .
T:QZE—(—Z-)- =z +iDL(2), (18)

where () is a microscopic frequency. In the schematic models the renormalized
expression for the viscosity Dy(z) is obtained as

oo
D) =Dh+ 5B [ - are () (19)
0
where D is the bare viscosity governing the microscopic dynamics. In studying the

feedback mechanism for slow relaxation in the supercooled liquid the memory kernel H
is expressed as a functional of the density correlation function () [7,13] given by

Hlp(n)] = Z cnd” (2)- (20)

In the model considered by Leutheusser H[¢] = ¢2¢?. The more general model with
¢; = 0 was first introduced in ref. [1]. The importance of the linear term was first pointed

- out by Goetze [14]. In the above expressions for the memory kernel all wave vector

dependences are assumed to be weak and are suppressed. The basic assumption in the
analysis of the equation (18) is that depending on the the kernel H[¢] i.e. the coefficients
c,.s there is a time range over which #(f) is approximately time independent following the
form

50 =+ (-6, | @

where f is the value of ¢(t) in some metastable state which is yet to be specified. For time
scales where the inequality |z¢y(2)] <1 is valid, we obtain to leading order from
equation (18) S :

Ao

Z

2 |
+ a1 - + L) =0 (@)
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with

Bo=H(f) - 1=

o
A = 5};[(1 ~HH(f) - f]. (23)

We have used the notation H”(f) = (68%H(f))/8f* etc. and L, stands for the Laplace
transform of the function in the argument as defined in equation (13) with variable z. An
ideal metastable state is obtained when both Ag and A; are zero giving a solution for the
decaying function ¢, (). We can determine f by setting A, = 0. This is obtained for

_c
(1-1)

with C is a constant not depending on f. At this condition Ag = (C —1)/(1 —f). An
ideal state is obtained when for a given set of ¢, we have Ag(c,) = 0. Thus the ideal
transition takes place with for C = 1 giving Ay = 0. For the Leutheusser model we obtain
that f = 1/2 and c; has a critical value of ¢; = 4. For the model by Goetze [14] we have
linear term in the kernel, i.e.

H(f)+1= (24)

H[¢] = c1¢+ cad?, (25)
with a line of critical values satisfying
¢, =2+/ck —c}. (26)

For higher order models there are critical surfaces. Note that with A; = 0 the equation
(22) can be written as

& Cia+ S miigon=o @)
For the high frequency region where the term proportional to A can be neglected i.e.

(180" < ey (2)] (28)
the above equation reduces to the simple form,

2¢,(2) — AL[g(1)] = 0 , , (29)
with A = ((1 — ) /2C) H"(f). This equation is satisfied by the function

¢, (1) = A(tQ) ™" (30)
The exponent a is given in terms of the parameter A by the equation

2

e Y (31)

where I' is the gamma function. The inequality (28) and the solution (30) obviously holds
in the time region

Q7' g T =AM (32)
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NFH in supercooled liquids

The time scale 7, diverges at the ideal transition point ie. Ao =0 Tl}ercfore ‘f’(f_) decays
algebraically towards the metastable value f. For Ap 50 j.e. points away from the
transition the dynamics is quite different for the cases Ag > 0 and Ag < 0. For By >0,
equation (27) has the solution ¢u(z) ~ A(l)/ 2/zasz—0 and

F=fo+c(Bo) + 0(Do), (33)

where f, is the value of f at the ideal transition point and ¢ is a constant. For Ag < 0 we
have from equation (27) a solution for ¢,(z) which is more singular that 1/zas z — 0 and
has the following form in the time regime

6,(t) = —B(t/7s)’ (34)
where B is a positive constant. Similar to a in (30), b satisfies the equation
2
T2(1+b) Y (35)
T'(1+2b)

Equation (34) is referred to as the von-Schweidler relaxation 1aw. Howe_ver t.his re.layfation
eventually violates the inequality |z6,(z)| < 1 and this decay mechanism is valid in the
region

T, L1 K Ta, . (36)
where 7, is given by
1 = [ Do), (37)

For ¢ > T, the system enters into the o relaxation regime. In these regime a fully analytic
solution of the mode coupling equations is still not available. Nurmerical solution for a set
of parameters [13] has shown that the solution is well fit by 2 stretched exponential

o(t) = fet ‘ (38)

The final decay of the correlation function takes place over the time scale, given by 1/7.
We show in figure 1 the sequence of times scales that enter the relaxation process in the
mode coupling models that uses the schematic forms for the memory kernel in terms of
the density correlation function.

3.2 Effects of including proper structure factor

In this case we consider the set of equations (for different 4 values),

—026(9,2)
1—26(4,2)

where the memory kernel representing the transport behavior is given by

= z+iDy(g,7), A (39)

Dy(g,2) = Di(a) + /0 " ¢?H,[6(q,1)]; (40)
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b)

Int

Figure 1. Schematic plot of the sequence of time scales in the relaxation predicted
by MCT; (a) (poxger—law decay =%, (b) von Schweidler relaxation —Bt?, (c) primary
relaxation e~/7)", (d) exponential relaxation e~.

where D?(g) is the bare viscosity [15] governing the microscopic dynamics over length
scale corresponding to wave vector g. The function H,[¢] now depends on all the values
of ¢ at different g values. In general we can have the kernel in the form

H‘l[gb(t)] = Z V(l)(Qa k1)¢(k11 t) + Z V(z) (qa k17 k2)¢(k11 t)¢(k2a t)
k ki k2

+ Z V(B)(Q) k17k2) k3)¢(k1’ t)¢(k2,t)¢(k37 t) +oeee (41)
ky k2 ke

In the model obtained using the nonlinear fluctuating hydrodynamics described in
equation (15) V() happens to be zero. Subsequently, Kim [16] has considered models of
fluctuating hydrodynamics that obtains a term in the kernel linearly proportional to the
density correlation function. We look for a solution of the above equations in the form

d(g,t) = fo+ (1 — fo)bu(a;1)- (42)

If f, happens to be a nonzero set of values beyond a certain density then this corresponds
to an ideal non ergodic state where the density correlation function decays to a finite
value instead of decaying to zero. Following an analysis similar to what is described in
the previous section for the schematic model, we obtain an equation

A s)
2|20 o)~ () + 160l )
1 #H, C |
32 (1~ R0 =Ll ¥, 0)] g~ 7 2si(e) =0
with
Mg =H() - | (44)
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Figure 2. The long time limit of the density correlation function f;, computed from
the simple model at the density n* = 0.99.

As in the other case here also we determine the f’s by choosing the term linear in ¢y, to be
vanishing. This gives rise to the condition that - :

C
H,+ 1= 4 3 (45 )
q 1— fq
- where C, are constants. Consequently, with this choice we can write
N (46)

07 1= f :
For the ideal transition point one has the condition Al =0ie. C;=1.Thus we obtain
the following condition for f;’s, :

__Hs ‘ 47
fq—Hq+1' . ) ( )

In figure 2 we show the solution for f; that is obtained using the model described by the
kernel in equation (15). For the density n* = no> below 0.99 f,s’ all are zero showing that
the dynamic instability signifying transition to the nonergodic phase takes place at this
density. In obtaining this equation we get the static structure factor or the direct
correlation function that appear in the mode coupling integrals using the Percus Yevick
(PY) solution [10] for the hard sphere system. For the points away from the transition we
see that with A% >0 the function ¢u(g,2) ~ (Ag)ll 2 /z. Thus the nonergodicity
parameter giving the strength of the 1/z pole in the density correlation function has
the behavior , : :

fa =f2 + cqel/2 +0(e), ' : o (48)
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Figure 3. The nonergodmty parameter [f, — fo] vs. € for (a) go = 4.00; (b) gqo =
7.16. The dashed line is for the exponent 1 and the solid line for a q dependent
exponent.

where € denotes the distance from the ideal transition point. Such a behavior was also

found by numerical solution of the integral equations (47) giving f,’s. In figures 3(a) and

3(b) we show the fit for a power law with exponent 1/2 (dashed line) and a wave vector
dependent exponent (solid line) for two different values of the wave vector go = 4.00 and
7.16 respectively. For distances (in temperature or density) from the transition which are
very small the square root law seems to work but for large € this seems to break down.
This square root law with the non ergodicity parameter is indeed seen in a polymeric
liquid [17] where the transition point is found to be Ty =216K, about 35K above the

phenomenological glass transition point. This observation has been viewed as important -
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NFH in supercooled liquids

evidence in favor of mode coupling theory. The important implication is that above T,
there exists a specific temperature Tp, above and below which the dynamics are quite
different. However for the other side of the transition the exponents of relaxation are
dependent on the wave vector g and this was investigated in ref. [18] from numerical
solution of the mode coupling equations.

4. The self-consistent model with the ergodicity restoring mechanism

If the quantity (g,z) is maintained then the system shows ergodicity over long time
scales. In ref. [5] it was demonstrated that the quantity (g, z) can,be obtained in terms of
the hydrodynamic correlation functions by analyzing the self energy matrix element PILEA
introduced in (10) in the form

g 1) = / pzék 5 (WG (a k) + (1 - 2)GE (o~ D|Gp(k, )
o\ ‘

-+ w1 Ggp(k, ) Ggp(a — Kk, 7)) (49)

with definition u = k-§ and u; = §(q —k)/|q —k| and the superscripfs Land T
respectively refer to longitudinal and transverse parts of the corresponding quantities in
the isotropic fluid. This self consistent expression for y was also used [12] for obtaining a
close set of functional equations for the density and current correlation functions. The
time scales of relaxation that followed from numerical solution of these equations
demonstrated good agreement with computer simulation results [19]. Indeed if would
self-consistently reduce to very small values, the supercooled dynamics is pushed to very
long times. Hence the exact form of the kernel ~(g,z) representing the cutoff mechanism
for eliminating the glass transition singularity is important. In ref. [12] this issue was
considered through a self-consistent solution of (39) and (49). In figure 4 we show the
behavior of the static longitudinal viscosity Di.(0,0) = I' with the reduced density in a
hard sphere system. Initially the viscosity shows a power law increase (with exponent
close to 2) but for higher densities the sharp transition is cutoff. This work demonstrated
that the relaxation time increases by two to three orders of magnitude showing a change
in the dynamics but it did not give rise to any diverging time scales around this mode
coupling singularity. .

The question regarding the behavior of the quantity -y i.e. how small it can be pushed to
produce extremely slow relaxation has also been investigated. This is done by using a
lower cutoff time in the computation of the mode coupling effects. The argument for this
cutoff time is as follows: the mode coupling contribution to the memory function
computes effects due to correlated collisions or cooperative dynamics in the supercooled
liquid. The long time and short time contributions to the viscosity can be separated
according to

to . [e7e] X . )
D*(q,z) = /0 dteDy*(g,1) + [  dte®D[*(g,1), (50)
0

where the time #, sets the scale beyond which cooperative dynamics is effective. The first
integral on the right side of (50) represents short time dynamics and is taken into account
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Figure 4. Square root of the inverse of the normalized longitudinal viscosity T vs.
density. The dashed line shows the power law fit for intermediate densities.

through the bare transport coefficients. The mode coupling contribution to the viscosity is
to a good approximation given by approximating it by the second integral in (50) and
ignoring the first one since the bare transport coefficient already takes short time
dynamics into account. For supercooled densities the same cutoff time is included in the
expression for the kernel -y [20, 13]. The cutoff time f, in the theory can be estimated by
fitting the value of the integrand with the computer simulation results on transport
coefficients [15,21]. For a hard sphere system good agreement with simulation data near
freezing densities were obtained with #p = 10tz where tg is the Enskog time [22] referring
to the time scale for short time dynamics for the hard sphere liquid. For supercooled
densities however, the mode coupling contribution to the viscosity is not very sensitive to
o, but «y does get influenced by the cutoff time. In a number of recent works [23] the
experimental data for relaxation in supercooled systems has been used to obtain an
estimation of the cutoff function. In this respect the computation of the cutoff function
from a fully self-consistent approach is relevant. It has been observed that even if the
short time part of the dynamics is excluded from the mode coupling contribution through
1o, the self-consistent calculation does not produce any drastic change in the relaxation
time as is seen in the strong liquids. In a number of recent works [23] the cutoff
mechanism, smoothing off the ideal glass transition in the framework of mode coupling
theory, has been incorporated with the use of experimental data. The strength of the cutoff
function is estimated there through an analysis of the data. In ref. [16] Kim investigated
the behavior of the cutoff function in a schematic model where all ¢ dependences are
dropped from the model and obtained an expression of the form

1= " b (51)
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NFH in supercooled liquids

It was found [16] that if £ was chosen sufficiently large (fp = 5007Y), v is greatly
suppressed. Therefore the suppression of 7y is obtained once the cutoff time exceeds the
microscopic value. In the fully ¢ dependent theory we see a qualitatively similar but less
enhanced effect. With reasonable approximations for 7 relevant for the short time
dynamics, does not give rise to the very strong enhancement of the viscosity. It does
indicate a slowing down of the relaxation over two to three orders of magnitudes over a
temperature or density range higher than the glass transition temperature. This is similar
to what has been termed in literature [24] as fragile liquids. It does not however give rise
to, within sensible approximations, in the framework of a self consistent calculation the
very sharp increase in viscosity seen in the strong liquids. Thus the basic results for the
relaxation time does not change drastically with the introduction of the cutoff time #; in
the framework of the fully self-consistent calculation. ‘

5. Discussion

In this paper we discuss the nonlinear fluctuating hydrodynamic equations for
compressible liquid, and how they were used for obtaining the mode coupling models
for the supercooled liquid dynamics. The theory demonstrated existence of a
characteristics temperature Tp higher than the calorimetric glass transition temperature
T such that within a narrow temperature range around T there is a freezing out of the
large scale structural rearrangements involving collective motion of many molecules. At
this temperature there is a qualitative change in the collective dynamics in the liquid
although there is no sharp glass transition characterized by a diverging viscosity. The
temperature Ty [27,7, 23] is a signature of the dynamic singularity due to mode coupling
effects. In a careful analysis [5] of the NFH equations it was demonstrated that ergodicity

s maintained at all densities. In the Das and Mazenko analysis the role of the 1 /p

nonlinearities appearing in the equations were implemented in the field theoretic analysis
through the constraint g = pv. The cutoff mechanism responsible for the absence of the
sharp transition is a direct consequence of this [29]. Ergodicity was also demonstrated
[25] in the asymptotic dynamics obtained in similar mode coupling models obtained from
microscopic approaches. In a subsequent work Schimitz De and Dufty [26] (hereafter
referred to as SDD) has also considered the equations of nonlinear fluctuating
hydrodynamics to obtain a self consistent mode coupling theory for supercooled liquids
extending it to short wavelengths. The analysis presented by these authors demonstrate
the absence of a sharp transition to an ideal glassy phase similar to the earlier work by
Das and Mazenko. In the work by SDD the role of the nonlinearities in the fluctuating
hydrodynamic equations are investigated with the underlying microscopic  dynamics
being constrained by the detailed balance condition. The authors show that special
nonlinearities of density p and momentum field g which appear in the continuity equation
to mnaintain detailed balance, do eliminate a complete structural arrest that would have
occurred if only coupling of density fluctuations were considered. In a recent work [28] it
was demonstrated that both the works gives the identical result for the final relaxation
process. The absence of the sharp glass transition in the mode coupling models is linked

to the fact that with the increase of density the kernel vy [5] does not self consistently

reduce to zero and the density correlation function decays to zero in the long time limit.
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_Indeed such an effect is also observed in a wide range of systems showing a qualitative
change in dynamics of the supercooled liquid around a characteristics temperature higher
than the calorimetric glass transition temperature although there is no sharp transition to
an ideal glassy phase. v however gets small, indicating a two/three orders of magnitude
rise in the value of transport coefficients. In ref. [30] the authors have used a sophisticated

~ form of scaling in a-relaxation of supercooled liquids. From the measurements of the

dielectric susceptibility of a variety of glass forming liquids they observed that the data
for all the sample liquids studied can be scaled so that they fall on top of one another over

13 decades of frequency. The curve is described by two parameters, the peak frequency v,

and the normalized width W (with respect to the Debye width = 1.14) of the imaginary

part of the dielectric susceptibility. While the observed scaling does fit very well to the
stretched exponential form for low frequencies it deviates significantly from the stretched
exponential form on the high frequency side. In a subsequent analysis by Kim and

Mazenko [13] demonstrated the existence of a cross over temperature in the data of Nagel

et al by plotting inverse of the peak frequency v, with temperature. The high frequency

data again fits well to the form (T — To)* and Ty = 270K for salol. These authors have
also argued that the high frequency tail observed in Nagel’s scaling curve is a realization
of the von-Schweidler relaxation in the mode coupling theory if one assumes a relation
between the exponent § of stretched exponential relaxation with the exponent b of von-

Schweidler relaxation. Such a relation does not however follow from the mode coupling

models obtained from simple nonlinear hydrodynamic models. Thus while the mode

coupling models has led to considerable progress in understanding the sequence of time

scales associated with relaxation near -glass transition, there remain still significant
questions for further research.

Acknowledgements

Saha Institute of Nuclear Physics is gratefully acknowledged for hospitality on a visit
during the preparation of this manuscript in the summer. 1996. Amit Dutta is
acknowledged for his kind help in preparing the manuscript.

References

[1] P Das, G F Mazenko, S Ramaswamy and J Toner, Phys. Rev. Lett. 54, 118 (1985)
[2] T R Kirkpatrick, Phys. Rev. A31, 939 (1985)
[3] E Leutheusser, Phys. Rev. A29, 2765 (1984)
[4] U Bengtzelius, W Gotze and A Sjélander, J. Phys. C17, 5915 (1984)
[5] S P Das and G F Mazenko, Phys. Rev. A34, 2265 (1986)
[6] P Taborek, R N Kleiman and D J Bishop, Phys. Rev. B34, 1835 (1986)
[7] W Gotze, in Liquids, Freezing and the Glass Transition edited by D Levisque, J P Hansen and
J Zinn-Justin (Elsevier, New York, 1991) ‘
[8] R Zwanzig and M Bixon, Phys. Rev. A2, 2005 (1970)
H Mori, Prog. Theor. Phys. 49, 1516 (1973)
[9] T Langer and L Turski, Phys. Rev. A8, 3230 (1973)
[10] J P Hansen and J R Mcdonald, Theory of Simple Liquids (Academic, London, 1976)
[11] P C Martin, E D Siggia and H A Rose, Phys. Rev. A8, 423 (1973)
U Deker and F Haake, Phys. Rev. Al1, 2043 (1975)

Pramana —~ J. Phys., Vol. 48, No. 2, February 1997 (Part II)
772 Special issue on “Nonlinearity & Chaos in the Physical Sciences”




NFH in supercooled liquids

U Deker, Phys. Rev. A19, 846 (1979)
For the functional integral formulation of the theory used here, see R Bausch, H Janssen and H
Wagner, Z. Phys. B24, 113 (1976) '
H J Janssen, in Dynamical Critical Phenomena and Related Topics edited by C P Enz
(Springer-Verlag, New York, 1979)
C De Dominicis and L Pelti, Phys. Rev. B18, 353 (1978)
R V Jensen, J. Stat. Phys. 25, 183 (1981)
[12] S P Das, Phys. Rev. A42, 6116 (1990) ‘
[13] B Kim and G F Mazenko, Adv. Chem. Phys. 78, 129 (1990)
[14] W Gétze, Z. Phys. BS6, 139 (1984); 60, 195 (1985)
[15] S P Das and J W Dufty, Phys. Rev. Ad6, 6371 (1992)
[16] B Kim, Phys. Rev. Ad6, 1992 (1992)
[17] D Richter, B Frick and B Farago, Phys. Rev. Lett. 61, 2465 (1988)
B Frick, B Farago and D Richter, Phys. Rev. Lett. 64, 2921 (1990)
[18] S P Das, J. Chem. Phys. 98, 3328 (1993) ,
[19] J J Ullo and S Yip, Phys. Rev. Lett. 54, 1509 (1985); Phys. Rev. A39, 5877 (1989)
[20] L Sjogren, Z. Phys. B79, 5 (1990)
[21] I M de Schepper, AFEM Hatfmans and H van Beijeren, Phys. Rev. Lett. 57, 1715 (1986)
[22] J P Boon and S Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1979)
[23] M Fuchs, W Gétze, S Hildebrand and A Latz, J. Phys. Condens. Matter 4, 7709 (1992)
H Z Cummins, W Du, M Fuchs, W Gotze, S Hildebrand, A Latz, G Li and N Tao, Phys. Rev.
E47, 4223 (1993) ‘
[24] C A Angell, Proc. Workshop on Relaxation Processes, Blacksburg, Va., July, 1983
[25] W Gotze and L Sjoren, Z. Phys. B65, 415 (1987) -
[26] R Schmitz, J W Dufty and P De, Phys. Rev. Lett. 71, 2066 (1993)
[27] J P Hansen, Physica A201, 138 (1993)

'[28] S P Das, Phys. Rev. E54, 463 (1996)

[29]1 G F Mazenko and J Yeo, J. Stat. Phys. 74, 1017 (1994)
[30] P K Dixon, L Wu, S R Nagel, B D Williams and J P Carini, Phys. Rev. Lett. 65, 1108 (1990)

Pramana - J. Phys., Vol. 48, No. 2, February 1997 (Part II)
Special issue on “Nonlinearity & Chaos in ‘the Physical Sciences” 773




	759.pdf
	760.pdf
	761.pdf
	762.pdf
	763.pdf
	764.pdf
	765.pdf
	766.pdf
	767.pdf
	768.pdf
	769.pdf
	770.pdf
	771.pdf
	772.pdf
	773.pdf

