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Transport properties of silver selenomolybdate glassy ionic conductors have been reported for wide

composition and temperature ranges. It has been observed that the transport properties of these

glasses depend strongly on the modifier content as well as on the glass formers ratio. A direct

correlation between the ion transport and the modification of the glass structure has been predicted.

Transport properties of these glasses are also strongly influenced by the existence of dual character

of SeO2 as a glass former and a glass modifier. Structural models for different compositions have

also been proposed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764929]

I. INTRODUCTION

The study of glassy ionic conductors is gaining signifi-

cant attention in recent years for their uses in electrochemi-

cal devices.1,2 They are equally important from academic

point of view to understand the ion transport properties in

complex materials.3 The ion transport properties in glasses

are mostly governed by the microscopic structural aspects of

the glass network.4–6 The enhancement of conductivity in a

systematic way is essentially the first criteria in selecting

new ionic glass as a potential candidate. There are different

ways in which the enhancement in conductivity can be

achieved. The increase of modifier oxide (e.g., Ag2O, Li2O,

etc.) preferentially breaks the glass network structure leading

to depolymerization of the glass network and this in turn

leads to the increase of non-bridging oxygen.7 In a few cases,

addition of alkali halides causes an increase in the conductiv-

ity, which has been attributed to the expansion of the glass

network,8 while in a few cases, addition of sulphide salts

has been observed to increase the conductivity due to the

increase in the polarizability of the glass.9 Another intriguing

way to control the conductivity is to add different glass net-

work formers,10 where the variation of conductivity depends

on the glass formers ratio and the phenomenon is widely

known as “mixed glass former effect” (MGFE).11

In mixed former glasses such as borophosphate systems

containing traditional glass formers, the variation of the ionic

conductivity is correlated to a characteristic length scale

determining the extent of correlated hopping motion of the

ions obtained from the mean square displacement of ions.11

These characteristic length scales show compositional de-

pendence similar to that of tetrahedrally coordinated BO4

units11 indicating that the connectivity of the network forming

units influences the conductivity. However, the study on con-

ditional or non-traditional mixed glass former system is not

extensive.12 Recently, the study of few selenoborate glasses13

shows that with increasing SeO2 content the formation of

Se-O cluster takes place in the glass network. These clusters

in turn modify the boron-oxygen network and create more

non-bridging oxygen. The increased mobility of cations is

thus facilitated by increased polar cluster and highly depoly-

merized B-O network, as SeO2 content increases.13 The varia-

tion of the macroscopic properties of mixed former glasses

thus depends on the microscopic network forming units of

these glasses. Recently, mixed barrier model14 has been pro-

posed to explain the MGFE phenomenon. This model takes

into account of the composition independent coordination

environment of network forming units, and the strength of the

barrier reduction due to mixing of two different glass formers

has been estimated considering the reduction of jump barriers

of the mobile ions in an environment consisting of different

network units.

The understanding of ion conduction in glasses so far

possesses a scientific challenge due to the complexity of the

glass structure.15 Different theoretical models have been put

forward to understand the conductivity and activation energy

in different glasses.16,17 In a few cases, the variation of

mobile ion concentration18 is considered to be a prominent

factor influencing the ion transport, whereas in some other

cases, the change of mobility19 caused by a change in glass

structure is conceived to be the main factor governing the

conductivity. The inherent problem thus lies in separating

the contribution of mobility and mobile ion concentration to

the total conductivity.15

In this paper, we report ion transport properties of sele-

nomolybdate glassy ionic conductors for different modifier

to glass former ratio. The dual role of SeO2 as a glass modi-

fier and as a glass former is predicted. A direct correlation

between the macroscopic ion transport and the modification

of glass network structure is established. This work thus

shed some lights on the understanding of MGFE in glassy

ionic conductors.

II. EXPERIMENTAL DETAILS

The glass systems of compositions yAg2O – (1 – y)

(xSeO2 – (1 – x)MoO3) where 0.40� x� 0.80 for y¼ 0.20,

0.30, and 0.40 series were prepared using melt quenching

technique. Appropriate amounts of AgNO3, SeO2, and MoO3
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were mixed and preheated in an alumina crucible at 400 �C
for 2 h for denitrogenation of AgNO3. The mixtures were

then melted in the temperature range 550–650 �C depending

on composition and equilibrated for 1 h. The melts were then

rapidly quenched between two aluminum plates to obtain the

glassy samples. Density of the samples was measured using

Archimedes principle with acetone as immersion liquid. The

structural changes in these glasses were explored using Fou-

rier transform infrared (FTIR) spectra recorded in a FTIR

spectrometer (PerkinElmer, model Spectrum100). The elec-

trical measurements such as conductance and capacitance of

these glasses were carried out using a LCR meter (QuadTech

7600) in the frequency range 10 Hz–2 MHz and in a wide

temperature range.

III. RESULTS AND DISCUSSION

The dc conductivity (rdc) for the glass compositions has

been calculated from the complex impedance plots. Fig. 1(a)

shows the temperature dependence of the dc conductivity for

selected compositions. It is noted that the dc conductivity

follows the Arrhenius relation of the form

rdc ¼ r0 expð�Er=kBTÞ; (1)

where r0 is the pre-exponential factor, T is the absolute tem-

perature, Er is the activation energy, and kB is the Boltzmann

constant. All other samples also show similar behavior. The

values of activation energy Er have been calculated from the

least squares straight line fits to the data and are listed in

Table I. The variation of rdc as a function of SeO2 content

(x) at a fixed temperature (293 K) is shown in Fig. 1(b). It is

observed that rdc for the y¼ 0.20 series increases with

increase of x, whereas rdc for the y¼ 0.30 series increases

up to x¼ 0.70 and then decreases slightly for x¼ 0.80. For

y¼ 0.40 series, rdc increases with increase of x up to 0.50

and then decreases for x� 0.60. The variation of activation

energy shows an opposite trend to that of rdc for all the three

series. From these results, it is noted that the conductivity

depends strongly on the composition.

The composition dependence of the activation energy

and the dc conductivity for the three series can be explained

considering the Anderson-Stuart model.16,20 According to

this model, the total activation energy (EAS) comprises of

two energy terms, namely, (a) electrostatic binding energy

which is associated with the removal of the mobile cation

from its bonded or occupied site and (b) the elastic strain

energy associated with the creation of doorway for the mo-

bile ion to pass or squeeze through. The total energy thus can

be written in the form as follows:

EAS ¼ EB þ ES: (2)

Here, EB and ES are the binding energy and strain energy,

respectively, given as

EB ¼
ZZOe2

c
1

r þ rO
� 1

R=2

� �
; (3a)

ES ¼
p
2

Gðr � rdÞ2R; (3b)

where c is a covalence parameter related to the high fre-

quency dielectric constant [e0(1)], Z and ZO are charges on

the cation and oxide ions, respectively, with ionic radii r and

rO, R is the ion-ion jump distance, and rd is the doorway ra-

dius related to the opening or the creation of passage for mo-

bile ions. The binding energy depends primarily on e0(1),

while the strain energy depends on the jump distance and

doorway radius. Thus, the decrease of binding energy is

related to the increase of dielectric constant, while the

decrease of the strain energy is related to the increase of

the doorway radius for the ion migration and consequently to

the expansion of the local structure and on the decrease of

jump distance. The dielectric property for the present sam-

ples was reported elsewhere.21 The composition dependence

of e0 at a fixed frequency is shown in the inset of Fig. 1(b). It

has been noted that the variation of dielectric constant (e0)
depends on the modifier to glass former ratio for the three se-

ries. For the y¼ 0.20 series, e0 increases continuously with

increase of x, whereas for y¼ 0.30 series, it increases up to

x¼ 0.70 and decreases for x¼ 0.80. Similarly for y¼ 0.40

series, e0 increases up to x¼ 0.50 and then decreases for

x� 0.60. From Eq. (3a), it is thus noted that this variation

will in turn cause opposite variation in the binding energy

term. Further, we have calculated the average ion-ion jump

distance (R) from density and compositions of the glasses.

Fig. 2(a) shows the composition dependence of jump dis-

tance. It is observed that jump distance decreases with

FIG. 1. (a) Variation of dc conductivity (rdc) as a function of reciprocal

temperature for selected glasses of compositions 0.30Ag2O – 0.70(xSeO2 –

(1 – x)MoO3). The solids lines are the least square linear fit to the data.

(b) Compositional dependence of dc conductivity at 293 K for the glass com-

positions yAg2O – (1 – y)(xSeO2 – (1 – x)MoO3). The inset in (b) shows the

compositional dependence of dielectric constant (e0) at a fixed frequency and

temperature (shown). The lines are guide to the eye.
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increase of x for y¼ 0.20 series, whereas for y¼ 0.30 series,

it decreases up to x¼ 0.70 and increases for x¼ 0.80. For the

y¼ 0.40 series, jump distance decreases up to x¼ 0.50 and

then increases for x� 0.60. This variation leads to a propor-

tional variation in the strain energy term. It is thus clearly

noted that the combined effect is the effective variation in the

binding energy and strain energy terms which together lead

to the observed compositional dependence of the total activa-

tion energy. For calculating the strain energy, we have

approximated the value of G �2� 1011 dyne/cm2 as consid-

ered for other classes of oxide glasses reported.20 Here, we

consider the doorway radius to be composition dependent

rather than constant, as we believe that the conductivity varia-

tion and modification of glass structure depending on glass

former and modifier ratio is strongly related to the change in

doorway radius. We quantify the total energy by adding bind-

ing energy and strain energy considering the doorway radius

as a variable to get a close match to experimental activation

energy. We thus obtain the composition dependence of door-

way radius (rd). The composition dependence of the doorway

radius is shown in Fig. 2(b). It is clearly noted that rd varies

in a similar fashion as that of dc conductivity. For y¼ 0.20

series, the increase in doorway radius increases gradually

which implies creation of more open network thus facilitating

faster transport and thus increasing conductivity. For y¼ 0.30

series the doorway radius increases up to x¼ 0.70, and conse-

quently, the conductivity also increases, whereas the doorway

radius decreases slightly for x¼ 0.80 causing a drop in the

conductivity. For y¼ 0.40 series, the increase continue up to

x¼ 0.50 and then decreases for x� 0.60 causing the conduc-

tivity to vary in a similar fashion.

The ac conductivity (r(x)) at several temperatures

is shown in Fig. 3(a) for a glass composition as a function

of frequency. At lower frequencies, the ac conductivity is

almost independent of frequency corresponding to the dc

TABLE I. The value of dc conductivity (rdc), dc activation energy (Er), average mobile ion-ion separation (R), cross-over frequency xc, ac activation energy

(Ec), and frequency exponent n for the glasses of composition yAg2O � (1 � y)(xSeO2 � (1 � x)MoO3).

Composition

log [rdc (X�1 cm�1)]

at 293 K (60.05)

Er (eV)

(60.02)

R (Å)

(60.02)

log [xc (rad s�1)]

at 293 K (60.05)

Ec (eV)

(60.02)

n

(60.02)

y¼ 0.20

x¼ 0.40 �7.70 0.74 4.91 4.27 0.78 0.64

x¼ 0.50 �7.44 0.70 4.88 4.60 0.65 0.65

x¼ 0.60 �6.98 0.64 4.82 5.03 0.62 0.63

x¼ 0.70 �6.28 0.61 4.75 5.79 0.61 0.65

x¼ 0.80 �5.53 0.49 4.69 6.67 0.44 0.64

y¼ 0.30

x¼ 0.40 �6.79 0.70 4.30 5.29 0.71 0.63

x¼ 0.50 �6.14 0.60 4.27 6.08 0.51 0.65

x¼ 0.60 �5.85 0.53 4.23 6.37 0.48 0.64

x¼ 0.70 �5.10 0.45 4.19 6.94 0.33 0.65

x¼ 0.80 �5.55 0.56 4.21 6.76 0.54 0.65

y¼ 0.40

x¼ 0.40 �5.17 0.46 3.91 7.13 0.49 0.64

x¼ 0.50 �4.70 0.44 3.85 7.62 0.47 0.66

x¼ 0.60 �4.86 0.48 3.87 7.49 0.50 0.65

x¼ 0.70 �5.46 0.58 3.86 7.07 0.56 0.64

x¼ 0.80 �6.90 0.69 3.98 5.56 0.59 0.63

FIG. 2. (a) Compositional dependence of average mobile ion-ion jump dis-

tance, R, obtained from glass density and composition. (b) Doorway radius

(rd) obtained using Anderson-Stuart model. The lines are guide to the eye.
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conductivity. However, the ac conductivity shows dispersive

behavior with the increase of frequency. The frequency de-

pendence of the ac conductivity can be well described by a

power law model15 given by

rðxÞ ¼ rdc½1þ ðx=xcÞn�; (4)

where n is a frequency exponent having value 0< n� 1 and

xc is the crossover frequency signifying the transition from

dc to dispersive region. The experimental data for different

temperatures were fitted to Eq. (4), and the parameters rdc,

xc and n were obtained from the fits. It was observed that the

value of the dc conductivity obtained from the fits agreed

well with those obtained from the complex impedance

plots. The temperature dependence of xc for some selected

composition is shown in Fig. 3(b), which indicates that the

crossover frequency follows the Arrhenius relation with acti-

vation energy Ec similar to that of dc conductivity. The val-

ues of xc at a particular temperature for all the compositions

are listed in Table I, and its composition dependence is

shown in the inset of Fig. 3(b), which shows similar compo-

sition dependence as that of the dc conductivity. The values

of Ec are obtained to be very close to Er indicating a com-

mon conduction mechanism.15 The value of frequency expo-

nent n is almost independent of temperature and composition

with an average value �0.65 indicating a three dimensional

conduction.22

We show below that the ion transport in mixed network

former glasses is associated with characteristic length scales.

The conductivity spectra can be expressed in terms of time-

dependent mean square displacement, hr2(t)i, of the mobile

ions in thermal equilibrium as follows:23

r0ðxÞ ¼ ncq2x2

6kBTHR

ð1
0

hr2ðtÞisinðxtÞdt; (5)

where HR is the Haven ratio, nc is the mobile ion concentra-

tion, T is the absolute temperature, q is the elementary

charge, and kB is the Boltzmann constant. hr2(t)i can be

determined from the conductivity spectra via inverse trans-

formation of Eq. (5),

hr2ðtÞi ¼ 12kBTHR

ncq2p

ðt

0

dt0
ð1

0

r0ðxÞ
x

sinðxt0Þdx;

¼ hR2ðtÞiHR; (6)

where hR2(t)i is the displacement of the centre of charge of

mobile ions related to mean square displacement via HR.

The Haven ratio varies for different glass systems depending

on alkali modifier content. Since in our glass system values

of HR are unknown, we consider the effect of hR2(t)i only.24

Fig. 4(a) shows the scaled spectra of hR2(t)i in time domain

at several temperatures for a selected composition. It is noted

that the spectra follow Summerfield scaling where the time

scale is scaled by the product of the dc conductivity and

the absolute temperature. It is observed that at long times,

FIG. 3. (a) Ac conductivity spectra for the selected glass composition

0.20Ag2O – 0.80(0.60SeO2 – 0.40MoO3) at several temperatures are shown.

The solid lines are fit to the power law. (b) The temperature dependence of

crossover frequency, xc, for selected compositions 0.40Ag2O – 0.60(xSeO2 –

(1 – x)MoO3). The solid lines are the linear fit to the data. Inset shows

the compositional variation of crossover frequency, xc, for all the glasses

of composition yAg2O – (1 – y)(xSeO2 – (1 – x)MoO3) at a fixed temperature

(shown). The lines are guide to the eye.

FIG. 4. (a) Scaled hR2(t)i spectra following Summerfield scaling for a

selected composition at several temperature are shown. Inset shows the

composition dependence of characteristic length scale �hR2(tp)i for the glass

compositions yAg2O – (1 – y)(xSeO2 – (1 – x)MoO3). (b) The composition

dependence of sub-diffusive length scale �hR2(1)i. Lines are the guide to

the eye.
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hR2(t)i reflects diffusive behavior, whereas at short times,

the ion dynamics is of sub-diffusive. Following earlier

report,23 we define the characteristic transition time as tp,

which signifies the transition from sub-diffusive to diffusive

behavior. At shorter time scale, the ion dynamics is thus

characterized by correlated forward–backward hops, whereas

at longer time scales, the ions can perform successful hops to

the neighboring sites by crossing over the barriers or long

range diffusion occurs. The characteristic length �hR2(tp)i
would thus signify the distance the mobile ions have to travel

in order to overcome the forces causing the correlated for-

ward–backward motion. The value of �hR2(tp)i as obtained

for the present mixed former glass systems depends on the

modifier (y) as well as on the glass former contents (x) as

shown in the inset of Fig. 4(a). For the y¼ 0.20 series,

�hR2(tp)i is almost constant (4.2 Å–4.3 Å) for all values of x.

For the y¼ 0.30 series, �hR2(tp)i initially decreases from

4.0 Å to 3.8 Å with the increase of x up to 0.70 and then

increases up to 4.2 Å for x¼ 0.80, whereas for the y¼ 0.40

series, �hR2(tp)i decreases from 4.1 Å for x¼ 0.40 to 3.3 Å

for x¼ 0.50 and then increases for x� 0.60 up to 3.9 Å for

x¼ 0.80. It is thus noted that for low modified glass

(y¼ 0.20), the length scale is almost independent of x. For

intermediate (y¼ 0.30) and highly modified (y¼ 0.40)

glasses, the length scale shows reverse correlation to that of

the dc conductivity. This might be due to the dual role of

SeO2 as a modifier and a former, where it behaves as modi-

fier for y¼ 0.20 series and shows former like behavior as y

increases from 0.30 to 0.40.

Another characteristic length scale, �hR2(1)i can be

defined, which signify the spatial extent of sub-diffusive

motion of the mobile ion. This value can be deduced from the

dielectric permittivity data using the following relation:23,24

hR2ð1Þi ¼ 6kBTe
0

ncq2
½e0ðoÞ � e0ð1Þ�; (7)

where e0(0) and e0(1) are the low frequency and high fre-

quency limits of dielectric constant and e0 is the permittivity

of free space. The value of e0(0) and e0(1) is determined

from the frequency dependence of real part (e0(x)) of com-

plex permittivity e*(x)(¼e0(x) � ie00(x)).21 Fig. 4(b) shows

the compositional dependency of �hR2(1)i. For the y¼ 0.20

series, �hR2(1)i increases slightly with increase of x from

3.5 Å to 4.3 Å and then is almost independent of x. For the

y¼ 0.30 series, �hR2(1)i increases with increase of x from

3.3 Å for x¼ 0.40 to 6.0 Å for x¼ 0.70 and then decreases to

5.7 Å for x¼ 0.80 varying in a similar fashion to that of dc

conductivity. For the y¼ 0.40 series, �hR2(1)i initially

decreases from 4.0 Å for x¼ 0.40 to 3.4 Å for x¼ 0.50 and

then increases for x� 0.60 up to 3.9 Å for x¼ 0.80. It is thus

noted that for low and intermediate modified glasses,

�hR2(1)i varies in a similar fashion to that of the dc conduc-

tivity. For strongly modified glasses, the variation of

�hR2(1)i is in a reverse trend to that of the macroscopic

transport properties.

It is noted that the compositional dependence of

�hR2(1)i and �hR2(tp)i is quite similar for the y¼ 0.20 series.

But, for the y¼ 0.30 and 0.40 series, the behavior is quite

different and the two length scales behave differently. In our

case, the value of �hR2(1)i is slightly different from that

of �hR2(tp)i similar to the case of sodium borate glasses.11 In

case of single network former glasses like sodium germa-

nates, sodium borates, sodium silicate glasses, the values of

�hR2(1)i and �hR2(tp)i show similar compositional depend-

ency. However, as recently reported for some AgI doped sil-

ver phosphate glasses,24 a distinct difference in the behavior

of �hR2(1)i and �hR2(tp)i is observed. In the present glasses,

the difference in the behavior of the two length scales might

be due to the transition from modifier like behavior to former

like behavior of SeO2 glass former with changing composi-

tion. These facts indicate that the microscopic parameter

depends strongly on the nature of network formers, composi-

tion, and the extent of structural modification.

We have estimated the concentration of mobile Agþ

ions using the Nernst-Einstein relation given by

rdc¼ q2d2ncxH=12pkBT; (8)

where nc is the mobile ion concentration, q is the charge, d is

the average jump distance which we have approximated as

ion-ion distance R, and xH is the hopping frequency of

charge carriers. Here, we have approximated the hopping

frequency in Eq. (8) to the crossover frequency in Eq. (4). It

has been discussed15 that the mobile ion concentration calcu-

lated using Almost West approximation and Nernst-Einstein

relation is not exact for higher frequency (above few MHz)

where the fits deviate to a greater extent and the actual mo-

bile ion concentration could be lower than that estimated

using Eq. (8). This is mainly because the mobile ion concen-

tration depends on the consideration of the time scale. The

data for our samples fit reasonably well to Eq. (8) and the

obtained concentration of mobile Agþ ions is plotted as a

function of temperature in Fig. 5(a) for selected composi-

tions. It is noted that mobile ion concentration is almost inde-

pendent of temperature. The composition dependence of nc

at a fixed temperature is shown in Fig. 5(b). It is clearly

noted that nc depends slightly on composition, and the varia-

tion depends on modifier to glass former ratio. It is noted

that for the y¼ 0.20 series, nc is almost constant, whereas for

the y¼ 0.30 series, nc initially increases up to x¼ 0.70 and

then decreases for x¼ 0.80 and nc decreases for x� 0.60 for

the y¼ 0.40 series. This variation of nc influences the con-

ductivity variation for glasses containing higher SeO2 and

Ag2O contents.

To further quantify the microscopic origin of the conduc-

tivity dependence on composition and its possible relation

with the microscopic glass structure, the FTIR spectra for all

the glass samples were considered.21 From FTIR study, it

was observed that the significant contributions to the struc-

tural modification with changing composition are from the

absorption bands around �600 cm�1 and �860 cm�1. The

variation of relative area under these two bands is shown in

Fig. 6(a). For the y¼ 0.20, the area corresponding to band

around 860 cm�1 changes negligibly up to x¼ 0.70 and

increases for x¼ 0.80, while for the y¼ 0.30 series, the area

increases up to x¼ 0.70 and decreases slightly for x¼ 0.80.

For the y¼ 0.40 series, area of this band increases up to
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x¼ 0.50 and then decreases for x� 0.60. The area of the

absorption band around 600 cm�1 decreases slightly with

increase of x for the y¼ 0.20 series, whereas for y¼ 0.30

series, there is a slight increasing behavior for higher x. For

the y¼ 0.40 series, the area of absorption band around

600 cm�1 first decreases up to x¼ 0.50 and then increases for

x� 0.60. So, at high modifier and high SeO2 content, a

decrease in the vibration mode of 860 cm�1 and an increase

of vibration mode at 600 cm�1 are observed. The modifica-

tion of glass network structure thus depends on glass formers

ratio as well as on modifier content. The correlation to the

conductivity thus can be drawn by calculating the ratio of the

area under the absorption bands around 860 cm�1 and

600 cm�1 (henceforth will be denoted as v) as shown in

Fig. 6(b). It is clearly noted that the variation of this ratio v is

similar to that of the dc conductivity, signifying that, indeed,

a direct correlation between the modifications of the micro-

scopic glass structure and the macroscopic ion dynamics

exists. Thus, for lower SeO2 content for the y¼ 0.20 and 0.30

series, the vibration of SeO3
2� ion being predominant, the

polarizability and also the number of non-bridging hopping

sites available for the mobile ion increase signifying the

modifier role of SeO2 which facilitates faster conduction and

thus higher mobility and conductivity. But, for higher SeO2

content (x� 0.60) for highly modified glasses (y¼ 0.40

series), the vibration of isolated SeO3
2� ions tends to

decrease due to increased tendency of bonding of Agþ ions

with SeO3
2� ions leading to the formation of Ag2SeO3 crys-

talline structure, and this in turn also enhances the vibration

of isolated MoO6 units. For these compositions, SeO2

behaves as glass former and this in turn reduces the availabil-

ity of effective non-bridging hopping sites thereby reducing

the mobility and thus the conductivity.

From the results obtained from FTIR data and the con-

ductivity study, a schematic structure and modification of

the glassy network with changing compositions have been

proposed. We have here shown a purely schematic 2D rep-

resentation of possible modification of the glass structure

with changing compositions. In Figs. 7(a) and 7(b), we have

shown the glass structure for x¼ 0.40 and 0.80 for the

y¼ 0.20 series, respectively. In these compositions, the

glass structure is essentially modified due to the increase of

free passage and non-bridging hopping sites. Thus, the

structure of glass for x¼ 0.40 for y¼ 0.20 series initially

represented by Fig. 7(a) transforms to that shown in Fig.

7(b) due to increased free volume and thus enhanced mobil-

ity. So, for this series, the increase in mobility mainly

enhances the conductivity. In Figs. 7(c)–7(e), we have

shown the glass structure for the y¼ 0.30 as well as for

y¼ 0.40 series. Here, the structure is controlled by a change

in the mobility as well as a change in the mobile ion concen-

tration. Fig. 7(c) represents the glass structure for x¼ 0.40,

y¼ 0.40 composition. Fig. 7(d) represents the structure for

0.50� x� 0.70 compositions for the y¼ 0.30 series, where

the available free volume increases slightly and also the mo-

bile ion concentration increases as x increases, which

increases the conductivity. Fig. 7(d) also represents the

structure for the y¼ 0.40, x¼ 0.50 composition where there

is an increase in available free volume for conduction and

FIG. 6. Compositional variation of the relative band proportion for the

absorption band at (a) �860 cm�1 (A860). (b) The composition dependence

of the ratio of band proportion of A860 and A600 denoted as v (¼A860/A600).

The inset shows the proportions of the absorption band �600 cm�1 (A600)

for the glass compositions yAg2O – (1 – y) (xSeO2 – (1 – x) MoO3). The lines

are guide to the eye.

FIG. 5. Temperature dependence of mobile ion concentration, nc, for

selected glasses of compositions 0.40Ag2O – 0.60(xSeO2 – (1 – x)MoO3).

(b) Compositional dependence of nc at a fixed temperature (shown) for the

glasses of compositions yAg2O – (1 – y)(xSeO2 – (1 – x)MoO3). The solid

lines are guide to the eye.
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also mobile ion concentration increases to some extent thus

enhancing the conductivity. Fig. 7(e) represents the struc-

ture for y¼ 0.30, x¼ 0.80 composition where a small

decrease in the available free volume occurs due to increase

of isolated crystalline silver selenite and molybdate units,

and a decrease of mobile ion concentration also occurs, thus

decreasing the conductivity effectively. Fig. 7(e) also repre-

sents the possible structures for the y¼ 0.40, x� 0.60 com-

positions where there is a decrease in available free volume

due to the increase of isolated crystalline silver selenite and

molybdate units and decrease of mobile ion concentration,

which in turn decreases the conductivity. The schematic dia-

gram thus signifies the microscopic modification of the glass

network structure with composition and thus correlates to

the macroscopic ion transport properties.

IV. CONCLUSIONS

Ion transport in Agþ conducting selenomolybdate mixed

former glasses has been studied by changing modifier as well

glass formers ratio. The conductivity shows strong depend-

ence on the modifier content as well as on the glass formers

ratio. For the low modified glasses, the dc conductivity

increases gradually with increase of SeO2 content. For

highly modified glasses, the dc conductivity shows maxima

depending on glass formers ratio. It is observed that the

change in the ion-ion distance and dielectric constant causes

the observed variation in the ionic conductivity or the acti-

vation energy. The characteristic length scales signifying

the spatial extent of sub-diffusive ion dynamics and the tran-

sition from sub-diffusive to diffusive region show a strong

dependency on the glass compositions. For low SeO2 con-

tent, the vibration of SeO3
2� ion dominates, whereas at

higher SeO2 content, the vibration of isolated MoO6 units

dominates. From the estimation of mobile ion concentration

along with results obtained from FTIR spectroscopy, a sche-

matic structural of the modification of glass network has

been proposed, indicating dual role of SeO2. Here for low

modified glasses at lower SeO2 content, SeO2 behaves as

modifier which depolymerizes the glass network creating

non-bridging oxygen which behaves like hopping sites,

thereby increases the conductivity with increasing SeO2,

whereas for highly modified glasses at higher SeO2 content,

SeO2 acts as glass former which polymerizes the glass net-

work, thereby lowering the effective hopping sites which in

turn decreases the conductivity.

FIG. 7. Schematic 2D representation of the modification of glass network structure depending on modifier and formers ratio for the glasses of compositions

yAg2O – (1 – y)(xSeO2 – (1 – x)MoO3): (a) for x¼ 0.40, y¼ 0.20; (b) for x¼ 0.80, y¼ 0.20; (c) for x¼ 0.40, y¼ 0.30 and x¼ 0.40, y¼ 0.40; (d) for

0.50� x� 0.70, y¼ 0.30 and x¼ 0.50, y¼ 0.40; (e) x¼ 0.80, y¼ 0.30 and 0.60� x� 0.80, y¼ 0.40. The arrow between (a) and (b) indicates the structural

modification and transition stages for x> 0.40. The arrow between (c) and (d) indicates the structural modification and transition stages as x> 0.40 for the

y¼ 0.30 series. Similarly the arrow between (d) and (e) indicates the structural modification occurring for x> 0.50 for the y¼ 0.40 series. The curved arrows

in the figures indicate conduction pathways.
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