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ABSTRACT The importance of membrane-based compartmentalization in eukaryotic cell function has become broadly
appreciated, and a number of studies indicate that these eukaryotic cell membranes contain coexisting liquid-ordered (Lo) and
liquid-disordered (Ld) lipid domains. However, the current evidence for such phase separation is indirect, and so far there has
been no direct demonstration of differences in the ordering and dynamics for the lipids in these two types of regions or their
relative amounts in the plasma membranes of live cells. In this study, we provide direct evidence for the presence of two
different types of lipid populations in the plasma membranes of live cells from four different cell lines by electron spin resonance.
Analysis of the electron spin resonance spectra recorded over a range of temperatures, from 5 to 37�C, shows that the spin-
labeled phospholipids incorporated experience two types of environments, Lo and Ld, with distinct order parameters and
rotational diffusion coefficients but with some differences among the four cell lines. These results suggest that coexistence of
lipid domains that differ significantly in their dynamic order in the plasma membrane is a general phenomenon. The Lo region is
found to be a major component in contrast to a model in which small liquid-ordered lipid rafts exist in a ‘sea’ of disordered lipids.
The results on ordering and dynamics for the live cells are also compared with those from model membranes exhibiting co-
existing Lo and Ld phases.

INTRODUCTION

Considerable evidence has accumulated in recent years to

support the view that lipid-dependent plasma membrane

heterogeneity plays important roles in cellular processes in-

cluding signal transduction and membrane trafficking.

Microdomains of ordered lipids, commonly called lipid

rafts, are hypothesized to be platforms for performing these

biological functions (1). These microdomains are enriched in

sphingolipids, cholesterol, and phospholipids containing

mostly saturated fatty acid chains and proteins anchored to

the membrane with saturated lipids, as determined by their

insolubility in certain nonionic detergents at 4�C (2). The

functional relevance associated with these microdomains is

their capacity for selective segregation of proteins. Thus

some membrane proteins with compatible membrane-an-

choring structures preferentially partition into these environ-

ments (e.g., Src kinases), just as others with incompatible

structures partition out (e.g., transmembrane phosphatases),

and this enables critical interactions to occur in a regulated

manner (e.g., after cross-linking specific receptors that

localize to rafts) (3,4). However, despite widespread atten-

tion, lipid rafts (referred to below as rafts) have been elusive

to experimental definition because of the compositional

heterogeneity of lipids and proteins and their dynamic nature

in the living cell. In particular, it has not been possible to

visualize rafts on plasma membranes of unstimulated cells

within the limits of optical resolution at the same time that

a large fraction of the plasma membrane appears to be ‘raft-

like’ based on detergent insolubility and other biochemical

criteria (5,6).

Consistent with the view that there are more and less

ordered regions of the plasma membrane, several fluores-

cence studies have demonstrated that liquid-ordered (Lo) and
liquid-disordered (Ld) phases can coexist in giant unilamellar

vesicles composed of cholesterol and other defined lipids or

isolated plasma membrane lipids (7–10). Synthetic vesicles

that have a lipid composition similar to that of the rafts are

largely detergent insoluble (11), suggesting that the rafts have

an Lo phase structure. However, the concern remains that

detergents could reorganize the structure of cell membranes

and result in coalescence of lipid rafts, and even could create

rafts that otherwise do not exist (12).

Electron spin resonance (ESR) offers the opportunity to

measure directly the phase behavior of plasma membranes.

Previous studies were carried out on detergent resistant mem-

branes (DRM; (13)) and plasma membrane vesicles (PMV;

(14)) derived from RBL-2H3 mast cells that have served as a

model system for raft-mediated transmembrane signaling

(15). These measurements yielded values for the order pa-

rameters (S0) and rotational diffusion coefficients (R?) of

phosphatidylcholine (PC) probes with spin-labeled acyl

chains and showed the detergent-resistant membranes to

have properties of the Lo phase (13). Coexistence of two lipid
populations with Lo and Ld phases was revealed for the

PMV, and the Ld component disappeared after the proteins

were extracted (14).
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In this work we carried out ESR studies on living RBL-

2H3, COS7, NIH-3T3, and CHO cells, thereby avoiding any

complications caused by cellular disruption or alteration of

membrane organization. The results provide for the first

time, to our knowledge, direct evidence for the presence of

two distinctive lipid populations that differ significantly in

their dynamic order in the plasma membrane of live cells.

Consistent with the previous results obtained with PMV, we

find that the Lo membrane is a major component that appears

to predominate in the live cells. This would be consistent

with a model wherein there is a continuous Lo phase (16),

within which there are small regions of Ld phase rather than
the reverse model that was previously suggested of small

discrete ‘‘rafts’’ of Lo phase existing in a continuous ‘sea’ of
Ld phase (1,2,5,6). We also provide a comparison of the live

cell results with coexisting Lo and Ld phases in the model

ternary membrane system consisting of SPM/DOPC/Chol.

MATERIALS AND METHODS

Materials

The spin labels 5PC, 7PC, 10PC, 12PC, 14PC, and 16PC were purchased

from Avanti Polar Lipids (Alabaster, AL). BODIPY-GM1 was obtained

from Molecular Probes (Eugene, OR).

Cell cultures

RBL-2H3 (17) and Chinese hamster ovary (CHO) (18) cells were grown

adherent in either 75- or 150-cm2flasks as described previously.NIH-3T3 and

COS-7 cells were grown adherent in 10-cm dishes under conditions described

by the American Type Culture Center. All cells were harvested using EDTA

buffer (135mMNaCl, 5mMKCl, 20mMHepes, and 1.5mMEDTA, pH7.4)

and resuspended in buffered saline solution (BSS; 135mMNaCl, 5mMKCl,

1.8mMCaCl2, 5.6 mMglucose, 20mMHEPES, pH 7.4) containing 1mg/ml

bovine serum albumin (BSS/BSA) and used for the ESR experiments as

described below. Cell viability was assessed by Trypan blue staining.

Labeling live cells with spin-labeled lipids and
ESR spectroscopy

Cells were labeled with a series of spin-labeled PCs, nPC, bearing the

nitroxide moiety at C5, C7, C10, C12, C14, and C16 on the sn-2 acyl chain

(Fig. 1). The methodology is very similar to that for incorporating

fluorescently labeled lipids, such as DiIC18, into the plasma membranes of

these cells (19). The nPC spin-labeled lipids were incorporated into the

plasma membranes of RBL-2H3 cells, CHO cells, NIH-3T3 cells, or COS-7

cells in the followingway:;1.5–3.03 106 cells were suspended in;1.5mL

of cold BSS/BSA and 30 mL of the spin-labeled lipid in methanol was added

from a 1-mM stock solution. The samplewasmixed quickly, allowed to stand

at room temperature for 1 min, and then kept on ice for 1 min. The cells were

then pelleted by centrifugation (800 rpm for 3–5 min at 5�C), resuspended in
1 mL of the same buffer, and then pelleted again. We confirmed that no ESR

signal was detected from the supernatant after each centrifugation, indicating

that no spin-labelmoleculeswere trapped in or bound toBSA in the buffer and

that all the ESR signal was due to spin labels incorporated into the cells. The

resulting cell pellet was suspended in;100 mL of cold BSS, transferred to a

1.8-mmoutside diameter glass capillary, and pelleted again by centrifugation.

The capillarywas used immediately for ESR spectralmeasurement. To ensure

that the spin labels incorporated into the plasma membrane are not

internalized, the labeling was carried out at low temperature (5�C–10�C),
where endocytosis is drastically reduced, if not totally arrested (19,20).

ESR spectra were recorded on a Bruker (Billerica, MA) EMX ESR

spectrometer at 9.3 GHz within 30–60 min of labeling. Spectra were

recorded at temperatures 5�C, 15�C, 25�C, and 37�C; for each temperature a

new sample of freshly labeled cells was used in most cases. All experiments

on the four different cell types were repeated at least two times to confirm

reproducibility. After the ESR measurements, cell viability was tested by

Trypan blue stain, and the results from samples exhibiting .95% viability

were analyzed further.

Preparation of model membranes

Spin-labeled lipid dispersions consisting of sphingomyelin (SPM), dio-

leoylphosphatidylcholine (DOPC), and cholesterol (Chol) were prepared as

follows. Measured volumes of lipid stocks (lipids dissolved in chloroform)

and the spin-label stock were dispensed into glass sample tubes using a

Hamilton syringe to give the desired lipid compositions. The spin labels used

were 5, 7, 10, 12, 14, and 16PC. The concentration of spin label in the lipid

dispersion was ,0.5 mol % of the total lipids. These lipid-chloroform

solutions were then converted to lipid-buffer suspensions by rapid solvent

exchange (21). The buffer used was 50 mM Tris, 10 mM NaCl, and 0.1 mM

EDTA at pH 7.0. The samples were placed in the dark at room temperature

to reach equilibrium. After several days the samples were centrifuged, and

the pellets were transferred to 1.5–1.8-mm-diameter3 100-mm-length glass

capillaries. The ends of the capillaries were flame sealed.

Determination of partition coefficients of PC
spin labels between coexisting Ld and Lo

phases in the model membranes

The phase diagram for ternary lipid mixtures of SPM/DOPC/Chol has

previously been studied (22–24). The phase diagram at 22�C (22), for the

region of a coexistence of Lo and Ld phases, is shown in Fig. 2 A. Lipid

dispersions of SPM/DOPC/Chol containing 0.5 mol % 16PC were prepared

FIGURE 1 Structures of the spin-labeled PCs. The structure shown is that

of 5PC, with the doxyl spin label attached to the C5 of the sn-2 acyl chain.

Other spin labels, namely 7PC, 10PC, 12PC, and 16PC have the doxyl group

attached to C7, C10, C12, and C16, respectively, of the sn-2 acyl chain.
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with compositions that lie along the phase boundary (PB) of the coexistence

region of the Lo and Ld phases; these 12 compositions are marked in Fig. 2 A

with large dots. One such sample with composition of SPM/DOPC/Chol (in

molar ratio): 0.30:0.63:0.07 (designated as Ld[lc]) is seen to be just at the

edge of the Ld phase. The 11 other samples are seen to have a range of

compositions that lie along the edge of the Lo phase. Trial tie-lines were

drawn between the Ld[lc] phase composition and each of the Lo compo-

sitions as shown by (solid or dashed) lines in Fig. 2 A. Then samples

containing 16PC with compositions lying along each of the 11 trial tie-lines

were prepared, with 5 samples for each trial tie-line. The compositions along

one such tie-line are marked by diamonds in Fig. 2 A to illustrate this.

The ESR spectra of all these samples were taken at 22�C, and the method

of Chiang et al. (25) was employed to estimate the correct tie-line (i.e., the

best of the 11 trial ones). This method utilizes the thermodynamic facts that

1) at any point along the true tie-line the relative amounts of the two

coexisting phases (Lo and Ld in this study) is given by the lever rule; and 2)

the partition coefficient, Kp, of a probe (16PC in this case) is constant along

the true tie-line. Thus, for each trial tie-line, each of the five spectra in the

two-component region were fit to the best linear combination of the PB

spectra from each end of the tie-line, using the relative populations P

measured for the two spectral components, P(Ld) and P(Lo) [with P(Ld) 1
P(Lo) ¼ 1] for each point along the trial tie-line. However, the lever rule

applies to the relative amounts of the Lo and Ld phases, and these can be

related to the P(Ld) and P(Lo) using the partition coefficient, Kp. That is (25)

½mol%of Ld�
½mol%of Lo� ¼ Kp

PðLdÞ
PðLoÞ ¼ Kp

PðLdÞ
1� PðLdÞ: (1)

Here Kp is the ratio of spin labels partitioning into the Lo phase to those

partitioning into the Ld phase when both phases are present in equimolar

amounts.

The statistical analysis for fitting the spectra from all five points along the

ith trial tie-line leads to an estimate of the reduced x2
i (or Æx2

redæi) and the

estimated Kp (or ÆKpæi) with standard deviation ÆsKpæi (25). The optimal

estimate to the true tie-line, as shown by Chiang et al. (25), is a minimum of

the product Æx2
redæi3ÆsKpæi[(x2)i. This statistic simultaneously measures the

degree to which the linear combination spectra fit to the lever rule and the

degree to which Kp remains constant along the trial tie-line. The best

estimate to the correct tie-line by this criterion was found to connect the

0.30:0.63:0.07 (Ld[lc]) phase point with the 0.24:0.42:0.34 (designated

Lo[mc]) phase point (i.e., the solid tie-line in Fig. 2 A marked by diamonds).

A very recent theoretical study of the phase-diagram for a related model

FIGURE 2 Demonstration of tie-line for SPM/DOPC/Chol. (A) The

ternary (compositional) phase diagram of SPM/DOPC/Chol lipid mixtures at

22�C (22). It contains an elliptical region of coexisting liquid-ordered (Lo)

and liquid-disordered (Ld) phases enclosed by a PB (the elliptical solid line).

The short dotted-dashed section at the far left of the PB indicates roughly

where there is a possible critical point. The dashed section of the PB to the

lower right indicates a region of estimated transition between Lo and Ld
phases. The large dots along the PB (1 in Ld phase and 11 in Lo phase) are the

compositions at the endpoints of the trial tie-lines and the compositions from

which PB spectra were obtained. The solid line with diamonds is the trial tie-

line that was determined to be the best estimate to the true tie-line by the

method of Chiang et al. (25); this line connects the Ld phase with a mol

fraction composition of 0.30:0.63:0.07 (Sm/DOPC/Chol) to the Lo phase

with composition 0.24:0.42:0.34 (see respective ESR spectra in Fig. 2 B).
The five diamonds give the compositions on that tie-line whose spectra

(spectra 2–6 in Fig. 2 C) were fit by a linear combination of the Ld and Lo PB

spectra from the end of the tie-line. The other dashed lines are the 10 other

trial tie-lines. (B) Demonstrates the differences in the ESR spectra of 16PC at

these two boundaries (spectra normalized to a common integrated intensity):

dotted line is for Lo, dashed line is for Ld. (C) The solid spectra shown and

labeled 2–6 are obtained in the two-phase Lo and Ld coexistence region along

the tie-line connecting the two boundary spectra, which are again shown as a

dotted line for Lo and a dashed line for Ld. Superimposed on the solid spectra

2–6 are dash-dotted ones that represent the appropriate linear combination of

Lo and Ld boundary spectra in accordance with the lever rule (25) as the

compositions are gradually changed from 100% Lo to 100% Ld (from top to

bottom), as given by the diamonds along the true tie-line shown in Fig. 2 A.
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system obtains tie-lines in the Lo-Ld coexistence region that are very similar

to the one shown in Fig. 2 A (65).

For this method for determining tie-lines to be useful, it is important that the

experimental boundary spectra that locate the endpoints of the tie-lines be

substantially different. This is the case, as is illustrated in Fig. 2 B for the

determined tie-line.We show in Fig. 2C howwell the ESR spectra along this tie-

line arefitby linear combinationsof the twoESRspectra at theboundaries.Thefits

are deemedvery good especially in viewof experimental uncertainties, such as 1),

precise determination of the tie-line, given just a finite number of tentative tie-lines

considered; and 2), limits of precision in composition of the prepared samples.

Next, samples of 5, 7, 10, 12, and 14PC with compositions lying along this

tie-line, including twoat thePBpoints andfivewithin thecoexistence region (as

shown by the diamonds in Fig. 2 A), were prepared and their ESR spectra were

taken. Using the Lo and Ld PB spectra as the basis spectra, each spectrum from

samples in the two-phase region were fitted to a linear combination of the basis

spectra,where the partition coefficientKp is now the only fitting parameter (25).

From these results the mean Kp was determined for each spin label.

Nonlinear least squares analysis of ESR spectra

The ESR spectra were analyzed by a nonlinear least squares (NLLS) method,

based on the stochastic Liouville equation (26,27), using the latest version of

the ESR fitting program (28). For our evaluation three significant parameters

(14) were obtained from the NLLS analysis: 1) R? is the rotational diffusion

coefficient of the nitroxide radical around the axis perpendicular to the mean

symmetry axis for rotation, which is also taken as the direction of preferential

orientation of the spin-labeled lipid molecule. For these spin-labeled PCs the

NLLS analysis is found to be insensitive to the Rk, the rotational diffusion

coefficient of the nitroxide radical around the axis parallel to the mean

symmetric axis for rotation, because Rk is typically much greater than R?
(14,29). 2) S0 is the order parameter which is a measure of the angular extent

of the rotational diffusion of the nitroxide moiety relative to the membrane

normal. 3) P is the relative population of each spectral component in the two-

component fits for the cell samples. The average errors estimated for those

parameters in the simulation of spectra from live cells are 610% for R?,
60.05 for S0, and 60.06 for P; these are slightly larger than the errors in our

previous simulations of spectra from PMVs of RBL-2H3 cells (14) because of

the lower signal/noise ratios for the spectra from the live cells. The hyperfine

tensors and g-tensor values used in the NLLS analysis were taken from those

obtained from previous fitting of the rigid limit spectra from the PMVs of

RBL-2H3 cells (14), but small variations were allowed in their respective

values, consistent with their experimental uncertainties (i.e., 63 3 10�4 for

g-tensor components and 60.5 G for hyperfine tensor components).

Kinetics of spin-label quenching

Cells were labeled with different spin-labeled PC analogs essentially as

described above except that the centrifugation steps were of 1 min duration.

This reduced the time from the addition of spin label to the initiation of

spectral recording to ;12–15 min. The time-dependent changes in the

intensity of the ESR signal from spin-labeled phospholipids incorporated

into the plasma membrane of live RBL-2H3 cells were monitored by setting

the magnetic field of the spectrometer on the peak of the midfield line of the

ESR spectrum of the nitroxide spin label and keeping the spectrometer in the

‘‘timescan’’ mode, i.e., keeping the field sweep to zero. A modulation

amplitude of 5G was used to broaden the peak purposefully to minimize the

effect of drift or line width changes during the course of the measurement.

RESULTS

ESR measurements with RBL-2H3, CHO,
NIH-3T3, and COS7 cells

Detailed information on the dynamic structure of plasma

membranes of live RBL-2H3, CHO, COS7, and NIH-3T3

cells was obtained from NLLS analysis of ESR spectra of the

spin-labeled lipids in those cells. The spectra of different spin

labels incorporated into the plasma membranes of RBL-2H3

mast cells, recorded at 5�C and 37�C, are shown in Fig. 3 A
as solid lines. The best fit simulations obtained from this

analysis are shown as dashed lines superimposed on the

experimental spectra in Fig. 3 A. It is seen that the simulated

spectra are in very good agreement with the experimental

spectra. Fits of comparable quality were also achieved for the

spectra from the other cell lines (cf. Fig. 3 B).
The spectra of all the spin labels (except for 16PC at

higher temperatures) for the RBL-2H3, CHO, COS7, and

NIH-3T3 cells required two components for a satisfactory fit.

This is shown in the upper spectra in Fig. 3 B, where

enlarged insets are marked by arrows that point to distinctive

features of each of the two components in the spectra of 7PC

FIGURE 3 ESR spectra of spin labels incorporated into the plasma

membrane of live RBL-2H3 mast cells and spectral analysis by the NLLS

method. (A) Spectra for 5PC, 7PC, 10PC, 12PC, and 16PC in RBL-2H3 cells

recorded at 5�C and 37�C (solid lines) with the corresponding best fit

simulations (dotted lines). (B) Spectra for 7PC at 25�C in RBL-2H3, CHO,

COS-7, and NIH-3T3 cells. Upper spectra show experimental spectra and

fits; middle and lower spectra show the resolved spectra for the more mobile

(Ld) and less mobile (Lo) components, respectively. The insets to the upper

spectra (32.5 magnification) show distinctive features of both the Lo and

Ld components as marked by vertical arrows.
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in the four types of cells at 25�C. Examples of the two

spectral components resolved from the fitting are also shown

in Fig. 3 B. These two resolved spectral components for each

cell type are clearly different, implying that the spin-labeled

lipids incorporated into the plasma membrane are found in

two regions of the membrane that differ substantially in their

dynamic order. A comparison of these two components for

the different cell types shows them to be quite similar,

implying similar regions within the different plasma mem-

branes. It was shown previously that two-component fits are

required for PMV from RBL-2H3 cells (14). Based on the

previous studies (13,14) as well as the further analysis de-

scribed below, we distinguish a more mobile component,

which is liquid-disordered (Ld), and a less mobile one, which

is liquid-ordered (Lo). The best fit values for the rotational

diffusion coefficient, R?, the order parameter, S0, and the

relative populations, P, of the two components (i.e., P(Ld)
and P(Lo)) for 5, 7, 10, 12, and 16PC at various temperatures

are presented in Figs. 4–7. The detailed results are provided

in Tables S1–S5 (Supplementary Material). Within the

fluctuations in the values of P(Ld) with temperature, there

were no discernible trends, so they were simply averaged

over temperature to obtain better overall estimates. These

averaged values of P(Ld) are given in the figure captions and
used in the subsequent discussion.

As shown in Figs. 4–7 for RBL-2H3, COS7, NIH-3T3,

and CHO cells, respectively, S0 for each component gen-

erally decreases with increasing temperature, and R? gen-

erally increases with temperature, as expected. The results

previously obtained from NLLS fits of spectra from spin

labels 5, 7, 10, and 16PC in PMVs of RBL-2H3 cells at

several temperatures (14) are also plotted in Fig. 4 (dashed
lines) to compare with the corresponding data from live

RBL-2H3 cells (solid lines). Clearly, the two sets of results

are quite similar, including both the magnitude and temper-

ature variation of the motional rate (measured by R?) and the
ordering (measured by S0).
Previously (14) we showed that the more ordered spectral

components in the PMV have values of R? and S0 that are
intermediate between that of an Lo phase found in a typical

model membrane (e.g., dipalmitoylphosphatidylcholine

(DPPC)/Chol ¼ 1:1) or in detergent-resistant membranes

FIGURE 4 For RBL-2H3 cells, the best fit values of

the order parameter, S0, and the rotational diffusion

coefficient, R?, of the two components (cross, Lo
component; triangle, Ld component) of ESR spectra

from different spin labels are plotted versus tempera-

ture as solid lines. Also shown are the best fit values of

S0 and R? of the two components (circle, Ld compo-

nent; star, Lo component) of ESR spectra from PMV

of RBL-2H3 cells (14) plotted versus temperature as

dashed lines. The thermally averaged fractions of the

Ld spectral component for the live cells P(Ld) are 0.26

6 0.08 (5PC), 0.266 0.04 (7PC), 0.306 0.03 (10PC),

and 0.37 6 0.10 (12PC).

FIGURE 5 For COS7 cells, plots of best fit values of

the order parameter, S0, and the rotational diffusion

coefficient, R?, of the two components (cross, Lo
component; triangle, Ld component) of ESR spectra

from different spin labels versus temperature. The

thermally averaged fractions of the Ld spectral com-

ponent P(Ld) are 0.26 6 0.04 (5PC), 0.46 6 0.05

(7PC), 0.42 6 0.11 (10PC), and 0.45 6 0.06 (12PC).
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from RBL cells (cf. Ge et al. (13)) and that of an Ld phase as
found in pure lipids (13,14). Moreover, R? for the spin labels

in the more ordered phase of the PMV are comparable to

those in an Lo phase. Thus we characterized the more ordered

phase as an Lo phase (referred to in Ge et al. (14) as Lo-like).
For the less ordered component we found that its S0 is

substantially less than, and its R? is greater than, those pa-

rameters in the Ld phase of pure lipid. Thus it is appropriate
to refer to this less ordered phase as an Ld phase. These

previous results provided strong evidence for coexistence

of Lo and Ld regions in the PMV (14). Thus, the strong

similarities in R? and S0 we have found in this study (cf. Fig.
4) for the two spectral components from the plasma

membranes of the live RBL cells and those from the PMV,

prepared from RBL cells, show that Lo and Ld regions also
coexist in the plasma membranes of live RBL-2H3 cells.

Furthermore, values of R? and S0 of the two components

found for COS7, NIH-3T3, and CHO cells and their tem-

perature variations (Figs. 5–7) are similar to those shown in

Fig. 4 for RBL-2H3 cells (also see Tables S1–S4). These

results indicate that plasma membranes for all four cell types

have similar coexisting Lo and Ld regions.
We observe that P(Ld) for the PMV from RBL-2H3 cells

is consistently lower than for the live RBL-2H3 cells.

Thermally averaged values of these P(Ld) are 0.11 vs. 0.26

for 5PC, 0.11 vs. 0.26 for 7PC, and 0.19 vs. 0.30 for 10PC.

(cf. Table 1 in Ge et al. (14) and Table S1 in Supplementary

Material for this work).

FIGURE 6 For NIH-3T3 cells, plots of best fit

values of the order parameter, S0, and the rotational

diffusion coefficient, R?, of the two components

(cross, Lo component; triangle, Ld component) of

ESR spectra from different spin labels versus temper-

ature. The thermally averaged fractions of the Ld
spectral component P(Ld) are 0.37 6 0.05 (5PC), 0.40

6 0.12 (7PC), 0.47 6 0.03 (10PC), and 0.45 6 0.12

(12PC).

FIGURE 7 For CHO cells, plots of best fit values of

the order parameter, S0, and the rotational diffusion

coefficient, R?, of the two components (cross, Lo
component; triangle, Ld component) of ESR spectra

from different spin labels versus temperature. The

thermally averaged fractions of the Ld spectral compo-

nent P(Ld) are 0.256 0.10 (7PC), 0.386 0.02 (10PC),

and 0.41 6 0.11 (12PC). Because of the low signal/

noise ratio of the spectra from 5PC in CHO cells, we

could not get a good fit for this case; so these results are

not provided.
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To assess accurately the relative amounts of the two types

of regions in the live cells, from the respective measured

values of P, the partition coefficient Kp of the spin-labeled

lipid is needed (cf. Eq. 1). Although it is not possible to

measure directly the Kp for the PC labels in live cells, a

method exists for obtaining these values in model mem-

branes with coexisting phases (25) as described in the

Materials and Methods section. Previous estimates were

based on a lipid mixture showing coexistence between

liquid-crystalline and gel phases (14,25). The SPM/DOPC/

Chol 3-component system exhibits a region of coexistence

between Lo and Ld phases (cf. Fig. 2 A and 22–24), providing

a more appropriate model system from which to obtain the

estimated Kp. Using the method of Chiang et al. (25),

described in the Materials and Methods section, we

estimated values of Kp of 0.4 6 0.2, 0.5 6 0.2, 0.6 6 0.2,

0.6 6 0.2, 0.8 6 0.4, and 1.1 6 0.5 for 5, 7, 10, 12, 14, and

16PC, respectively. Kp ¼ 1 corresponds to equal partitioning

in the Lo and Ld phases, and Kp less than unity means the Ld
phase is preferred (cf. Eq. 1). Thus this model system shows

that all the spin-labeled PCs partition into both the Lo and Ld
phases, and the PCs labeled farther up the chain have a

moderate preference for the Ld phase. If these Kp results for

5PC through 12PC (Kp ;0.5) are used as a rough estimate in

Eq. 1 for the RBL-2H3 cells and if the measured P(Ld) for the
spin probes in these cells (in the range of 0.2–0.4, see caption

to Fig. 4 and Table S1) are also inserted into Eq. 1, then Eq.

1 indicates that the Lo component is the major component in

the plasma membranes of RBL-2H3 cells. The results for the

other three cell lines (cf. captions to Figs. 5–7 and Tables

S2–S4) are also consistent with a major Lo component.

Some comments apply to the results for 16PC shown for

RBL-2H3, COS7, and CHO cells in Figs. 4, 5, and 7

(because the 16PC spectra in NIH-3T3 cells decay rapidly,

they are too noisy to be analyzed). Only a single component

is observed, except for the 5�C result for RBL-2H3 cells in

Fig. 4. In this case the single component at higher tem-

perature appears to be consistent with a continuation of

the Ld phase. However, for the other two cell lines, and in

general, it is difficult to discern whether the 16PC is in the Ld
or Lo phase or whether the values obtained represent some

average over the two phases.

Our NLLS analysis revealed some common features and

some differences in the dynamic structures among the four

cell lines. Plotted in Fig. 8 are variations of R? and S0 of the
two components, and the thermally averaged P(Ld) with

respect to the position of nitroxide radical attached to the

acyl chain at 25�C for the four cell lines. From Fig. 8 we can

see the following similarities: 1) The profiles of S0 versus

position of the label for both the Lo and Ld regions tend to be
fairly flat; 2) R? tends to be flat from C5 to C10 followed by

an increase at C12; and 3) P(Ld) increases as the nitroxide

moiety is placed farther down the acyl chain. This suggests

that PCs labeled farther down the chain partition more

favorably into a disordered plasma membrane environment,

a matter we discuss further below.

The experimental spectra and their analyses do illustrate

further similarities as well as differences among the different

cell lines. The experimental 7PC spectra and the two com-

ponents extracted by our NLLS analysis from these spectra

for the four types of cells at 25�C are shown in Fig. 3 B. It is
seen that whereas they are similar, there are significant

differences between the RBL-2H3 and CHO cells, on the one

hand, and the NIH-3T3 and COS-7 cells, on the other. More

precisely, we note the Lo spectral component for the four cell

lines are similar, but the Ld spectral component of COS7 and

NIH-3T3 cells is narrower than that of RBL-2H3 and CHO

cells. Such differences are also seen between the spectral

components for the four cell types at temperatures of 5�C and

15�C (data not shown). The source of the spectral differences

is readily explained by the results in Fig. 8 and in Tables

S1–S4. That is, 1) the rotational diffusion coefficients R? for

the Ld component of the COS7 cells (3.753 107–2.263 108

s�1) and the NIH-3T3 cells (4.793 107–1.823 108 s�1) are

FIGURE 8 Plots of best fit values of the order

parameter, S0, the rotational diffusion coefficient,
R?, of the two components at 25�C (diamond, Lo
component, triangle, Ld component) and (ther-

mally averaged) fraction of the Ld component,

P(Ld) of ESR spectra from spin labels 5, 7, 10,

and 12PC in RBL-2H3, CHO, COS7, and NIH-

3T3 cells, versus the position of nitroxide radical

attached at the acyl chain.
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slightly higher than those for the Ld component of the RBL-

2H3 cells (1.523 107–9.973 107 s�1) and CHO cells (4.503
107–1.613 108 s�1); and 2) the order parameters, S0, are lower
in the COS7 (0.09–0.15) and NIH-3T3 cells (0.09–0.16) than

in RBL-2H3 (0.14–0.31) and CHO cells (0.13–0.22). In

summary, the Ld region for the COS7 and NIH-3T3 cells

shows slightly greater ‘fluidity’ than that for the other two cell

lines. Furthermore, 3) the P(Ld) for COS7 and NIH-3T3 cells is
larger than those for RBL-2H3 and CHO cells (Fig. 8).

14PC and 16PC in the live cells exhibit rather different

behavior as compared with the other spin-labeled PCs (5, 7,

10, and 12PC). The ESR spectra of 14PC and 16PC in all

four types of cells exhibit substantial broadening (except for

the 16PC spectra in RBL-2H3 cells). Fig. 9 shows some

examples. The analysis of the 16PC spectra from COS7 and

CHO yields two components: one sharp and well resolved,

and one very broad. The values shown in Table S5 and Figs.

5 and 7 correspond to the sharp component, and Table S5

provides its relative population. The second component is a

single broad line, indicative of strong spin-spin interactions

due to clustering of the 16PC spin labels (30,31). These

spectra, containing a broad and a sharp component, are similar

to those from 16PC in detergent-resistant membranes derived

from RBL-2H3 cells (13). All the spectra from 14PC in the

cells exhibited characteristics similar to those from 16PC

(Fig. 9). However, unlike the other spin-labeled PCs, the

14PC spectra were not reproducible with different cell culture

preparations, so that a detailed analysis was not useful.

ESR measurements with model membranes

The SPM/DOPC/Chol ternary system, which shows coexis-

tence of Lo and Ld phases, has been used as a model membrane

to mimic the structure of biological membranes, and phase

diagrams have been constructed (cf. Fig. 2 A and 22–24). As

described above we used this system to obtain estimates of Kp,

and we also consider it appropriate for purposes of comparison

with our results from plasma membranes of live cells. This is

because 1) this lipid system is considered to be representative

of the lipid content of biological membranes (22–24,32); and

2) it exhibits a coexistence region for the Lo and Ld phases,

which is clearly relevant to the results on the live cells, as we

have noted above. Also, we have obtained for this system the

extensive results from spin labels covering the full range of

positions along the acyl chain.

Thus, ESR spectra of 5, 7, 10, 12, 14, and 16PC in vesicle

dispersions of SPM/DOPC/Chol at 22�C were analyzed.

We used three different compositions of SPM/DOPC/Chol

with molar ratios of 0.43:0.11:0.46 (Lo[hc]), 0.24:0.42:0.34
(Lo[mc]), and 0.30:0.63:0.07 (Ld[lc]). The designations [hc],
[mc], and [lc] correspond to high, moderate, and low

concentrations of cholesterol. The first two yield Lo phases
that are at the PB with the two-component Lo-Ld region. The
third yields an Ld phase also at the PB. Estimates of tie-lines

(cf. Materials and Methods section and (25)) indicate that

Lo[mc] and Ld[lc] coexist in the two-phase region (i.e., they

are connected by a tie-line), as we have discussed above. The

Lo[mc] composition was motivated by the known concen-

tration of cholesterol in the plasma membranes of RBL-2H3

cells, which was measured to be 33 mol % in a previous

study (33). More generally, the content of cholesterol in

plasma membranes is typically 30–40 mol % (16).

In all these cases, our NLLS analysis showed that the

spectra were well fit with just a single component, as expected

for these spin-labeled lipids in a single phase. The best fit

values of R? and S0 for these spectra are listed in Table S6 of

Supplementary Material. The profiles of R? and S0 with

respect to the position of the acyl chain nitroxide label for the

PCs for the three compositions are shown in Fig. 10. The

FIGURE 9 ESR spectra of 14PC and 16PC in the plasma membranes of

live RBL-2H3, COS7, CHO, and NIH-3T3 cells (experimental, solid lines;

simulations, dashed lines). The temperatures at which these spectra were

recorded are indicated at the corner of each spectrum. For illustration, the

calculated two components of 16PC spectra in COS7 and CHO cells are

shown in the two boxes.

FIGURE 10 Plots of best fit values of the order parameters, S0, and the

rotational diffusion coefficient, R?, of ESR spectra from spin labels 5, 7, 10,

12, and 16PC in lipid dispersions of SPM/DOPC/Chol with three different

compositions (see text) at 22�C versus the position of nitroxide radical

attached at the acyl chain, solid lines. Relevant results for RBL-2H3 cells at

25�C from Fig. 8 are shown by dashed lines for comparison.
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profiles look similar in that R? increases substantially from

5PC to 16PC, whereas S0 decreases over this range of posi-

tions of the spin label.

This negative slope of S0 is, however, seen to increase

with decreasing cholesterol concentration. That is S0 for

5PC is comparable for all three compositions, but for 16PC it

is much smaller for Ld[lc] than for the two Lo phases. This
is consistent with the packing of the acyl chain near the

headgroup region being comparably tight for the three

compositions, but it becomes less constrained with decreas-

ing cholesterol near the center of the bilayer. The positive

slope of R? is seen to decrease with decreasing cholesterol

concentration. That is, R? for 5PC is largest for Ld[lc] and
smaller for Lo[mc] and Lo[hc]. But they are more nearly

comparable near the center of the bilayer. This indicates that

the local friction, which has a major role in determining R?,
is comparable in the three cases near the center of the bilayer

but does vary with cholesterol near the headgroup, being

least for Ld[lc] and most for Lo[hc].
It is possible to make a partial comparison of these ESR

results on the three-component SPM/DOPC/Chol model

membrane system with those from the DLPC/DPPC/Chol

model membrane that was previously studied at 24�C in

these laboratories (34). This latter study was more extensive

in one sense—it covered most of the phase diagram—but

less extensive in that 16PC was the only spin-labeled lipid

used. Despite the very significant differences in phospholipid

components and the very different phase diagrams in the two

cases (e.g., the latter does not have an Lo-Ld two phase co-

existence region), we find some good comparisons in

respective values for S0 and R? for 16PC. Some examples

are given in Table 1. The conclusion appears to be that the

respective phases for the two different mixed lipid membrane

systems have quite similar dynamic molecular properties as

viewed by the end-chain label 16PC.

In another limited comparison for the behavior of 16PC in

the two different ternary mixtures, we consider the value of

Kp. In this work, a value of Kp¼ 1.1 6 0.5 was obtained for

the coexistence of the Ld[lc] and Lo[mc] compositions. In

previous work on the DLPC/DPPC/Chol system the main

two-phase region is Ld and gel; there Kp ¼ 0.9 6 0.1 was

found for the case of 0% Chol, decreasing to 0.6 6 0.2 for

the 13%–15% Chol tie-line (25), where Kp , 1 favors the

Ld phase. Thus Kp values of roughly comparable magnitude

are obtained for the Ld-Lo and Ld-gel coexistence regions

for 16PC.

Comparison of results on live cells with those
from model membranes

To directly compare the results on live cells with those from

the model membranes at 22�C we also show by dashed lines

in Fig. 10 the profiles of S0 and R? of both the Lo and Ld
components for the RBL-2H3 cells at 25�C given in Fig. 8.

The profiles of R? for the Lo and Ld phases of the live cells
are very similar to those of the Lo[mc] and Ld[lc] phases,
respectively, of the model membrane, indicating similar

mobilities in these respective membrane phases. Also, the

profiles of S0 in the Lo and Ld phases of the RBL-2H3 cells

are comparable to those for the respective model membrane

phases, although the live cell results do show less variation

along the acyl chain. It is shown in Fig. 8 that the profiles of

S0 and R? for the four cell lines are similar, so it follows that

they are all similar to those of the model membranes.

Such similarities between the respective coexisting Lo and
Ld phases for the live cells and the model membranes for the

range from 5PC to 12PC are intriguing given the large

differences in their lipid compositions and the absence of

proteins in the model membranes. This also provides the best

argument for using the Kp values observed for the 5–12PC

spin labels in the model membrane as a rough guide for the

live cell plasma membranes.

The end-chain spin labels reveal some differences. In par-

ticular, that 14PC and 16PC in the live cells tend to cluster

(cf. Fig. 9) is clearly different behavior from what is

observed in model membranes consisting of pure or mixed

lipid systems. It is possible that these spin labels are not

being fully incorporated into the cell plasma membrane.

However, this does not seem to be the most likely ex-

planation, because the other spin-labeled lipids (nPC, n ¼ 5,

7, 10, 12) are readily incorporated and do not show such

behavior. In fact, in our extensive experience with 14PC and

16PC in model membranes and PMV we find they are

readily incorporated into the membrane phase (13,14,25,29,

31,34–37). Clearly the presence of membrane proteins in the

plasma membranes of live cells is a major difference from

the model membranes. Previous studies have shown that

reconstitution of integral membrane proteins into lipid

bilayers dramatically increases the water permeability (38);

incorporation of a small peptide into PC bilayers also in-

creases water penetration (39), and this suppresses the

polarity gradient of the membrane (31). On the other hand,

cholesterol, such as is present in an Lo phase, reduces the

water penetration into lipid bilayers (40). One possibility,

TABLE 1 Some comparisons of S0 and R? for 16PC

in the model membrane systems DLPC/DPPC/Chol

and SPM/DOPC/Chol

Composition and phase S0 R?

Phase DLPC/DPPC/Chol*y Phase SPM/DOPC/Cholz (108s�1)

Ld 0.48/0.32/0.20 0.13 1.8

Ld [lc]/0.30/0.63/0.07 0.09 2.1

Lo 0.56/0.14/0.30 0.22 2.2

Lo [mc]/0.24/0.42/0.34 0.20 2.2

Lo 0.24/0.24/0.52 0.26 2.3

Lo [hc]/0.43/0.11/0.46 0.27 3.8

*24�C.
yFrom Chiang et al. (34). The results on 16PC (34) for the DLPC/DPP/Chol

system show only slight to modest variation in S0 and R? versus comp-

osition within a respective phase.
z22�C.
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suggested by these observations, is a more substantial pres-

ence of water molecules in the Ld phase of cell membranes,

especially near the center of the bilayers, where the acyl

chain segments are more loosely packed. Such regions of

higher polarity could accumulate 14PC and 16PC because

their polar nitroxide group is better accommodated. This

scenario might help explain the somewhat greater preference

of 10PC and 12PC for the Ld region of live cells as compared

to 5PC and 7PC (cf. the P(Ld) shown in Fig. 8).

Kinetics of ESR signal decay

During the ESR measurements of spin-labeled live cells, the

ESR signal intensity was observed to decay with time.

Lowering the temperature reduced the signal decay, but even

at 5�C the decay was detectable. We examined the kinetics of

this process by measuring the intensity of the central peak of

the ESR spectra of different PC spin labels incorporated into

the plasma membrane of RBL-2H3 cells as a function of time

at 5, 15, and 22�C. The ESR signal intensities of different

spin labels viz., 5PC, 10PC, and 12PC, monitored as a func-

tion of time at 5�C are shown in Fig. 11.

All the kinetic traces obtained at 5�C could be fit to a

monoexponential decay (shown as an overlapping white line
on each kinetic trace). At this low temperature internalization

of the plasma membrane lipids due to endocytosis is in-

significant. Therefore, any decay in the ESR signal is most

likely due to the reduction of the nitroxide moiety by the

free thiol groups of membrane-associated proteins (41). In

separate experiments we used fluorescence quenching to com-

pare the location of 10PC with BODIPY-GM1, which is

observed with fluorescence microscopy to be retained in the

plasma membrane of RBL-2H3 cells. The results showed

that most of the 10PC stays in the plasma membrane together

with the BODIPY-GM1 for at least an hour (Fig. S1 in

Supplemental Materials).

At higher temperatures (15 and 22�C), the decay process

becomes more complex and the decay profiles could not be fit

tomonoexponential functions (not shown). This ismost likely

due to the fact that at these temperatures and time periods, the

signal may decay by reduction in the intracellular milieu upon

endocytosis of the spin-labeled probes from the plasma

membrane, in addition to reduction of the nitroxide moiety by

the membrane surface thiols.

Constancy of ESR spectra as a function of time

During the course of our ESR experiments we have per-

formed extensive tests of the constancy of the ESR spectra as

a function of time. We present one such example in Fig. 12.

From this figure, it can be seen that the ESR spectra of 7PC

recorded successively at 30�C are virtually identical in shape

although the actual spectral intensity has decreased with

time. This is reflected in the significantly lower S/N ratio for

spectrum 2 as compared to spectrum 1. All similar tests we

have performed demonstrate that the spectra from the cell

plasma membranes remain constant in their line shapes even

as they decay in intensity with time.

DISCUSSION

The results show that ESR spectra of chain spin-labeled PCs

in the plasma membrane of live RBL-2H3, CHO, COS7, and

NIH-3T3 cells consist of two components, which are char-

acteristic ofLo andLd phases. These components are similar to

those in PMVs of RBL-2H3 cells previously described (14),

and they provide direct evidence for the Lo-Ld phase sep-

aration in the plasma membrane of live cells. We address two

matters specific to the results on live cells before discussing

the significance of these new findings.

FIGURE 11 Kinetics of ESR signal decay of 5PC, 10PC, and 12PC

incorporated into the plasma membranes of RBL-2H3 cells. The intensity of

the central ESR line was monitored as a function of time at 5�C.

FIGURE 12 ESR spectra of 7PC in live RBL-2H3 cells at 30�C spectrum

2 (dotted line) was recorded after spectrum 1 (solid line). Both spectra are the

sum of 32 repeated scans each. Accumulation of the scans for spectrum

2 was completed 28 min after spectrum 1 was completed. Spectrum 2 was

vertically expanded to match spectrum 1 for the purpose of comparison.
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The two spectral components are not generated
by internalization of spin labels

We considered the possibility that the two different envi-

ronments, yielding Lo and Ld populations, could be the result
either of internalization or of flip-flop of a fraction of the spin

label. If this happens significantly, then one of the spectral

components could be due to the spin label in the outer leaflet

of the plasma membrane and the second component could be

due to the spin label that is internalized or located in the inner

leaflet. However, the following observations clearly indicate

that such a possibility is highly unlikely. 1) The flip-flop of

the spin label from the outer leaflet of the plasma membrane

into the inner leaflet is expected to be negligible during the

course of the experiment (;1 h), because the flip-flop rates

of PC in different systems have been shown to be very low in

most cases (42,43). 2) The ESR spectra obtained from the

same sample from repeated accumulations remain nearly

identical in line shape (Fig. 12), suggesting that the lipid

environment of the detectable spin labels is not altered

during this time period. 3) We performed kinetic measure-

ments at different temperatures. They show that whereas the

spectral line shape does not change with time, its intensity

decays over a period of 1–3 h even at temperatures as low as

5�C (Fig. 11), where endocytosis is drastically reduced (44)

and flip-flop is expected to be negligible (42,43). This decay

rate varies substantially with location of the label on the

acyl chain: those closer to the headgroup region decay more

rapidly (Fig. 11). It is possible that the nitroxide moiety of

the spin-labeled PC analogs are being reduced in the plasma

membrane by thiol groups of peripheral/integral membrane

proteins (41). 4), Fluorescence microscopy shows that, when

RBL-2H3 cells are labeled with fluorescently labeled lipid

probes such as BODIPY-GM1 at T # 5�C, the label is

retained in the plasma membrane for more than an hour

(P. Sengupta, unpublished results). In the double-labeling ex-

periments in which the RBL-2H3 cells were labeled with

both BODIPY-GM1 and 10PC, the time-dependent relief of

quenching of the fluorescent lipid probe by the phospholipid

spin probe as it decays confirms that they both exist in the

same region of the RBL-2H3 cells (Fig. S1, Supplementary

Material).

The two spectral components are not due to
coexistence of boundary and bulk lipids

The concept of boundary lipids was derived from the broad

spectral components observed in ESR spectra from acyl

chain spin labels, mostly of 14PC and 14-(49,49-dimethyl-

oxazolidine-N-oxyl) steric acid, in protein/lipid complexes

that have been characterized previously. These broad com-

ponents have large outer peak separations, usually .60 G.

The rotational diffusion coefficients of these lipid molecules

were estimated to be approaching the rigid limit on the ESR

timescale (45), i.e., these lipids are immobilized. It was

suggested that the broad component represents lipid mole-

cules in contact with the protein molecules (35,45–49). This

spectral component compares favorably with the boundary

lipid component found by Ge and Freed (36) in their study

of 16PC in gramicidin A in DPPC, which they pointed out

is gel-like (see also Costa-Filho et al. (37)).

In this work on the live cells, the outer peak separation of

the Lo component of the 5PC spectra at 25�C is ,57 G and

that of the spectrum of 12PC in RBL-2H3 cells at 25�C is

only 48 G, which is much smaller than 60 G, and its ESR

spectrum is clearly different from those of boundary lipid,

previously reported (cf. 36,48). As described above, the ESR

spectral component from the live cells (and PMV) that is

attributed to the Lo phase has many characteristics of ESR

spectra from Lo phases in model membranes (see also Ge

et al. (13,14) and Costa-Filho et al. (50)), and they are qual-

itatively different from those of boundary lipids. Thus, we

conclude that our ESR observations in the live cells (as well

as in the PMV) are not due to boundary lipids.

Live cells versus PMV and model membranes

Transmembrane proteins in plasma membranes have an

important effect on the organization and dynamic structure of

plasma membranes (5,51). Transmembrane proteins could

disturb a fragile ordering of the lipids in their surrounding

environment in the plasma membranes, thereby rendering

them more disordered and mobile. This may be at least

partially responsible for the observation of the Ld phase in

the cell plasma membranes. The observation of a larger Ld
spectral component in the live RBL-2H3 cells than in the

PMV is consistent with the lower protein content in PMV as

compared to the plasma membrane of the live RBL-2H3 cells

(52). Moreover, it was found that by studying the lipids

extracted from the PMV, the Ld component was eliminated

leaving only the Lo component in the ESR spectrum (14).

(This further argues against assigning the Lo component to

boundary lipids.) Also, recent studies with model systems

demonstrate that incorporation of transmembrane peptides

into membranes with ordered bilayers can result in the for-

mation of disordered regions (53), and this lends further

support to the above interpretation. It has even been hypoth-

esized that proteins play a central role in organizing cell

membranes into domain structures (5,54). Also, the actin

cytoskeleton that attaches to the plasma membrane in cells

but not in PMV (55,56) may also play a role in the dif-

ferences between PMV and live cells. Of further relevance is

the fact that the cell maintains active processes of protein and

lipid turnover and is not at equilibrium, unlike membrane

vesicle preparations.

It is known that liquid-liquid immiscibility in membranes

depends on the cholesterol concentration (57,58) and that a

substantial concentration of cholesterol in a membrane is

crucial for the formation of an Lo phase (13,59,60). Thus, the
substantial amounts of cholesterol contained in the live cell
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membranes that we have studied, as well as in the SPM/

DOPC/Chol model membranes, is a very likely reason the

phase structures of the two membrane systems are similar. In

a recent review article, London commented that a ternary

mixture consisting of a high melting temperature (Tm) lipid
(e.g., sphingolipids with saturated acyl chains), a low Tm
lipid (e.g., phospholipids with unsaturated acyl chains), and

cholesterol may crudely imitate cell membrane behavior (32).

The results of this study on just such a model system (SPM/

DOPC/Chol), in comparison with the live cell membranes,

support this comment.

Thus, the results in this study are consistent with the view

that the effect of proteins on the structure of membranes (i.e.,

lipid/protein interactions) and substantial concentrations of

cholesterol (i.e., lipid/lipid interactions) both contribute to

domain formation in cell membranes.

Insights into the structure of cell
plasma membranes

On the basis of the similar dynamic structural properties of

R? and S0 in the live cells versus the model membrane

system that was observed over the range of acyl chain spin

labels from 5PC to 12PC, we have concluded (Results

section) that the partition coefficients, Kp, measured for the

latter should provide a reasonable, albeit rough estimate of the

partitioning in the former. Using these Kp values one finds

that the Lo component is a major component and quite pos-

sibly the predominant component in the plasma membranes

of the live cells.

This result contradicts the view of small Lo regions of lipids
or "rafts" floating in a larger sea of disordered lipid (1,2,5,6).

Instead, this result lends itselfmore readily to an interpretation

in terms of amodel of a continuousLo phase in the outer leaflet
of the plasma membrane (16). Such a continuous Lo phase
model could include the possibility of small scale dynamic

variations of the order of several lipid molecules in size in the

Lo regions (51,61) whose effects could be averaged out on the
ESR timescale. In fact, a continuous Lo phase was demon-

strated in a recent study on a model membrane consisting of

brain SPM, brain PC, and cholesterol (60). That is, as the

concentration of cholesterol in the model membrane was

increased, a point was reached at which the Lo phase (rafts)
changed from a disconnected to a connected (or continuous)

one. At this percolation point, the cholesterol concentration is

20–30mol%, and the amount of theLo (or raft) phase, relative
to the Ld phase, is 45%–50% (60). These concentrations are

comparable to what we have estimated in this study for the

live cells.

With fluorescent probes it is not possible to distinguish Lo
and Ld phases on live cell membranes under an optical

microscope, indicating that the dimensions of at least one of

them must be less than ;300 nm in the absence of receptor

cross-linking or other perturbations. The ESR spectra are not

able to provide an accurate estimate of the size of the

membrane domains but can provide a rough estimate of a

lower bound for this dimension. Based on the measured

diffusion coefficients for PC spin labels in model membranes

(62,63), as well as the fact that the diffusion between the

regions is too slow to average the two distinctly different

spectral components, one can roughly estimate that their size

should be greater than ;2 nm. This estimate of a lower

bound on the domain size is consistent with the recently

proposed scenario, that in resting cells, rafts appear small;

they might be as small as a molecular complex consisting of

only three molecules, but their size distribution is broad (56).

This is to be compared with the size of domains in model

membranes, which has been observed in the range of 80 nm

to tens of micrometers, depending on how the model mem-

branes were prepared and which techniques were used to

measure domain size (8,60,64).

SUMMARY

The ESR studies reported here demonstrate the presence of

two distinct lipid populations with different order parameters

and dynamic rate, corresponding to Lo and Ld phases, in

the plasma membranes of live cells. These results serve as a

baseline for interpreting studies of cellular processes that are

related to the phase-like behavior of the plasma membrane.

Spin-label ESR spectroscopy, coupled with the NLLS anal-

ysis, provides a method that is applicable in the study of the

dynamic phase structure of membranes in live cells.
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