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Models to Study Atherosclerosis: A Mechanistic Insight
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Abstract: The recent failure of candidate drugs like cholesterol ester transfer protein (CETP) and acyl-CoA:cholesterol
acyltransferase (ACAT) inhibitors calls for a revised approach for screening anti-atherosclerotic drugs and development of
new models of atherosclerosis. For this it is important to understand the mechanism of the disease in a particular model.
Models simultaneously showing hyperlipidemia, inflammation and associated complications of diabetes and hypertension
will serve the purpose better as they mimic the actual clinical condition. Besides this, analyzing candidate molecules in
vivo, in vitro and at various levels of atherosclerosis progression is important. Models based on various cells and process
involved in atherosclerosis should be used for screening candidate molecules. The challenge lies in bridging the gap be-
tween genetically friendly small animal and human-like bigger animal models. Sequencing of the mouse and human ge-
nome, development of a single nucleotide polymorphism (SNP) database and in silico quantitative trait loci (QTL) linkage
analysis may enhance the understanding of atherosclerosis and help develop new therapeutic targets.
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INTRODUCTION

Atherosclerosis is a complex disorder [1-4]. Initial events
include endothelial injury and monocyte activation [5, 6].
However the type and stimulus of injury triggering athero-
sclerosis is still an area of active research [5, 6]. With the
help of various cell adhesion molecules and gap junctions,
leukocytes adhere and migrate in to the endothelium [5, 6].
Monocytes differentiate into macrophages inside the vessel
wall and form macrophage foam cells [5-7]. These cells in-
teract with other cells like T lymphocytes [5, 6] and vascular
smooth muscle cells (VSMCs) [5, 6], which migrate [5, 6],
differentiate [5, 6] and proliferate [5, 6] and take positions in
close proximity to these cells [5, 6]. Amplification of the
inflammatory response [5, 6] coupled with enhanced migra-
tion, proliferation and differentiation of inflammatory cells
accounts for atherosclerosis progression [5, 6]. Secretion of
various extra cellular matrix proteins by VSMC ultimately
leads to the formation of fibrous plaque [5, 6]. Vessel micro-
environment is compromised due to extensive biochemical
and molecular changes and beneficial processes like phago-
cytic clearance of lipid-laden macrophages is hampered [5,
6]. Under such conditions cells undergo necrotic death and
release various inflammatory cytokines, lipids, and cellular
content to form a lipid rich necrotic core [5, 6]. All these
processes contribute to the formation of an atherosclerotic
plague [5, 6]. Unstable plaques are prone to rupture due to
degradation of extracellular matrix proteins by released met-
alloproteases [5, 6] leading to various complications, de-
pending on the site of vessel blockage [5, 6]. This leads to
exposure of blood to tissue factor (TF), thus activating the
coagulation cascade and fibrin deposition and activating and
recruiting platelets to form a thrombus [5, 6].
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This review covers all the aspects of models of athero-
sclerosis. This includes animal models [8-12], lower organ-
isms [13] genetic models [14], in silico [14, 15], analytical
[16], kinetic models [17], in vitro models and also target-
based models. The importance of target-based models can be
derived from the mechanism of atherosclerosis discussed in
the review. Thus, it addresses not only the model but also the
mechanism of disease manifestation in them. It also de-
scribes in brief how these models can be used for the as-
sessment of various drugs. Although reviews on animal mo-
dels of atherosclerosis have been published [18-24], there are
almost none for the in vitro, cell and target based models,
which this review will cover. Besides updating all the mod-
els, the present review approaches the models in a mechanis-
tic way and thus blends classical animal models with recent
biochemical and molecular findings. This will help in under-
standing the disease process and designing better strategies
including models to study atherosclerosis.

ATHEROSCLEROSIS: COMPLICATIONS AND FAI-
LURES

Failure of ACAT [25-28], and CETP [29] inhibitors are a
setback in the treatment of atherosclerosis. These observa-
tions emphasize the fact that a candidate molecule should
show a protective effect in several models of atherosclerosis.
Furthermore, studying a disorder in isolation may not lead to
clinically relevant benefits. It is often observed that those
suffering from atherosclerosis, also have diabetes and insulin
resistance [4, 30-32]. More evidence for this concept comes
from many basic [33, 34] and clinical observations [4, 32,
35, 36]. Dyslipidemic patients suffering from diabetes and
insulin resistance may show better cardiovascular improve-
ment than the dyslipidemic alone, when treated with PPAR
(peroxisome proliferator-activated receptor) a agonists [6,
37]. Similarly thrombotic events observed in atherosclerosis
[38-42] and the common use of anti-platelet drugs in patients
who have undergone balloon angioplasty emphasizes that
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thrombosis is central to atherosclerotic complications [43-
46]. Similar findings have shown that anti-platelet drug-
eluting stents to be more protective against restenosis in
atherosclerotic patients suffering from diabetes [47]. How-
ever, it can also be argued at the same time that since the
incidence of restenosis is more in diabetics, the chances of
seeing protection is more.

The existence of hypertension along with atherosclerosis
is common [48-50] with evidence that shear stress influences
the development of atherosclerosis [49, 51, 52]. Activation
of the renin-angiotensin system (RAS) in adipose tissue may
represent an important link between obesity and hyperten-
sion [53]. Plasma-derived angiotensin 1l (Angll) exerts po-
tent vasoconstrictor effects on resistance arteries. In addition
Ang 1l releases aldosterone from the adrenal glands, which
in turn enhances renal tubular sodium reabsorption resulting
in an increase in the effective plasma volume [54, 55]. Other
proatherosclerotic effects of angiotensin have also been rec-
ognised [55, 56]. The potential link between Ang Il and athe-
rosclerosis is strengthened by the Heart Outcomes Preven-
tion Evaluation (HOPE) trial where ACE (angiotensin con-
verting enzyme) inhibition reduced the rates of death, myo-
cardial infarction, and stroke in patients with atherosclerosis
[57].

The effectiveness of statins [3-hydroxy-3-methylglutaryl
coenzyme A (HMG CoA) reductase inhibitors] faces the fact
that many patients who develop atherosclerosis have choles-
terol below risk levels [58]. At the same time there is evi-
dence that the protection exerted by statins is not only due to
cholesterol lowering but also to other actions like inflamma-
tion, which plays a role in atherosclerosis progression [59,
60]. Thus, it is important to develop models of atherosclero-
sis that comprehensively reflect the clinical situation. A dif-
ferent mechanism of atherosclerosis in different animals may
explain certain failures. For example, drugs affecting the
reverse cholesterol transport (RCT) that are also in clinical
trials [61, 62]. However, while screening these candidate
drugs in animals one has to be careful of the interpretations.
An example of this is CETP. This is a protein involved in
human RCT but it is absent in mice [63, 64]. It follows that a
candidate drug showing good results with respect to RCT in
a mouse model, may behave differently in humans. Attrac-
tive molecules like the CETP inhibitor torcetrapib have faced
failure in clinical trialls and it is still being debated whether
it was the mechanism or the structure of the molecule, which
lead to its failure [29]. A combination of atorvastatin with
torcetrapib lead to increased myocardial infarction, angina,
heart failure, revascularization procedures when compared
with atorvastatin alone [29]. However, in an other study,
although there was no protection with the candidate drug, no
major adverse effects were noticed [65]. This may be a struc-
ture specific effect. At the same time lipoprotein a [Lp(a)] is
absent in mice and many other animals [66]. Therefore, the
species specific presence/absence of these proteins will af-
fect the candidate drug is unknown until evaluated in a clini-
cal setting.

ACAT inhibitors are facing failures in clinical trials even
after more than 2 decades of research [25-28]. ACAT2 es-
terifies the free cholesterol that forms the core of lipoproteins
assembled in hepatocytes and intestinal epithelium, whereas
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ACAT1 acts in macrophages [25]. Several ACAT inhibitors
failed in clinical trials after showing very promising results
in animal models [25-28]. This raises the question about the
suitability of the models used. Time of animal sacrifice and
the sites of lesion analysis may determine outcome [25, 67-
72]. Evidence suggests that different lesion sites may re-
spond differently to the same drug [67]. Therefore, it is im-
portant that the lesion being analyzed should be similar to
humans in its nature and location [67]. Equal importance to
plasma lipid levels has to be given and mere significant
changes are not sufficient [67]. Lesion analysis at varying
plasma lipid levels may yield variable results. These points
are also important when comparing data from 2 different
studies. Answer to the failures also comes from the data re-
garding the overall effect of these inhibitors [25, 67-72].
Although ACAT inhibitors make more cholesterol available
for RCT, too much of it can induces macrophage apoptosis
and plaque rupture in atherosclerosis [73-76]. Screening of
these inhibitors in animals, which can take care of excess
cholesterol easily or have upregulated RCT and cholesterol
efflux may provide inappropriate projections about the can-
didate molecules [25]. Therefore, while screening for ACAT
inhibitors it also becomes important to ascertain the extent of
cholesterol-induced apoptosis. However, if used in combina-
tion with inhibitors of apoptosis or activators of cholesterol
efflux, these inhibitors may work but this also requires clini-
cal testing.

Therefore, understanding the mechanism of atherosclero-
sis is a key factor.

MECHANISM OF ATHEROSCLEROSIS

Different biochemical and molecular events control the
various processes of atherosclerosis, making it a very com-
plex process [5, 6]. Activated monocytes adhere to the endo-
thelium with the help of cell adhesion molecules and recep-
tors like intercellular cell adhesion molecule (ICAM), vascu-
lar cell adhesion molecule (VCAM), selectins, very late anti-
gen-4 (VLA-4) [5, 6]. This process involves distinct signal-
ing mechanisms which leads to upregulation of cell adhesion
molecules and receptors and gap junctions like connexin
(Cx) 37 on the endothelium and monocytes [5, 6, 77]. Leu-
kocyte rolling (L-selectin, P-selectin), arrest (E-selectin,
Cx57, VCAM-1, ICAM-1) and diapedesis [ICAM-1, Plate-
let/endothelial cell adhesion molecule-1 (PECAM-1), junc-
tional adhesion molecule-A (JAM-A), Cx 43] leads to their
accumulation inside the endothelium [78, 79]. These adhe-
sion molecules and gap junctions are potential therapeutic
targets as are the cellular signaling like activation family of
protooncogenic tyrosine kinases (src kinases), phosphoinosi-
tide 3 (PI13) kinase -AKT, p38 mitogen activated protein
kinase (p38 MAPK) and nuclear factor-kappa B (NFkB) that
are associated with their upregulation [6, 80-85].

Macrophage chemotactic protein-1 (MCP-1) and macro-
phage migration inhibitory factor (MIF) play an important
role in monocyte activation, migration and differentiation [6,
81, 82, 86-90]. MCP-1 receptor, C-C motif chemokine re-
ceptor-2 (CCR2) knockouts show reduced atherosclerosis
[82]. MIF and chemokine receptor also play an important
role in the chemotaxis and upregulation of cell adhesion
molecule [6, 84, 91] and are areas of future therapeutic inter-
vention [6, 78, 92]. An inflammatory response seems to am-
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plify these processes [5, 6]. Once inside the vessel wall
monocytes differentiate into macrophages in presence of
macrophage-colony stimulating factor (M-CSF), granulocyte
macrophage colony stimulating- factor (GM-CSF) and modi-
fied lipids [5, 6]. These differentiated macrophages accumu-
late modified lipids via specific receptors like macrophage
scavenger receptor (SR) A, CD36 and lectin-like oxidized
low-density lipoprotein receptor-1 (LOX-1) [5, 6] and pino-
cytosis [93]. All of these are areas of active research and
being developed as targets of atherosclerosis. Enzymes like
lipoxygenase (LOX) 15, 5LOX and inducible nitric oxide
synthase (iNOS) bring about oxidation of low density lipo-
protein (LDL) to form oxidized low density lipoprotein (Ox-
LDL) [5, 6]. iINOS, NADPH oxidase, cyclooxygenase
(COX), LOX12/15 and mitochondrial dysfunction contribute
to free radical generation and protein modifications observed
during atherosclerosis [5, 6]. Since oxidative stress contrib-
utes to atherosclerosis progression, several antioxidants are
in clinical trials for this disorder [94]. Use of COX-2 inhibi-
tors is often accompanied with myocardial infarction and
thus it has a major drawback [95]. It is believed that selective
COX-2 inhibition disturbs the thrombotic equilibrium and
creates an imbalance between anti and pro-thrombotic fac-
tors by inhibiting endothelium-derived prostaglandin (PG) I,
while sparing platelet-derived thromboxane [95].

The endothelium [96] promotes anti-thrombotic events
by releasing nitric oxide (NO), prostacyclin (PGI2), adeno-
sine nucleotides which inhibit platelet adhesion and aggrega-
tion [96]. Tissue factor pathway inhibitor (TFPI), thrombo-
modulin (TM), heparans and dermatans released by the ves-
sel wall are inhibitors of the coagulation pathway [96]. Tis-
sue plasminogen activator (tPA) and urokinase-type plasmi-
nogen activator (UPA) bring about fibrin cleavage [96] and
NO and interleukin (IL)-10 suppresses adhesion and aggre-
gation of blood platelets [96]. However, at the same time
mediators like von Willebrand factor (VWF), P-selectin and
IL-8 released by the endothelium promote platelet activation
and prothrombotic events [96]. TF, factor Va, phosphatidyl-
serine activate the coagulation cascade [96]. Plasminogen
activator inhibitor-1 (PAI-1) is involved in fibrinolysis [96].
Adhesion molecules, inflammatory mediators like tumor
necrosis factor (TNF) o and CD40L released by platelets and
endothelium promote formation of platelet leukocyte co-
aggregate and thrombosis [96]. Platelet activation, besides
creating a prothrombotic environment [36, 97] also leads to
an increase in platelet-derived growth factor (PDGF), lys-
ophosphatidic acid (LPA) and 5-hydroxytryptamine (5-HT).
These agents promote smooth muscle cell (SMC) migration
and proliferation [36, 97].

Inside the macrophages, the enzyme ACAT-1 converts
free cholesterol, released as a result of lysosomal degrada-
tion, into cholesterol esters [7]. These give macrophages the
characteristic foamy appearance and hence the name “foam
cell” [7]. All cells including endothelium, macrophages and
VSMCs accumulate these lipids to form foam cells, which
ultimately contributes to the formation of atherosclerotic
plaque [98, 99]. Oxidative stress contributes to foam cell
formation by generating more oxidized lipids [5, 100]. Re-
cently c-jun-N-terminal kinase-2 (JNK2) has been postulated
to play a role in macrophage foam cell formation and athero-
sclerosis progression [6, 101]. A similar enzyme, ACAT2,
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present in the intestine, facilitates the uptake of chylomicrons
[27]. Cholesterol inside the macrophages is routinely ex-
pelled by transporters like ATP-binding cassette transporter
Al (ABCAl), ATP binding cassette transporter G1
(ABCG1), SR B1, caveolins and sterol 27-hydroxylase to
acceptors like HDL and apolipoprotein (Apo) A-1 [102].
This forms an important step of RCT a process by which
excess cholesterol is removed from the macrophage and ves-
sel wall to the liver or intestine for metabolism and excretion
[102]. Although several proteins mediate the processing and
uptake of effluxed cholesterol before it is finally excreted
from the liver, HDL takes center stage in this process and
therapeutic interventions targeting this process have a bear-
ing on the plasma HDL-cholesterol levels [103-106]. It is
well understood that from the early days of the Framingham
Heart Study, that HDL-cholesterol levels are a more potent
risk factor for coronary artery disease than LDL-cholesterol,
total cholesterol or plasma triglyceride [107, 108]. Therefore,
strategies affecting the RCT in such a way so as to increase
the HDL-cholesterol are being actively pursued [103-106].
Apo Al forms nascent discoidal HDL (ndHDL) particles on
reacting with serum phospholipids [102]. This is an acceptor
of effluxed cholesterol from macrophages and endothelium
and is esterified by the enzyme lecithin: cholesterol acyl
transferase (LCAT) [102]. Further action by enzymes like
phospholipid transfer protein (PLTP) leads to formation of
more mature HDL particles (HDL2) [102]. PLTP also has a
role in generating pre B-HDL, which is an important acceptor
of cholesterol at the plasma membrane of the effluxing cells
[102, 107]. Since PLTP contributes to the transport of the
surface remnants after lipolysis of triglyceride rich food and
ultimately helps in generation of pre B-HDL, it also contrib-
utes to lowering the atherosclerotic burden [102, 107]. Simi-
larly enzymes like lipoprotein lipase (LPL) and hepatic li-
pase (HL) also contribute to generating pre p-HDL [102,
107]. HL facilitates the conversion of triglyceride rich HDL
particles (HDL2) to HDL3 [102, 107]. Regulation of HL and
PLTP is crucial in RCT [102, 107]. The protein CETP which
is secreted by liver, binds to HDL and brings about the trans-
fer of cholesterol ester from HDL to very low density lipo-
protein (VLDL) and LDL and in turn transfers triglyceride
from the latter to HDL [102, 107]. Cholesterol esters can
thus be removed from the liver by low density lipoprotein
receptor (LDLR) [102, 107]. This calls for an anti-
atherogenic effect of CETP. However, at the same time since
it is leading to an increase in LDL-cholesterol, a decrease in
HDL-cholesterol may lead to proatherogenic events [102,
107]. Therefore, caution is to be observed when targeting
this molecule for atherosclerosis treatment. These aspects
should also be looked into while evaluating the failure of
CETP inhibitor, torcetrapib [102, 107].

Atherosclerosis is now considered an inflammatory dis-
order and inflammation is being considered as an attractive
therapeutic target [59, 60]. One of the major challenges is to
connect dyslipidemia with the increased inflammation ob-
served during atherosclerosis [59, 60]. Toll like receptors
(TLR) are a class of pattern recognition receptors, which
besides taking part in inflammatory response also regulate
cell survival and cell death of lesion macrophages [6, 109-
111]. Thus, they regulate the development of the lipid rich
necrotic core. Nuclear receptors on the other hand play a
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dual role in atherosclerosis by mediating changes in both
inflammatory and lipid pathways [6, 112-116]. The anti-
inflammatory effect of liver X receptor (LXR) and PPARYy
ligands is mediated by trans repression of inflammatory tar-
gets genes like TLR and NFkB [6, 112, 113, 116, 117].
However, these receptors also regulate fatty acid metabolism
in a number of ways and may affect the process of athero-
sclerosis in several ways [6, 112, 113, 116, 117]. The prob-
lem with classical LXRs is that beside their protective anti-
inflammatory effect their activation also leads to the increase
in fatty acid and triglyceride synthesis [118-124]. Since nu-
clear receptors like LXR and PPAR heterodimerize with the
retinoid receptors leading to their activation, retinoid recep-
tors can also be targeted in atherosclerosis [125-127]. A
more recent approach is to exploit the process of transrepres-
sion in case of nuclear receptors [112, 113, 116, 117]. In case
of novel specific PPARy and dual PPARa/y agonists, safety
concerns have led to their discontinuation in clinical trials
[128]. These include associated carcinogenecity observed in
rodents, signs of myopathy and rhabdomyolysis, increase in
plasma creatinine and homocysteine, weight gain, fluid re-
tention, peripheral edema and potential increased risk of car-
diac failure [128]. The toxicological side effects observed are
believed to be very compound specific [128].

Macrophages presents entitities like chlamydia pneu-
miniae, herpes simplex, cytomegalovirus, heliobacter pylori,
and lipid derived immunogenic neo epitopes to T cells in the
atherosclerotic plaques to start a series of immunological
events [129]. The type of cytokine, growth factor and other
cytokines released as a result of these interactions, ultimately
decide the fate and the type of inflammatory response [129].
The T cell releases both anti-inflammatory [IL-5, IL-10,
transforming growth factor B (TGFB)] and pro inflammatory
cytokines (interferon gamma (IFN-y), IL-4) [129]. Which
stimulus triggers which type of cytokine is the real challenge
for researchers and if one could just increase the anti-
inflammatory response during atherogenesis then this may be
beneficial therapy wise. T cell activation also activates
macrophages which in turn produce pro atherogenic media-
tors like proteases, show increased uptake of Ox-LDL, in-
creased TF expression, secretion of reactive oxygen species
(ROS), reactive nitrogen species (RNS) and pro inflamma-
tory cytokines IL-1, IL-6 and TNF-o [129]. Secretion of
various chemokines also amplifies leukocyte migration to the
endothelium and regulate atherosclerosis progression [92].
Products released as a result of 15-LOX mediated arachi-
donic acid (AA) and linoleic acid (LA) acid oxidation, have
been shown to be proinflammatory and prothrombotic [130,
131]. 12/15-LOX can regulate the expression of key proin-
flammatory, pro atherosclerotic T helper (Th)1 cytokine, IL-
12 [132]. Phospholipase A, (PLA;) activation also leads to
the generation of lipid-derived inflammatory mediators in-
cluding platelet activating factor (PAF), AA and prosta-
glandins (PG), all contributing to the generation and amplifi-
cation of an inflammatory response [133, 134]. AA by the
action of LOX and five lipoxygenase activating protein
(FLAP) gets converted to leukotrienes, which play a role in
inflammation and vasoconstriction thus increasing athero-
sclerotic load [135, 136]. They can be targeted for anti-
atherosclerotic therapy. Isoprostanes released as a result of
non-enzymatic degradation (lipid per oxidation) of AA, act
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on thromboxane prostanoid (TP) receptor to promote platelet
aggregation and smooth muscle contraction [137]. AA me-
tabolism in platelets due to COX-1 and thromboxane (TX)
synthase leads to the generation of prostaglandin H2 (PGH2)
and TXAZ2, respectively [137]. TXAZ2 acts on the TP receptor
to promote platelet aggregation and smooth muscle contrac-
tion [137]. However, PGH2 generated from AA by the action
of COX-1 and 2 in the endothelium gives rise to PGI2 by the
action of PGI2 synthase [137]. PGI2 acts on the PGI2 recep-
tor (IP receptor) to inhibit platelet aggregation and smooth
muscle relaxation [137]. A disturbance in the dynamic bal-
ance of the above two processes may lead to prothrombotic
changes [137]. Antioxidants also block the generation of
isoprostanes by inhibiting lipid peroxidation of AA [137].

Cell proliferation in atherosclerosis leads to more com-
plex lesions and plays a fundamental role in plaque forma-
tion and rupture [98, 99, 138-142]. Macrophage and VSMC
proliferation observed during this disorder prolongs their
presence in the vessel wall and hence increases the chances
of plaque formation and rupture [98, 99, 143, 144]. How-
ever, increase in macrophage content is associated with un-
stable plaque [98, 145], the increase in VSMC content [99,
145] makes the plaque more stable due to the shielding of
vessel contents from the outside environment [98, 99, 145].
However, VSMC proliferation observed after balloon an-
gioplasty and stent implantation leads to restenosis [58, 146,
147]. Besides this vascular remodeling has also been said to
be responsible for this [148, 149]. Matrix metalloproteinases
(MMPs) also influence survival, proliferation and migration
of VSMC [141]. VSMC apoptosis induces plaque vulnerabil-
ity and apoptosis [150]. mTOR inhibitor rapamycin, which
inhibits VSMC proliferation, is in effective use in clinic and
is applied on stents for preventing restenosis [146, 147, 151].
Defective removal of macrophages, their necrotic cell death,
releases MMPs e.g. MMP3 which degrade the extracellular
matrix and result into release of TF and activation of coagu-
lation cascade and thrombosis [152, 153].

ANIMAL MODELS OF ATHEROSCLEROSIS

A wide range of animals has been used to study athero-
sclerosis, as discussed below.

Hamster

Golden Syrian hamster, preferentially F1B strain is used
as model for studying hyperlipidemia and atherosclerosis.
Hamsters have quite a few similarities with humans which
makes them a valuable model of atherosclerosis. These fea-
tures include, LDL as the major circulating lipoprotein [154],
similar cholesterol and bile acid metabolism [155], similar
LDLR gene [156, 157] profound CETP activity[158], exclu-
sive hepatic production of ApoB100 [159], human like le-
sions Ca deposits and necrosis in lesions [160]. Hamsters are
also sound responders to dietary manipulations with respect
to plasma lipid levels and lipid metabolism [161]. They do
show influence of other metabolic disorders on lipoprotein
metabolism [162, 163], and can develop extensive hyper-
triglyceridemia [154]. APA strain Syrian hamsters show
signs of hypercholesterolemia, hypertriglyceridemia and
atherosclerotic lesions under diabetic condition induced by
streptozotocin (STZ) and thus is a good model to study athe-
rosclerosis along with its complications [164, 165]. Hamsters
develop diabetognic atherosclerosis characterized
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by accelerated atherosclerotic plaque formation and vascular
dysfunction in diabetic environment, thus providing a model
to evaluate the anti-atherogenic effect of hypolipidemic
drugs and antioxidants [163, 166]. Hamsters also respond to
inflammatory regulations in atherosclerosis, and studies have
shown changes in SRB1 expression, apolipoprotein levels
and lipid metabolism after infection (endotoxin) and/or in-
flammatory stimulation [167-169]. Hamsters also show diet
specific change in cytokines (TNF-o, IL-1a, IL-1B, IL-6)
production [170]. Since this model responds well to dietary
modifications, it is excellent for studying diet-induced
plasma lipid levels and effect of hypolipidemic agents. Simi-
larity with the human LDLR gene, make it ideal to study
LDLR antagonists and also useful for drugs which interfere
with CETP activities and RCT [171]. Hamsters can also be
used to evaluate candidate drugs affecting the inflammatory
pathway, since they do show signs of inflammation as men-
tioned above. However, the major limitations include lack of
spontaneity in lesion formation and absence of advanced
atherosclerotic lesions and plaque rupture. Furthermore,
platelets are much less sensitive towards hyperlipidemia in
this species [172].

Guinea Pig

This is a useful model of dyslipidemia and to investigate
hypocholesterolemic drugs [173]. Their human-like features
include, RCT components e.g. CETP [174], LCAT [175],
LPL [176], majority of circulating cholesterol as LDL [177]
and moderate rates of hepatic cholesterol synthesis [177] and
catabolism [178]. They respond well to dietary cholesterol
[179], fibres [178] and saturated fat [180]. Mechanism of
apical sodium dependent bile acid transporter (ASBT) inhibi-
tors [181], statins [182] and drugs interfering with triglyceri-
des metabolism can also be explored [183,184]. Guinea pig
models also exhibit elevated level of atherosclerosis linked
inflammatory components (IFN-y, TNF-a, IL-1f, IL-8, and
MCP-1) in diet-induced atherosclerosis [185]. A study
showed that polymorphonuclear leukocytes (PMN) obtained
from hyperlipidemic guinea pigs are associated with an
augmented generation of ROS by increasing the expression
of protein kinase C (PKC) alpha, betal and gp91phox and
pitavastatin has an inhibitory effect [186]. Ovariectomized
guinea pigs have a plasma lipid profile similar to post-
menopausal women [187]. High plasma Lp(a) is associated
with coronary heart disease and other forms of atherosclero-
sis in humans, and the presence of Lp(a) in guinea pigs
[188], makes them useful to assess the role of this lipoprotein
in atherosclerosis. Guinea pigs are a model for dietary inter-
ventions and provide an opportunity to study the influence of
gender and hormones on lipid metabolism [187]. The major
limitation of this model is the requirement of vitamin C
[189] as dietary supplement, which has antioxidant activity
and may interfere in atherosclerosis development [190].
They do not develop advanced atherosclerotic lesions, and
are not a well-established model for atherosclerosis progres-
sion [190].

Rabbit

Rabbits are the most frequently studied animal model for
spontaneous [191, 192] as well as diet-induced atherosclero-
sis [193]. New Zealand White (NZW) rabbits are the strain
commonly used [194]. Although they have low plasma total
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cholesterol concentrations and HDL as dominant lipoprotein
[195], BVLDL becomes the major class of plasma lipopro-
teins when exposed to cholesterol rich diet [196-198]. In
conjunction with chylomicron remnants BVLDL becomes
highly atherogenic [199]. Besides the presence of pro-
nounced CETP activity [200, 201], these animals show hu-
man-like Apo B [202], low HL activity [203] but lack an
analogue of human Apo A-Il [202, 204]. The NZW rabbit
rarely shows spontaneous lesions [11] and on feeding with
diet rich in saturated fat and cholesterol they form lesions
rich in foam cells with some fibrous component in the as-
cending aorta and aortic arch along with xanthomatosis
[205]. The Watanabe heritable hyperlipidemic rabbit devel-
ops spontaneous hypercholesterolemia [206, 207], has high
plasma LDL, fibrous lesions which are rich in foam cells
[208] and develop spontaneous myocardial infarction [209].
St. Thomas® Hospital strains manifests endogenous hyper-
cholesterolemia and hypertriglyceridemia, and develops
atherosclerosis with certain features closely resembling hu-
man disease [210, 211]. Availability of transgenic models
such as human ApoE2 and Apo (a) rabbits [212, 213] pro-
vide a basis to understand disease progression and its corre-
lation with the lipid environment and associated complica-
tions such as plaque rupture and aneurysm formation [127].
The expression of various inflammatory mediators IL-1p,
MCP-1, 5LOX, PGE, [214, 215], COX-2 [216, 217],
VCAM-1 [218], have been studied in this model and are said
to be responsible for plaque formation and rupture. Lipid
lowering in rabbit reduces TF expression, proteolytic and
prothrombotic potential [219, 220]. Increased platelet aggre-
gation have been found in hyperlipidemic rabbits [172]. This
model has been used in restenosis studies arising as a result
of balloon angioplasty [221, 222].

Low HL activity, and lack of an analogue of human Apo
A-11, provides a unique system to assess the effects of these
human transgenes on plasma lipoproteins and atherosclerosis
susceptibility [223]. Due to their large size, imaging tech-
niques such as ultrasound computed tomography and mag-
netic resonance imaging can be effectively applied to deter-
mine the plaque composition, distribution pattern, and some-
how its vulnerability [224]. This model is also suited to
study the effect of atherosclerosis associated complications
such as hypertension [225] and diabetes [226] on disease
progression. Since this model does not produce spontaneous
plaque rupture, various manipulations (balloon injury) have
been applied to study various aspects of plaque rupture
[227]. The rabbit model can be used to study the expression
of adhesion molecules, and production of cytokines and
other inflammatory mediators in the presence or absence of
candidate drugs. Among the major drawback is the absence
of important RCT component, HL [203], spontaneous athe-
rosclerosis is not observed and occurrence of cholesterol
storage syndrome depends on high cholesterol feeding. At
the same time the formed lesions are more fatty and macro-
phage rich than human and also differ in location [228].
Rabbits are not an effective model for drugs having activity
on HL and Apo A-11 [203, 204].

Mouse

Naturally mice are resistant to atherosclerosis progression
[229], but due to the availability of an atherosclerosis sus-
ceptible strain and provision for generating knockout/trans-
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genic lines, they are sought after models [230, 231]. Ad-
vanced genetic manipulations in this model have helped in
generating information regarding atherosclerosis initiation,
progression, advanced plaque formation and rupture [232].
The genetically engineered mice lacking genes involved in
lipid transportation, metabolism help to elaborate their role
in atherosclerosis and other cardiovascular disorders [229].
One susceptible strain C57BL/6 got major attention from
researchers for atherosclerosis progression [233] and princi-
pally for generating knockout/transgenic lines. Many trans-
genic mice like ApoC-I1l [234, 235], ApoE3 Leiden [236,
237], CETP [230], sPLA2 [238, 239], ApoB100 [240],
CETP- ApoB100 [240], LDLR-/- ApoB100 [241], hApoM
transgenic [242] have been created and are useful in unders-
tanding the mechanism of the disease and candidate drug
molecules. The major limitation with transgenic models is
the non-physiological high expression levels, which may not
be similar to humans. Knockout models like ApoE-/- [231,
243-247] and LDLR-/- [231, 247-250] have great utility in
deciphering the molecular events of atherosclerosis and
screening candidate drugs for anti-atherosclerotic effect.
Mice models are well characterized for various aspects of
disease progression like macrophage foam cell formation,
the involvement inflammatory mediators [251-256], cell
adhesion molecules [257, 258], smooth muscle cell prolifera-
tion [259], apoptosis [260] nitric oxide synthase regulation
[261], endothelial function impairment and NO production
[262-264]. Plaque rupture is also seen in ApoE -/- mice es-
pecially when exposed to western type diet [265]. These
models can also be used to study atherosclerosis progression
along with diabetes [9, 266] and obesity [267]. Since mice
are well characterized and researcher friendly, they are
strong tools to characterize the progression of atherosclerosis
and study the involvement of various inflammatory media-
tors. With the help of transgenic and knockout lines, the role
of various signaling proteins in atherosclerosis progression
can be easily studied. Diabetes and hypertension both have a
synergistic effect on atherosclerosis development in the
mouse model and thus offers a tool to study the combination
of these metabolic disorders. Various approaches applied to
develop hypertension in atherosclerosis prone species (such
as deoxycortisone acetate salt induction, Angll administra-
tion) resulted in accelerated atherosclerosis [268]. Another
finding suggests increased plaque necrosis and atherothrom-
botic vascular disease in insulin resistant syndromes [269].

Major disadvantages of mice are that they are highly re-
sistant to atherogenesis, need genetic manipulations and have
high HDL. The RCT component CETP is absent [12] and
there are difficulties in blood collection sampling and dissec-
tion of miniature vessels. Correlation with human popula-
tions is as yet unknown in some transgenic models [238].
Some knockout models need dietary modifications to de-
velop atherosclerosis [231]. The high cost of experiment and
lesions not very much similar to human are another disad-
vantage [245]. The model is not valuable for studies assess-
ing dietary effects on lipoprotein metabolism [247]. Even
genetically manipulated mice develop lesions very slowly
with chow diet supplement and supplementation with high
fat is necessary [250].
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Swine

This animal has remarkable similarities of lesion distribu-
tion, pathogenesis, and morphology with humans [11]. These
are commonly used for studying atherosclerosis and related
complications [270, 271]. Lesions formed in swine are char-
acterized by necrotic cores, calcification, neovascularization,
and intraplaque hemorrhage that closely mimic advanced
human atherosclerosis [272, 273]. Porcine species can de-
velop atherosclerosis without cholesterol feeding [274]. On
being fed a high cholesterol high fat diet swine show close
resemblance with human lipid profile [275]. Familial hyper-
colesterolemic swine with elevated level of the Apo C-lll, B,
and E are also available [276]. This is an efficient model to
study the exercise-induced changes in lipid metabolism [277]
and to study vascular function [278]. Porcine platelet aggre-
gation resembles humans [279] thus making them useful for
inducing atherothrombotic complications. Miniature pigs
that are fed with high cholesterol, high fat, high sucrose diet
show elevated expression levels of various cytokines
(EOTAXIN-2, granulocyte colony stimulating factor (G-
CSF), ICAM, IFN-y, 1-309, IL-1a, IL-1B, IL-6SR, IL-8, IL-
10, IL-11, IL-12P40, IL-12P70, IL-13, IL-15, IL-16, IL-17,
IP-10, MCP-1, MCP-2, gamma interferon-induced monokine
(MIG), macrophage inflammatory protein (MIP)-15, TGF-B,
TNF-a, TNF-B, regulated upon activation normal T-cell ex-
pressed and secreted (RANTES) and tumor necrosis factor
receptor-1 (STNFRI) [280, 281]. VCAM-1, ICAM, IL-1a, IL-
1B, IL-6SR, MCP-1, MCP-2, TNF-a, TNF-B, were predomi-
nantly involved in the development of diabetes mellitus and
atherosclerosis in this model [280, 281]. The effect of dietary
cholesterol withdrawal on vascular inflammation, C reactive
protein (CRP) level, and plaque stabilization has also been
evaluated in miniature pigs [282]. Swine models can thus be
effectively used to study the effect of drug/candidate mole-
cules on lipid metabolism, inflammation, lesion formation
and plaque rupture. The swine model can be used to study
atherosclerosis-associated hypertension [270] and diabetes
[271]. Large size swine are the effective model to study ca-
rotid artery stent techniques [283], and invasive therapies for
the treatment of atherosclerosis [284, 285]. Availability of
miniature pigs is another advantage for studies where size is
a problem. Major limitations include requirement of high
cholesterol diet (4-5% w/w) to induce atherosclerosis and
very low baseline cholesterol level [12]. Spontaneity in de-
velopment of metabolic syndrome and insulin resistance, is
not common in this species [22, 286]. The difficulties in care
and high maintenance cost has been overcome to some ex-
tent by the development of micropig and miniature swine
[287, 288].

Avian

Avian species attracts many researchers by its ability to
develop atherosclerosis spontaneously and/or diet induced
[289-291]. Principally studied avian species include pigeon,
chicken, Japanese quail, turkey [11] and parrots [292]. Pi-
geons got special attention due to relatively high plasma cho-
lesterol levels [293]. Although basal plasma HDL levels are
on the higher side, B VLDL and LDL become major lipid
carriers when these animals are fed cholesterol rich diet
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[293, 294]. Pigeons show similarity to humans in lipid me-
tabolism and lesion progression [12]. Avians are susceptible
to both spontaneous and diet-induced atherosclerosis [295].
Pigeons also have resemble humans in increased platelet
adherence, thrombosis, and impaired vascular smooth cell
and endothelial function [12, 296, 297]. Platelet factor-4
activation, elevation in thrombocyte adhesiveness, endothe-
lial damage and sterol accumulations are the earliest events
in the pathogenesis of spontaneous pigeon atherosclerosis
[296-298]. White Carneau (WC) strain develops spontaneous
atherosclerosis with defined lesions [12]. WC pigeon aortic
smooth muscle cells (SMCs) lack a functional LDLR path-
way and in this way resemble cells from human beings with
homozygous familial hypercholesterolemia or from Wata-
nabe rabbits [299]. Monocyte chemoattractants have also
been analyzed in cholesterol fed WC pigeons [300].

African Grey and Amazon parrots are susceptible to athe-
rosclerosis [211, 301, 302]. Risk factors to develop athero-
sclerosis include elevated cholesterol level, diet composition
[301, 302], social stress and inactivity [292]. Parrots also
show increased platelet aggregability and elevated plasma
cholesterol level [301, 302] and polyunsaturated fatty acids
ameliorate severe atherosclerosis in these birds [301, 302].
Limitations in parrots include, less information [292] and
clinical signs are seldom seen [292]. In general, avians are
non-mammalian and mechanism wise atherosclerosis is not
well characterized. HDL is the major circulating lipoprotein.
There is lack of Apo E [303], B48 [12], and chylomicron
formation [12] as well as a large variation in time (12-16
weeks to 9-27 months [304-309] and cholesterol amount
(0.5-5%) needed to develop atherosclerosis [304, 305, 310].

Dog

This species do not develop spontaneous atherosclerosis
[11]. Besides dietary supplement rich in cholesterol and satu-
rated fat, thyroid suppression is also required for atheroscle-
rosis development [11]. On cholesterol rich diet treatment
animals develop lesions throughout the arterial tree and
coronary vessels accompanied with prominent vascular
changes [311, 312]. Beagles show useful similarities with
human in cholesterol synthesis, and lipoproteins level [313]
and this model has been successfully used to demonstrate the
effect of statins on cholesterol synthesis [313, 314]. Dogs
treated with colestipol (a bile acid sequestrant) and mevino-
lin (a cholesterol synthesis inhibitor) produced a 3-fold in-
crease in LDL binding activity on liver membrane [315]. The
role of vascular NAD(P)H oxidase-derived superoxide anion
(O%) in endothelial dysfunction in dogs with tachycardia-
induced congestive heart failure (CHF) and the therapeutic
effect of statins [316], the effect of antioxidant in hyperlipi-
demic dogs [317] has been studied. Miniature Schnauzer
dogs have been used in various studies involving analysis of
solid intraocular xanthogranuloma formation [318] and the
prevalence and severity of hypertriglyceridemia with age
[319]. Since this model has close resemblance with humans
in cholesterol synthesis and lipoprotein level, it can be useful
to screen HMG CoA reductase inhibitors. Due to size, dogs
are imaging friendly. In addition, this model can be of good
predictive value regarding hypocholesterolemic effect on
disease progression in humans [313, 315, 320, 321]. Hy-
potensive, anti-atherogenic and coronary dilating effect of
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plant extracts has been evaluated in dogs [322]. A study con-
ducted to find out the association between diabetes mellitus,
hypothyroidism and atherosclerosis in dog, showed that dia-
betes mellitus and hypothyroidism are more prevalent in
dogs with atherosclerosis compared to dogs without athero-
sclerosis on postmortem examination [323].

A study conducted on mongrel dogs showed that IL-10
has protective effect on cerebrovascular dysfunction induced
by inflammation and significantly depressed adherence of
monocytes to cerebrovascular endothelial cells and inhibited
up-regulation of ICAM-1 and VCAM-1 [324]. Due to their
large size, they can be easily applied to in vivo detection of
vulnerable plaques [325] and other invasive techniques. Ma-
jor limitations are absence of natural atherosclerosis devel-
opment, poor response to dietary cholesterol [12] not well-
characterized, large amount of experimental agents needed
and ethical issues.

Rat

Generally rats are highly resistant to the development of
atherosclerosis [22]. HDL is dominating lipoprotein in these
animals. Sprague-Dawley rats develop hyperlipidemia by
triton administration [326]. Lymphatic cholesterol transport
system [327] and the rate of hepatic secretion of VLDL in
triton-induced hyperlipidemic rat [328] has been explored.
Corpulent rats strain developed by cross between Sprague—
Dawley rats and spontaneously hypertensive rats (SHR) are
hypertensive, obese, hyperlipidemic and hyperinsulinemic
[22, 329, 330]. Advanced atherosclerotic lesions, reflecting
aortic aneurysms are also observed [329, 330]. Another
strain JCR:LA-cp is prone to atherosclerosis development
and insulin resistance [331]. The cp/cp male phenotype de-
velops extensive atherosclerotic lesions [332-334], displays
increased activity of PAI-1, vascular dysfunction [335] char-
acterized by impaired NO production and metabolism [22].
The CETP transgenic Fisher rat, shows large increase in non-
HDL lipid when fed with high-sucrose diet with implications
for RCT and atherosclerosis [336]. Increased expression of
the inflammatory cytokines (TNFa, IL-18, IL-8 and VCAM-
1) and augmented foam cell formation found in chronic in-
fection induced by chlamydia pneumoniae [337] in white-
rats (Rattus norvegicus). The role of P-selectin in vascular
inflammatory processes, has been evaluated in balloon in-
jured rat carotid arteries [338]. Rats are potentially useful
model for studying hypercholesterolemia along with hyper-
tension. They exhibit augmented thrombotic response and
develop coronary atherosclerotic lesions under hypertensive
and hyperlipidemic conditions [339-341]. Elevated plasma
cholesterol level and coagulation factors shows good correla-
tion in these animals [342]. They can be good model for an-
gioplasty restenosis [285]. Rats lack physiological resem-
blance on many aspects with humans that are pathophysi-
ologically important [285]. Rat platelets are generally resis-
tant in hyperlipidemic condition [172].

Sand rat (Psammomomys obesus), naturally become
obese, insulin resistant and develop VLDL hyperlipidemia
with energy rich (chow) diet [343-345, 22] and correlates
with human type2 diabetes mellitus [22]. This can be an ef-
fective model to study the nature of hyperlipidemia and vas-
cular reactivity in the insulin resistant state [346-348]; espe-
cially type 2 diabetes mellitus [347].
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Non-Human Primate

Non-human primates (NHPs) are an excellent model to
study cardiovascular disease plus metabolic syndrome [22],
since they are phylogenetically close to humans, eat a similar
omnivorous diet, have similar metabolism, and develop both
metabolic syndrome and cardiovascular disease (CVD) as
they age [349, 350]. Commonly used models are Macaques
species (stumptail, rhesus, cynomolgous, and the pigtail),
Squirrel monkey, green monkey and African baboon [11].
They develop spontaneous (in some species) and high fat
high cholesterol diet-induced lesions [351]. Lesions are simi-
lar to those in humans and show plaque mineralization and
calcification [352, 353]. Hypertension in these models shows
deleterious effect on atherosclerosis development [354], thus
they are extensively used to study the effects of hypertension
on atherosclerosis [351, 354, 355]. African green monkey
and other primates have been used to study the effects of oral
contraceptives on plasma cholesterol [11, 356, 357]. The
close resemblance of plasma lipoprotein-lipid level, plaque
development and its calcification and mineralization with
humans makes them an excellent model to study the correla-
tion between plasma lipids and plaque development. The
effect of the caloric restrictions on atherosclerosis develop-
ment has also been evaluated in the rhesus monkey [358].
Squirrel and rhesus monkeys exhibit augmented (mild) plate-
let aggregation in hyperlipidemic condition [172]. NHPs can
also be used to study atherosclerosis along with diabetes-
hyperinsulinemia [359]. Macaca nigra is very valuable in
studies focused on the interactions between atherosclerosis
and diabetes [360]. Interactions between atherosclerosis and
hypertension can also be studied effectively in NHPs [360].
Monkeys show good correlation between the levels of many
coagulation factors and serum cholesterol [342], that may
play role in atherogenesis. Lp(a) in conjunction with proin-
flammatory oxidized phospholipids act in atherosclerosis,
coronary artery disease and cardiovascular events [361, 362].
Lp(a) is also potentially involved in atherosclerosis plus
thrombogenesis [363-365]. The presence of Lp(a) in NHPs
(particularly in rhesus monkeys and baboons) resembling
that in humans [366, 367] represents a good model for the
study of the structure and biology of Lp(a) and its involve-
ment in atherosclerosis [368]. The major limitations include
variations in site of lesions, expensive, difficult to house and
handle, limited availability and ethical concerns.

Lower Organisms

Lower organisms like worms (Caenorhabditis elegans),
fly (Drosophila melanogaster) and zebrafish (Danio rerio)
are good tools to study metabolic disorders and atherosclero-
sis and past research has helped in the elucidation of genetic
and biochemical background of metabolic disorders such as
obesity diabetes and atherosclerosis [13, 369-371]. The insu-
lin and insulin-like growth factor signaling pathway has been
characterized in great detail in Drosophila and C. elegans
[13]. ApoB (A1964937) is the main beta lipoprotein in ze-
brafish and whole animal protein levels are up-regulated in
response to high fat feeding [13, 372]. As a vertebrate, ze-
brafish possesses many structural similarities with humans
[372]. These animals are lab friendly and can be manipulated
genetically. Easy genetic manipulation in lower organisms
and the availability of genetically manipulated variants like
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mutant flies can deliver valuable information just like in
mice [13,373]. Caenorhabditis elegans and Drosophila
melanogaster being invertebrates, have less similarity with
humans.

CELL BASED MODELS

A wide range of cells participate in the process of athero-
sclerosis and can be used to study atherosclerosis progres-
sion and the effect of candidate anti-atherosclerotic com-
pounds.

Macrophages

The recruitment of monocytes/macrophages to the arte-
rial wall is an initiating event leading to atherosclerosis pro-
gression. This process is facilitated by the expression of en-
dothelial adhesion molecules namely, ICAM [374-376]
VCAM [374, 377-379] endothelial-leukocyte adhesion
molecule (ELAM), as well as P and E selectins. The conver-
sion of macrophages to foam cells by the accumulation of
modified LDL, especially acetylated low density lipoprotein
(AcLDL) and Ox-LDL, is another critical step in atheroscle-
rosis development [380-382]. Since monocytes differentiate
(MCSF, GMCSF, Ox-LDL) [383], proliferate (Ox-LDL,)
[6,383] and die (Ox-LDL) [383], during the process of athe-
rosclerosis, they can be tested on these aspects for the anti-
atherosclerotic effect of candidate drugs. Macrophage infil-
tration, LOX-1 and MCP-1 are reduced by chronic HMG-
CoA reductase inhibition by simvastatin (20 mg/kg) in
common carotid artery of stroke-prone spontaneous hyper-
tensive rats (SHR-SP) [384]. Olmesartan and pravastatin
additively reduce the development of atherosclerosis in
ApoE3 Leiden transgenic mice [236]. Atorvastatin inhibits
macrophage accumulation of oxidized lipids by inhibiting
endothelial and LPL expressed in human acute monocytic
leukemia cell line, THP-1 macrophages [385]. Similar results
have been obtained with simvastatin [386]. Fibrates have
also been shown to inhibit cholesterol esterification in
macrophages [387]. Inhibitory effects of fluvastatin on cyto-
kine and chemokine production by peripheral blood mono-
nuclear cells has been observed [388]. Any test compound
can be evaluated in a similar way for its protective effect in
atherosclerosis.

T Lymphocytes

The presence of activated T lymphocytes (principally
CD4+ cells) in all stages of atherosclerotic lesion, give a
potential clue for their participation in this disease [389]. The
complete absence of lymphocytes reduces lesion formation
in hypercholesterolemic condition [390, 391], which reveals
their active participation [392]. The Thl cell attracted atten-
tion regarding atherosclerosis progression because of the
presence of its potential inducer IFN-y, and IL-12 in lesions.
Various reports suggest that Thl cells are atherogenic [393,
394] whereas Th2 cells are atheroprotective [129, 395, 396].
One recent finding showed activation of LXRo and B on
CD4 positive lymphocytes which reduces Th-1 cytokine
expression in these cells [397]. The CD40-CD40L system in
conjunction with T lymphocyte mediates various inflamma-
tory responses in atherosclerosis [398]. The atherogenic
(Th1), and atheroprotective (Th2) involvement of T lympho-
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cytes in atherosclerosis are a valuable tool to study the cyto-
kine regulated inflammatory pathways in atherosclerosis.
Statins have an inhibitory effect on T cell activation [399,
400]. Production of inflammatory (IFN-vy,IL-12,1L-18,IL-4,
TNFa) and anti-inflammatory (IL-10, TGF,IL-5) cytokines
in the presence of modified lipids, and in co-cultures with
macrophages, VSMC in the presence of test compounds can
be used to screen potential candidate drugs [401].

Lovastatin inhibits T-cell antigen receptor signaling
[402]. Statins also decrease T cell activation, the recruitment
of monocytes and T cells into the arterial wall, and enhance
the stability of atherosclerotic lesions [403]. Beneficial ef-
fects of anti-diabetic PPAR activators on atherosclerotic
plague development may be partly explained by their repres-
sion of MHC-II expression and subsequent inhibition of T-
lymphocyte activation [404].

Natural Killer T (NKT) Cells

NKT cells are a specific type of lymphocytes that play
protective role in many autoimmune disorders [405]. Their
immune responses are mainly mediated via up regulation of
Th2 (principally) and Th1l cells [406-408], suggesting their
role in atherosclerosis development [405, 409]. The presence
of CD1d-expressing cells in human atherosclerotic plaques
suggest NKT cells presence in lesions [410]. This has been
well characterized in lipopolysaccharide treated ApoE-/-
mice [243, 411]. A significant reduction in atherosclerotic
lesion in NKT cell-deficient CD1d-/- mice and in CD1d-/- -
LDLR-/- mice has been reported when exposed to athero-
genic diet [412]. Lovastatin, has been shown to inhibit mito-
gen-stimulated proliferation of natural killer cells in vitro
[413] and test compounds can be screened in a similar way
for their effect in atherosclerosis.

Vascular Smooth Muscle Cells

VSMCs synthesize fibrous protein (collagen) elastin and
proteoglycans that provide extra strength to arteries. The
death of SMCs in core of atherosclerotic plaques is critical to
the weakening of plaque and its rupture. The migration of
SMCs from media to intima and its cross talk with foam
cells, Th cells, and cytokines (such as IFN-y, IL-10) compli-
cates atherosclerosis progression [5]. Human pulmonary
artery smooth muscle cells (PASMC) can be used to assess
the effect of inflammatory mediators on the expression of
vascular adhesion molecules [414] and thoracic aorta derived
SMCs are used to define the PDGF survival signals on vas-
cular smooth cells [415]. In the presence of statins VSMCs
decrease their binding affinity for LDL [416]. Statins also
reduce the proinflammatory activation of human VSMCs
[417]. The protective effect of N-3 PUFAs in atherosclerosis
has been attributed to their ability to modulate VSMC prolif-
eration, migration, and apoptosis [418]. Candidate drugs or
test compounds can be evaluated in a similar way for their
anti-atherosclerotic effect.

Endothelial Cells

Endothelial cells are unique. They prevent clot formation
and act as barrier between circulating blood component and
underlying tissue components. The interaction of circulating

Current Vascular Pharmacology, 2009, Vol. 7, No. 1 83

monocytes and expression of adhesion molecules on vascular
endothelial cells are the initiating events of atherosclerosis
and is an attractive target [5]. Endothelial-dependent relaxa-
tion is hampered in atherosclerosis due to impaired NO
bioavailability produced from endothelial nitric oxide syn-
thase (eNOS), which is important for vascular homeostasis
and has anti-atherogenic action [419, 420]. This can be
evaluated in a simple organ bath system [421]. Human um-
bilical vein endothelial cells (HUVEC) are used to define the
role of various surviving factors such as hepatocyte growth
factor, NF-xB in atherosclerosis [422] and to explore the
involved signaling event [423]. Recently HUVEC was used
to explore the anti-inflammatory effect of aspirin in presence
of oxidized LDL [424]. Endothelial progenitor cells (EPCs)
attracted special attention because of their ability to repair
endothelium and initiate neovascularization. Circulating
EPCs are markers for cardiovascular risks [425]. EPCs have
also been proposed as heredity markers of atherosclerosis
susceptibility [426]. Since endothelial cells secrete prothrom-
botic, anti-thrombotic and thrombolytic agents, they can be
set up for evaluation of such activities in the presence and
absence of test compounds [96, 427]. Simvastatin exerts a
protective effect by regulating the chemokines and
chemokine receptors on endothelial cells [428]. Fluvastatin
exerts a protective effect on the endothelium through lipid-
lowering independent effects [429, 430]. Rosuvastatin in-
creases vascular endothelial PPARy expression and corrects
blood pressure variability in obese dyslipidaemic mice [431].
Adverse balance of NO/peroxynitrite in the dysfunctional
endothelium can be reversed by statins [432]. Fluvastatin
inhibits up-regulation of TF expression by anti-phospholipid
antibodies on endothelial cells [433].

Adipocytes

Various experimental findings indicate that adipocytes
act as a source of hormones and endocrine molecules known
as adipokines [434], many of which have a potential role in
atherosclerosis [435]. Adipocytes also have a potential role
in cholesterol homeostasis [435]. Adiponectin has anti-
inflammatory and atheroprotective properties [436]. Its
plasma levels are low in obese individuals and weight loss
restores levels [437]. Another adipokine, leptin, has athero-
genic and thrombotic properties [435, 438]. The leptin recep-
tor has been confirmed on human atherosclerotic lesions and
its role has been explored regarding atherosclerosis and
thrombosis in mice models [439, 440]. Leptin and adipocy-
tokines seem to bridge the gap between immunity and athe-
rosclerosis [441]. Adipocytes can be set up in presence and
absence of candidate anti-atherosclerotic drugs for the secre-
tion of such adipokines, which can be estimated by conven-
tional methods [441-444]. Atorvastatin reduces TF expres-
sion in adipose tissue of atherosclerotic rabbits [445].
Atorvastatin also reduces PAI-1 expression in adipose tissue
of atherosclerotic rabbits [446]. Atorvastatin can inhibit IL-6
secretion in adipocytes possibly through upregulating
PPARY, which may help to explain the anti-inflammatory
effects of statins [447]. Adipocyte LPL expression is also
induced after statin treatment [97]. Assays using the above
parameters can be set up in the presence and absence of test
compounds.
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Hepatocytes

In mammals, hepatocytes play a key role in the whole
body cholesterol homeostasis by fine tuning of plasma lipo-
protein concentrations and cholesterol synthesis, relocation,
and regulation [448]. HL, ACAT2, LDLR, CETP, ApoA-I,
ApoE, SRB1, LXR are the principal components of hepatic
cells which regulate cholesterol homeostasis. A recent find-
ing indicates the role of nuclear receptors [LXR, and hepato-
cyte nuclear factor-4a, (HFN-40)] in cholesterol efflux
pathway [449]. Bile acids synthesized in liver, are key play-
ers in lipid absorption and excretion [450-452]. Hepatocytes
can be used for lipid uptake studies and clearance from the
body, lipid metabolism, lipid transportation, and cholesterol
synthesis [453-459]. Fibrates down-regulate hepatic SRBI
protein expression in mice and thus inhibit atherosclerosis
progression [460]. The anti-inflammatory activities of
PPARa activators and statins have been explored in hepato-
cytes [461]. It is believed that by preventing the reabsorption
of bile acids, a minimally absorbed ASBT inhibitor would
lower serum cholesterol without the potential systemic side
effects of an absorbed drug [462]. A series of novel ben-
zothiepines (3R,3R'-2,3,4,5-tetrahydro-5-aryl-1-benzothie-
pin-4-ol 1,1-dioxides) were synthesized and tested for their
ability to inhibit the ASBT-mediated uptake of [*C] tauro-
cholate (TC) in H14 cells [462]. A transfected baby hamster
kidney cell line (H-14) that constitutively expresses human
ASBT can be used [463]. ASBT inhibitory activity is as-
sessed on the basis of the ability of compounds to inhibit the
cellular uptake of 5 uM [*C]taurocholate during a 2 h incu-
bation. Selectivity is tested in the same assay system using 5
uM [14C]alanine instead of taurocholate to determine the
effect on another cellular sodium-dependent cotransporter
[462]. Hepatocytes can be tested for hypolipidemic effect by
incubating them in presence or absence of test compound or
statin and estimating the VLDL levels (measured by Apo
B100) in HepG2 cells [464].

Mast Cells

Mast cells are involved in allergic and innate immune
response and recent studies reported their presence in human
atherosclerotic lesion [465]. Various in vitro - in vivo studies
have shown their active participation in atherogenesis [466]
by releasing proteases (interfere with arterial remodeling)
[467], cytokines (activate vascular cells) [468], and
chemokines (attract leukocytes) [469]. With the help of vari-
ous inflammatory mediators released from mast cells these
cells can be involved in atherogenesis [470, 471]. Few re-
ports suggest the participation of mast cells in the genesis of
vulnerable plaques [472, 473]. These cells can be set up in
the presence of various candidate drugs and secretions of
various mediators can be monitored by conventional meth-
ods. Mast cell accumulation has also been reported at the site
of deep venous thrombosis, liver vein thrombosis and pul-
monary embolism [474-476]. The inhibitory effect of statins
on the growth and function of human mast cells and may be
one of the beneficial pleiotropic effects of statins [477].

Dendritic Cells

Dendritic cells (DCs) are specialized antigen-presenting
cells which initiate the primary immune response by the ac-
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tivation of T-lymphocytes [478]. The presence of DCs in
early [479-481] as well as in advanced [482] atherosclerotic
lesions potentially indicates their involvement in atheroscle-
rosis progression. Endothelial dysfunction in atherosclerosis,
regulates the DC adhesion and migration [483]. In vitro ex-
periments show an increase in migration of DCs when endo-
thelial cells are exposed to atherogenic conditions [483]. The
presence of activated DCs alone or as cluster with T cells in
atherosclerotic and rupture prone regions indicate their im-
portance in atherogenesis and plaque rupture [482, 484, 485].
As majority of them are present in rupture prone areas of
advanced plaques, DCs can be a useful marker for plaque
vulnerability and any candidate drugs decreasing their popu-
lation can stabilize plaques. Mature DCs express CD83 and
they can be detected immunochemically in the lesions [486].
Besides this CD197, CDla, CD4, CDS8, CD80 are a few
other markers of this cell [487, 488]. Maturation of DCs is
suppressed by statins [489]. Preincubation of DCs with stat-
ins decreases their adhesion as well as recruitment to human
microvascular endothelial cell line (HMEC-1) [490]. The
immunomodulating effect of simvastatin on DCs is by fa-
vouring Th2 and inhibiting Th1 cell development [491].

Enterocytes

Enterocytes mediate the ingested and biliary cholesterol
uptake and this serves as the rate limiting step in cholesterol
absorption [492] and is a useful target for lipid-lowering
approaches [493]. Ezetimibe, an inhibitor of intestinal cho-
lesterol absorption, acts at the brush border of the small in-
testine and inhibits the uptake of dietary and biliary choles-
terol into the enterocytes [494, 495]. Caco2 cells an intestinal
cell line used in several studies to explore mechanistic aspect
of dietary and biliary cholesterol uptake has been used to
assess the efficacy of various inhibitors such as ezetimibe
[494], SCH5803 [327], SC-435 (ASBT inhibitor) [463]. The
effect of test compounds on lipoprotein production in Caco2
human intestinal cells can be evaluated by incubating for 24h
with test agent or 10 pmol/L of atorvastatin. Chylomicron
levels (measured by ApoB48) in Caco2 cells were measured
using western blotting. Intracellular cholesterol levels can be
measured using gas chromatography [464].

KINETIC MODEL

This model is based on the principle that a transition
from one state to another, leading to a cardiovascular event
obeys a simple exponential law [17]. This model keeps in
mind the 2 concepts of atherosclerosis development [17].
Physical concept takes into account the magnitude of vascu-
lar stenosis causing functional cardiovascular ischemia [17,
496] and the biochemical concept is based on the inflamma-
tory process associated with atherosclerosis progression and
plaque rupture [17, 497]. According to the kinetic model, the
normal, stenotic, inflammatory and event states can transi-
tion between each other [17]. The transition between the
states is governed by rate constants, which in turn depend on
many pathophysiological events taking place in atherosclero-
sis [17]. This model considers simultaneously the physics of
anatomic stenosis and the chemistry of plaque instability for
determining the dynamic processes that lead to atherosclero-
sis [17, 498, 499]. Kinetic data like time required for state-
to-state transition is required for this model to be exploited to
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its full potential. However, some observational data is avail-
able on the basis of which the utility of this model has been
checked [500-503]. An example of this model is develop-
ment of heart failure as the event state resulting from hyper-
tension or ischemia as the intermediary states [17]. The
drawback of this model is that it fails to consider genetic and
environmental factors such as insulin resistance [17, 504].
Some support for this kinetic model also comes from ex-
perimental findings [17, 505-507]. This model needs valida-
tion and is very preliminary but it tries to blend the laws of
physics and chemistry with biology.

ANALYTICAL MODEL

Importance of hemodynamics in atherosclerosis has been
realized from the response to injury findings [508, 509].
Since atherosclerotic lesions are developed only in particular
regions of the vessel wall, the structural aspects and fluidics
become important aspects [510]. Atherosclerosis involves
nanoscale fluid dynamics and macromoleculer transport at
the arterial endothelium and thus the importance of thermo-
dynamics and shear stress is taken into account while pre-
dicting the probability of atherosclerosis progression [510].

Thermodynamic Model

This model is based on the hemodynamic force exerted
by the flowing blood on the endothelium [16]. This force
affects the endothelium’s physical and biochemical proper-
ties leading to its dysfunction [16]. The probability of its
formation depends on the kinetic and static energy of a le-
sion [16]. It is based on the principle that to form a lesion
there is some minimal energy required. At the same time
since the blood flow will follow the principles of conserva-
tion of energy, there will be some kinetic energy associated
with lesions, which depends on the interfacial shear resis-
tance and the adhesive length over which the lesion is sup-
posed to form [16]. At the same time the energy that is
needed for lesion formation (static energy) will depend on
the work done by the axial transient inertial force ‘f’ to get
deposited on the vessel [16]. If static energy is more than the
dynamic/kinetic energy, LDL will get deposited on the endo-
thelium and in case of vice versa, it will keep flowing [16].
In such type of models factors like the rate at which blood
flows, the stickiness of the endothelium will ultimately de-
termine whether the lesion will form or not [16].

Dynamic Boundary Value Model

This model is based on the fact that atherosclerotic le-
sions are usually located in regions of reduced shear stress of
the fluid [511-518]. The shear stress is often associated with
flow separation and turbulence [511-518]. Reduced shear
stress leads to the formation of a transient boundary layer in
atherosclerotic lesion forming regions [511-518]. Athero-
sclerotic lesion formation depends on the plasma viscous
flow in the transient boundary layer near the inner tube wall
at an arterial branch point [511-518]. The model takes into
account the Navier-Stokes equation for deriving the prob-
ability of lesion formation [16]. Parameters like velocity
vector of the fluid, body force vector, pressure vector and
viscosity, density of fluid are important for lesion develop-
ment [16]. Factors like the axial velocity of the plasma fluid
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and the thickness of the transient boundary layer [16] may
determine the ultimate outcome [16].

On the basis of the above models it can be concluded that
the probability and location of a lesion depends upon regions
of increased transient boundary layer and reduced surface
energy of adhesion which answers why lesions are formed
only in small regions of the entire vascular system [16]. Ar-
terial branch points due to their structure tend to have an
increased eddy velocity of the fluid and reduced viscous
shear stress. This is responsible for reduced surface energy
of adhesion, which brings LDL from the plasma fluid to the
plasma — endothelial interface resulting in lesion formation.
Although this model finds support in the literature [16], it
needs more validation.

QTL ANALYSIS

QTL linkage analysis is aimed to find correlations be-
tween genotype and phenotypes by crossing inbred mice
strains and using specific QTL softwares and identify genes
contributing to the polygenic trait [519]. The result is ex-
pressed in the form of log of the odds (LOD) score. In this
model 2 mouse strains of distinct phenotypes are crossed to
yield F1 and then subsequently F2 progeny [519]. The F2
generation strains are subjected to genomic scans and link-
age analysis for their genotype determination. This leads to
the defining of chromosomal map loci by strain specific po-
lymorphic marker, which spans the genome at small intervals
[519]. After this initial mapping, secondary congenic lines
are created by repeated intercrossing of inbred strains that
differ significantly in the measured phenotypes to isolate the
QTL locus from one strain onto the genetic background of
another strain [519]. Recombinants selection helps in nar-
rowing down the QTL locus for the identification of strain
specific polymorphism and functional expression difference
in specific genes [519]. Major disadvantage of this technique
is that it is laborious and many intercrosses for determination
of genotypes and phenotypes of hundreds and or thousands
of mice. This may take years for analysis.

IN SILICO QTL MODEL

This model takes advantage of the mouse SNP database
containing allele information of 15 inbred mouse strains [15,
519, 520]. Phenotype data of a particular trait is analyzed
against the SNP database for the identification of SNP pat-
terns that are similar among strains with similar phenotypes,
but different among strains with different phenotypes [15,
519]. A further analysis is done to pin point the gene and
mutation within the QTL [15, 519]. Critical advantages of
this model includes reduced time of analysis and quick gen-
eration of data, no intercrosses to be performed and by the
help of this model multiple strains instead of just 2 in classi-
cal QTL analysis can be analyzed [15, 519]. Using this
model already 5 genetic loci associated with atherosclerosis
in ApoE-/- mice have been defined [15, 519]. As a conse-
quence of the sequencing of the mouse genome and avail-
ability of a more detailed mouse SNP database this model
will get high impetus.

In silico method has the limitation due to the unequal
distribution of marker information but with the increasing
number of SNPs in the database this will be less of a prob-
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lem in the near future. This method also fails to account for
the epistatic genetic interactions and may also not detect
phenotype-altering mutations that occurred after the strains
diverged from each other since it relies on evolutionary de-
rived genetic differences between the strains [15, 519].

PROCESS OF ATHEROSCLEROSIS AS MODEL

The process of atherosclerosis consists of many steps,
which can be used to study atherosclerosis progression and
the protective effect of test compounds, as discussed below.

Reverse Cholesterol Transport

This important process of atherosclerosis can be moni-
tored by evaluating the activities of various proteins facilitat-
ing it. These include Apo A, HL, PLTP, CETP, HDL,
ABCAI, to name a few. An increase in this process should
ultimately increase the plasma HDL levels [61, 62, 521],
which can be estimated by regular methods [521-523]. Ani-
mal models of atherosclerosis can be screened in the pres-
ence or absence of test compounds for increased level of
plasma HDL and improvement in LDL/HDL ratio [524]. The
LXR agonist T0901317 promotes the RCT from macro-
phages by increasing plasma efflux potential [523]. RADAR
(Rosuvastatin and Atorvastatin in different Dosages And
RCT) study showed that 10, 20 and 40 mg of rosuvastatin
was significantly more effective than 20, 40 and 80 mg of
atorvastatin in improving the LDL-C/HDL-C ratio in patients
with cardiovascular disease and low HDL-C. However both
drugs showed similar and significant increase in HDL-C
levels [61, 525]. Since it is expected that an activation of the
RCT pathway will ultimately lead to an increase in HDL-C
levels, the benificial effects on the HDL levels seen in the
RADAR study may be due the activation of RCT pathway.

Formation of Atherosclerotic Lesions

Assesment of atherosclerotic lesion formation is an im-
portant parameter for evaluating the protective effect of all
anti-atherosclerotic drugs [42, 526-528]. Atherosclerotic
animals with and without test compound are sacrificed and
the aortic arch is removed, cleaned and cut open with the
luminal surface facing up [101, 529]. It is immersion-fixed in
10% neutral buffered formalin overnight or 2-3 days [101,
529]. After rinsing in water, the aortic arch is thoroughly
cleaned of adventitial fat. The inner aortic surface is stained
with oil red O (1.0% w/v in 60% isopropanol) for 25 min at
room temperature. After rinsing with 60% isopropanol and
distilled water, the aorta is mounted on a glass slide with a
glass coverslip and aqueous mounting medium containing
glycerin [101, 529]. The oil red O-stained area was observed
using zoom microscope and stained area was analyzed by
image analysis software [101, 529]. Immunohistochemistry
with macrophage, T cell or VSMC specific and inflamma-
tory marker tells about the composition of the lesion [530-
532]. In human advanced imaging techniques are required
for monitoring lesion progression and regression [533]. On
the basis of above parameters, statins have been shown to
reduce atherosclerotic lesions both in animals and humans
[236, 534, 535].
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Angiogenesis

Besides its overall role in vascular remodeling, neovascu-
larization within the vessel wall plays an important role in
plaque destabilization and vulnerability [536-538]. Patients
on statin treatment have reduced intraplaque angiogenesis in
their carotid endarterectomy specimens when compared with
patients not receiving this kind of drug [538, 539]. Migration
and proliferation of endothelial cells in response to VEGF
play an important role in angiogenesis associated to patholo-
gies such as atherosclerosis, diabetes and tumor development
[540]. PPARo agonist fenofibrate suppresses tumor growth
through direct and indirect angiogenesis inhibition [541]. By
using HUVEC and chick chorioallantoic membrane (CAM)
models in vitro and in vivo respectively, angiogenesis can be
evaluated in the presence of test compounds [540]. In this
model fertile eggs are cracked on Day 4 of incubation and
individually cultured in a covered glass dish at 37°C and 3%
CO, in air and saturated humidity. Test substances are ap-
plied to the surface of the CAM within silastic rings. Digital
images of the live CAM are captured using a binocular dis-
section microscope [542]. Similarly HUVEC cells are seeded
on Matrigel and formation of vascular (tube) like structures
is monitored in the presence or absence of test compounds.
Pictures are taken by microscope and degree of cord forma-
tion is quantified by measuring the area and length occupied
by the tubes [543-545].

Cell Differentiation

Since differentiation of monocytes to macrophages is one
of the most important events of atherosclerosis, candidate
drugs inhibiting this process can be suitable for atherosclero-
sis treatment [546]. For this assay, various monocytic cell
lines like THP and Raw 264.7 can be taken. Cells are differ-
entiated in presence of phorbol 12-myristate 13-acetate
(PMA), Ox-LDL, MCSF or GMCSF [5-7, 547-551]. Up
regulation of differentiation markers like CD11, CD14, type-
I SR can be monitored for assessing differentiation [552-
554]. In case of floating cells like THP, induction of differ-
entiation leads to their attachment and this can be monitored
biochemically or microscopically. In vivo differentiated
macrophages can be detected by staining immunochemically
with differentiated cell specific markers [532]. Lovastatin (5-
15 uM) caused a significant dose-related reduction in steady
state levels of type-I SCR mRNA in PMA-treated THP-1
cells [552].

Macrophage Foam Cell

Peritoneal animal macrophages or PMA differentiated
THP cells are treated with Ox-LDL (40-100 pg/ml) for 24-48
h in the presence or absence of test compound [6, 7, 383].
Cells are stained with Oil Red O to assess the amount of
lipid inside the cell [555, 556]. This can be assessed spectro-
photometrically at 518 nm also after lysing the cells [216].
Cell surface receptors like CD36, SRA or LOX-1 can be
monitored for increased macrophage foam cell formation [6].
An inhibition in their expression reflects in the inhibition of
the process of atherosclerosis. Similar immunohistochemical
staining can be done in animal aortic tissues [6, 101, 529,
532, 557]. Atorvastatin-mediated inhibition of macrophage
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foam cell is accompanied by inhibition of Ox-LDL induced
increase in the expression of SR CD68 and that of fatty acid
binding protein 4 [558].

Leukocyte Migration Assay

This can be set up as any other migration assay. For as-
sessing the migration of cell in response to endothelium acti-
vation, THP-1 monocyte migration can be assayed by using
the ChemoTx kit (Neuro Probe) or Boyden chambers [559].
The lower chamber is filled with medium obtained after Ox-
LDL or TNF-a treatment of endothelial cells (HUVECs:).
Monocytes are incubated in the presence or absence of test
compound and after incubation for around 6h at 37°C; cells
that migrate into the lower chamber are counted by flow cy-
tometry or conventional methods [557]. Test agents like KR-
31378 have been found to inhibit monocyte recruitment
[557]. Simvastatin inhibits the migration and adhesion of
monocytic cells and disorganizes the cytoskeleton of acti-
vated endothelial cells [S60]. Lovastatin inhibits endothelial-
monocyte cell interaction by down-regulating the expression
of VCAM-1 and E-selectin by inhibiting the phosphoinosi-
tide 3 kinase (PI3-kinase)/protein kinase B (Akt)/NF-kappaB
pathway in endothelial cells [561]. Similar types of assay can
be set for SMCs [559].

Proliferation Assay

Macrophage proliferation can be determined by counting
the numbers of macrophages 24 h after exposing them to
varying concentrations of the drug, as described earlier [562,
563]. Briefly, peritoneal macrophages can be harvested and
allowed to adhere in 6-well plates for 2 h [564]. Candidate
drug can be added to 2 x 10° cells in siliconized polypropyl-
ene tubes. After overnight incubation, 10 pl of trypan blue
solution is added to each tube followed by gentle shaking
during incubation, for 2 min, and a 10-pl aliquot can be used
for counting the number of cells in a hemocytometer. Prolif-
eration can also be studied using MTT assay using MTT kit
from ATCC following manufacturer’s protocol [565].
Briefly, after plating the cells for 6-24 h, 10ul of MTT rea-
gent is added followed by incubation for 2-4 h until a purple
precipitate is visible. This is followed by addition of 100 pl
of detergent reagent and left at room temperature for 2 h
[565]. Absorbance is read at 570 nm. Simvastatin, lovastatin
and mevastatin inhibit proliferation and invasion of mela-
noma cells [566]. Pitavastatin inhibits LPA-induced prolif-
eration and MCP -1 expression in aortic SMCs [567].

Cell Adhesion Assay

Adhesion of THP-1 cells to HUVEC cells can be assayed
as previously described [559, 568]. Briefly, HUVEC cells
can be plated in a 6 well culture plate at a cell density of
1x10° per well and cultured to 90% confluency. The cells
can be treated with various drugs for appropriate times.
THP-1 (2x10* cells/ml) cells in an exponential growth phase
is added to each well and incubated with HUVEC cells for
30 min at 37°C.The unbound cells are washed 3 times with
the RPMI media and the total number of cells adhered are
counted randomly in 4 randomly selected optical fields per
well. Fluvastatin, inhibits expression of adhesion molecules
on human monocyte cell line [569]. Similarly adhesion of
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platelets can be done in presence or absence of test com-
pound by performing static or flow adhesion assays [570]. In
these assays washed platelets are added to laminin, collagen,
fibrinogen or fibronectin-coated plates [571, 572]. Unad-
hered platelets are washed off and adhesion can be calculated
by doing simple protein estimation of the adhered platelets
[573, 574]. Under flow condition, platelet adhesion is moni-
tored by using parallel plate rectangular perfusion chamber.
Prewarmed blood is perfused through the chamber by the
help of a peristaltic pump [571]. Platelets adhered in the
presence or absence of test compound can be monitored mi-
croscopically [571]. Inhibition in platelet adhesion during the
process of atherosclerosis and restenosis is an attractive
therapeutic strategy being pursued actively.

Apoptosis Assays

Apoptosis can be quantified by common staining by
Hoechst H33342 and propidium iodide using immuno fluo-
rescence microscopy as previously described [575]. Nuclei
of apoptotic cells will be stained brightly with H33342 dye
and stained negatively with propidium iodide. Analysis can
be done using conventional tool programmes. Apoptosis can
also be confirmed with a DNA laddering assay, as previously
described [576]. Intracellular caspase-8 and -9 can be meas-
ured using a colorimetric assay with p-nitroaniline-labeled
substrates, as previously described [576] or by western blot-
ting. Apoptosis can also be measured by Flow Cytometry
using AnnexinV and PI dyes. Briefly, the cell size and PS
(phosphatidylserine) exposure is analyzed by flow cytometry
using a fluorescence activated cell sorter (FACS) and appro-
priate software. PS exposure is estimated by FITC- or Cy3-
conjugated Annexin V staining [577]. FITC- and Cy3-
Annexin V can be purchased from commercial vendors
[577]. Candidate drug treated THP-1, VSMC cells can be
analyzed for apoptosis studies. Lovastatin-induces apoptosis
in macrophages through the Rac1/Cdc42/JNK pathway [578]
and lipophilic statins induce apoptosis of human VSMCs
[579].

Thrombosis Potential

Thrombosis goes hand in hand with atherosclerosis and
blood coagulation, platelets and endothelium contribute to
this [38, 580]. Since platelets are involved in atherosclerosis
progression as well as thrombus formation [581], so assess-
ment of platelet behavior in hypercholesterolemic condition
provide an important tool to predict atherogenicity of the
subject/model. Commonly available parameters/methods of
assaying platelet function are, optical (turbidometric), im-
pedance and whole blood platelet aggregometry [582-584],
platelet activation markers (such as platelet-activating factor-
4 [585], B-thromboglobulin [586-588], P-selectin [589, 590],
CD63 [591, 592], CD40L [593, 594], conformational chan-
ges in the GPIIb/Il1a receptor [595-597], binding of secreted
proteins (thrombospondin) [598] and Platelet Function Ana-
lyzer-100 (PFA-100) [581]. Platelet-mediated, thrombin re-
lease [599], augmented plasma fibrinogen level [600] and
low level of antithrombin-IIT [601-604], reflect the hyperco-
agubility of blood in hyperlipidemic condition [600]. The
status of coagulation pathways/factors can be evaluated by
estimating the coagulation parameters which include throm-
bin time (TT), prothrombin time (PT), activated partial
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thromboplastin time (aPTT), fibrinogen time (FT) by coagu-
lation analyzer [605, 606]. The hemostatic markers (fibrino-
gen, VWF, antithrombin —Ill, plasmin-antiplasmin com-
plexes, thrombin-antithrombin complexes) can be assayed by
commercially available assay kits [607]. The effect of niacin,
warfarin and antioxidant vitamin cocktail on coagulation
parameter has been evaluated in peripheral arterial disease
patients [608]. The effect of hormonal regulation on hemo-
dynamic parameters and atherosclerotic risk factors have
also been assessed in womens taking progestin containing
contraceptives [606], and testosterone treated rabbit model
[609]. Besides this many animal models of thrombosis are
also available which can be used to assess the hyperco-
aguability and thrombogenecity of blood under hyperlipi-
demic conditions in the presence and absence of test com-
pounds [339, 340, 445, 610-612].

Autophagy Assay

Autophagy is a process that directs cytoplasmic material
and organelles to the lysosomes. In this process, portions of
cytosol and organelles are encircled by autophagosomes.
This is followed by fusion between autophagosomes and
endosomes/lysosomes, culminating in the formation of
autolysosomes and degradation of their contents [613, 614].
Since autophagy is more for survival than death, its occur-
rence in VSMC may increase plaque stability however at the
same time in macrophages it may be detrimental [615]. The
classical ways to measure autophagy are quantitative elec-
tron microscopy and the degradation rate of long-lived pro-
teins in presence of standard autophagy inhibitor (3-
methyladenine or wortmannin) [616]. An assay developed by
Seglen measures the sequestration of a soluble cytoplasmic
marker to a membrane-bound and thus sedimentable cell
fraction [617, 618]. Microtubule-associated protein 1 light
chain 3 (LC3) was introduced as the first protein that local-
ises specifically to autophagosome membranes and can be
detected by conventional microscopy or western blotting in
the presence and absence of test compounds [619].

Phagocytosis Assay

Phagocytosis has varied implications in atherosclerosis
[6]. Phagocytic efficiency of monocytes can be assessed by
monitoring uptake of labeled (fluorescein) bacteria, yeast,
AC (apoptotic cell), lipids in simple in vitro test systems
[620-622]. Adherent Cells are incubated with S. cerevisiae in
the presence or absence of test compund like pravastatin in a
wet chamber for 30 min at 37 °C in 5% CO; in air [621,
622]. Washing is done to eliminate non-phagocytosed S.
cerevisiae, followed by fixation staining with 10% buffered
Giemsa solution. The number of S. cerevisiae that are at-
tached/ ingested are assessed by optic microscopy. The
phagocytic index is calculated as the average number of at-
tached plus ingested S. cerevisiae per phagocytosing mono-
cytes, multiplied by the percentage of these cells engaged in
phagocytosis [620]. A recent study found that pravastatin
was able to decrease phagocytosis through complement re-
ceptors and caused a decrease in the production of hydrogen
peroxide by monocytes. This may contribute to the inhibition
of plaque development and instability [621].
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Plaque Rupture

Atherosclerotic plaque rupture is the root cause of
atherothrombosis disorders. No single model shows excel-
lence in plaque rupture homology with human, but the mod-
els in focus are swine, rabbit, rat and mouse [623]. Sponta-
neous plaque rupture and hemorrhage is seen in pigs with
inherited hyper-LDL cholesterolemia bearing mutant alleles
for ApoB, however these complications occur in 39-54
month old animals [272, 623]. Swine model offers several
advantage, for example imaging studies for the assessment of
lesion site (and size), vulnerable plague component and
plaque stabilizing therapies can be easily applied [224].
Aged (42-54 week) ApoE deficient mice [624] develop in-
terplague hemorrhage and plaque instability features [624],
and this process is accelerated by feeding westernized diet in
ApoE deficient mice [265]. One study found spontaneous
death in 37-59 week-old ApoE deficient mice fed with diet
containing 21% lard and 0.15% cholesterol [625]. CETP
transgenic Dahl salt sensitive hypertensive rat model pro-
posed for plaque rupture is characterized by hypertriglyc-
eridemia, hypercholesterolemia, decreased HDL, lesions in
aorta and coronary vessels, premature death due to myocar-
dial infarction (MI). Although plaque rupture is not observed
but occurrence of MI indicate the potential of this model for
coronary artery plaque rupture [626]. Induced plaque rup-
ture/thrombosis can be attained in models by various ma-
nipulations. High cholesterol high fat diet fed rabbit models
manipulated with balloon injury develop plaque rupture
[227]. This has several advantages which include reproduci-
ble plaque formation on balloon surface, measurable me-
chanical strength and delivery of gene, genetically modified
cells, proteins, lipids from outside for studying the role of
various factors on plaque stability and fissuring [227]. Major
limitation in this model is requirement of high cholesterol/fat
diet for long time, around 8 months. Another means of in-
ducing plaque rupture in cholesterol fed rabbit is to simulta-
neously treat them with Russell’s viper venom followed by
the vasopressor histamine [627, 628]. Knockout mouse
model, ApoE deficient and ApoE-LDLR double knockout
are being used as a model for spontaneous plaque rupture
[629, 630]. Various manipulations have been used to induce
plaque rupture in ApoE deficient mice. These include photo-
chemical injury to mice vessels [20, 631], 9 week feeding
with cholesterol and fat rich diet coupled with shear induc-
tion by pericarotid device (perivascular shear stress modifier)
[632], implantation of perivascular cuff followed by p53
adenovirus transfection and pressor challenge with phen-
ylephrine [633], common carotid ligation followed by poly-
ethylene cuff placement [629], mechanical injury (compres-
sion of abdominal aorta with blunt forceps) [634] and peri-
vascular carotid collar implantation in western type diet fed
mice [635].

MOLECULAR TARGET ASSAYS

A defined molecular target is one of the characteristic
features of a successful drug. Candidate drug molecules can
be screened against defined targets by performing simple in
vitro assays in the lab (Table 1A, 1B & 1C). A list of current
and potential new drug targets in atherosclerosis is listed
(Table 1A, 1B & 1C). The principle and the assay type of
these targets are briefly mentioned and suitable references
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Table 1A. Molecular Targets and Assays
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Target Pathway Response Method
1 PPARa Multiple including, Expression, Electrophoretic mobility shift assay (EMSA) [636], Luciferase assays
Inflammation & Promoter activity [637], RT-PCR [638], Immunoblotting [636], FACS [639]
RCT
2 PPARY Multiple including, Expression, EMSA [640], Luciferase assays [641], RT-PCR [642], Immunoblotting
Inflammation & Promoter activity [640]
RCT
3 LXR Multiple including, Expression, EMSA [643], Luciferase assays, RT-PCR [642], Immunoblotting [643]
Inflammation & Promoter activity
RCT
4 Apo A RCT (HDL compo- Expression, Luciferase assays [644], liquid-phase double-antibody radio immunoassays
nent) Promoter activity/levels rocket immunoelectrophoresis [645]
5 ABCG1 Cholesterol efflux Expression, Immunoblotting [105], RT-PCR [646]
(RCT) Promoter activity
6 CD36 Foam cell formation Expression, Luciferase assays, RT-PCR [647], Immunoblotting [648], FACS [649]
Promoter activity
7 SRA Foam cell formation Expression, Luciferase assays, RT-PCR, Immunoblotting [648], FACS [650]
Promoter activity
8 COX-2 Inflammation, free Enzymatic activity for AA | Spectrophotometric [651], Immunoblotting [652], Colorimetric &
radical generation metabolism to PG flourimetric immunoassay, ELISA [651]
synthesis,
Expression
9 NOS Inflammation, free Enzymatic activity for ELISA, radioactive, colorimetric NOS assays [653-655]
radical genera- Nitrite formation, NO
tion,vasodilation release,
Expression
10 RXR Multiple including, Promoter activity, Luciferase assays [656], RT-PCR [657], Immunoblotting [639]
Inflammation & Expression
RCT
11 MIF Adhesion, migration, Quantity/level Antibody based immunoassay, ELISA [658], FACS [658]
proliferation, In-
flammation
12 HL RCT Enzymatic activity for fatty | Fluorimetric substrate utilization, Radioactive assay [659, 660]
acid release, triglyceride
substrate
Table 1B. Molecular Targets and Assays (Continued)
Target Pathway Response Method
13 ICAM Adhesion Expression,levels EMSA, Luciferase assays, RT-PCR, FACS [661], Immunoblotting, ELISA
[662]
14 VCAM Adhesion Expression, levels EMSA [663], Luciferase assays [663], RT-PCR [663], FACS [664], Im-
munoblotting [663], ELISA [662]
15 ACAT-1,2 Foam cell Enzyme activity, Radioactive assays [665, 666], ACAT activity and immunoblotting,

[**C]oleate incorporation
into cholesterol esters,
expression

RTPCR [666, 667]
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(Table 1B) contd....
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Target Pathway Response Method
16 SRB1 Cholesterol efflux, Expression, levels RT-PCR, Immunoblotting [668], FACS [669]
RCT
17 Free radi- Formation of modi- Generation of ROS&RNS FACS-DCF&DAF response [670]
cals fied lipids, oxidative
stress
18 5-LOX Formation of modi- Expression & Enzyme Spectrofluorimetric [671-673], Western blotting and Luciferase assay [674]
fied lipids,infla- activity for hydroperoxides
mmation generated from the incuba-
tion of a 5-, 12-, or 15-LOX
with either AA or LA
19 CD68 Foam cell formation Expression, levels RT-PCR [675], Immunoblotting, FACS [675]
20 MMP, Plaque rupture Enzyme activity for prote- | Fluorimetric detection, immunoassay, immunoblotting. [676]
MMP3 olytic cleavage self
quenched peptide leading to
enhanced flourescence post
cleavage, Expression
21 ABC- Cholesterol efflux, Cholesterol efflux, RCT EMSA, Luciferase assays, RT-PCR FACS, Immunoblotting [646]
A1,A2 RCT
22 LOX-1 Lipid uptake, foam Promoter activity, RT-PCR, Immunoblotting [677]
cell Expression
23 PLTP RCT Enzyme activity, transfer of | Fluorimetric assay [678-681]

donor fluorescent self-
quenched phos pholipid to
an acceptor leading to an
increase in fluorescence,
radioactive [**C] phos-
phatidylcholine from phos-
pholipid liposome (PL
donor) to HDL acceptor

Table 1C. Molecular Targets and Assays (Continued)
Target Pathway Response Method
24 CXCR2, Cell infiltration, In- Promoter activity, RT-PCR [682], Immunoblotting [683], FACS [684]
CXCR1 flammation Expression
25 TXA2 Inflammation, platelet TXB2 levels Spectrophotometric [685], ELISA [686]
activation
26 mTOR Proliferation Kinase activity, incorpora- | Radioactive [281], Spectrophotometric, ELISA [687,688]
tion of phosphate
27 CETP RCT CETP mediated transfer of | Fluorimetric ELISA [689-692], Expression [693]
donor molecule containing
flu-orescent self quenched
neutral lipid (from HDL) to
acceptor molecule
(LDL&VLDL) giving
enhanced fluorescence,
expression
28 HDL RCT Quantity/levels ELISA photometric [694]
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(Table 1C) contd....
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Target

Pathway

Response

Method

29

LOX 15

Formation of modified
lipids

Enzyme activity, hydrop-
eroxides generated from
the incubation of a 5-, 12-,
or 15-LOX with either AA
or LA

Spectrophotometric, ELISA [695-697]

30

CD-14

Inflammation

Promoter activity,
Expression

Luciferase assays, RT-PCR [698], Immunoblotting [699], FACS [700]

31

Cx 37 (gap
junction)

Adhesion

Expression

RT-PCR, Immunoblotting [701]

32

Phospho
lipase A2

Inflammation, RCT

Enzyme activity, free thiols
generated from specific
substrate in presence of
PLAZ2 are detected using

DTNB reagent

Spectrophotometric ELISA [702-704]

33

HMG-CoA
Reductase

Cholesterol synthesis

Enzyme activity, HMG-
CoA dependent oxidation
of NADPH, generation of
mevalonolactone in pres-

ence of “C-HMG-CoA

Spectrophotometric ELISA, radioactive based assays [705, 706]

34

LCAT

RCT

Release of specific fluores-
cence after LCAT medi-
ated hydrolysis of substrat
e (transfer of acyl chain
from the sn-2 position of

phosphatidylcholine to
cholesterol)

Fluorimetric assay [707, 708]

are provided for detailed target specific methodology, which
will help in setting up the assays in the lab.

FUTURE STRATEGIES

Developing new animal models and understanding the
mechanism of atherosclerosis along with its complications is
essential. At the same time emphasis should also be placed
on selecting the best model suited for screening a particular
class of drug. Since each model has its own advantages and
disadvantages, the beneficial actions of a candidate drug
should be documented in several models of atherosclerosis.
The protective effect should be evident at the morphological,
biochemical and molecular levels rather than at single level.
Preferably a candidate drug should inhibit various processes
of atherosclerosis and have a defined mechanism of action.
Strategies like QTL analysis coupled with pharmacogenom-
ics and in silico screening will help in the identification and
design of new strategies.

Important information regarding initiation of atheroscle-
rosis is still not clear. Deciphering the mechanism of athero-
sclerosis will help to address in a major way the side effects
of various drugs in use. Researchers have to overcome the
challenge and fact that bigger animals develop better athero-
sclerosis like humans however detailed molecular and ge-
netic studies can be best carried out with smaller animals like

mice. Secondly since the mouse [709] and human [710] ge-
nome are already sequenced and reagents in the market sup-
port studies in these species, to carry out molecular and other
detailed studies in other animals often becomes very chal-
lenging. There is an urgent need to have good reagents for
carrying out molecular studies in all types of animal models
of atherosclerosis. Developing small animal models, which
can develop atherosclerosis very similar to humans, can
bridge the gap between small and big animals. ApoE mice
and ApoE leiden mice address this issue to some extent [711,
712]. However we still need a good model of plaque rupture
and it will be challenging to develop a spontaneous plaque
rupture model. However it will also be better to have an
animal model where initiation, progression of atherosclerosis
is similar to humans. It is also very important that the animal
develops lesion in area like those in humans. Sometimes the
drugs are screened on lesions whose sites are not similar to
humans and despite of showing protective effect in that ani-
mal, no protection may be observed in case of humans since
the site of lesion is different. Here the flow of blood and
shear stress may also be important for lesion formation. Im-
aging of small animals is very difficult and there is a need
for developing sophisticated imaging techniques where ani-
mals can be monitored for atherosclerosis progression or
regression. Usually a lot of work is based after animal sacri-
fice. Emphasis should be given to develop non-invasive im-
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aging techniques for monitoring progression or regression of
atherosclerosis. Simultaneously scientists can also develop
several biomarkers and also surrogate markers for athero-
sclerosis [713]. The development of these markers will
greatly tell about the mechanism of the diseased and by
monitoring the levels of the surrogate markers in the animal
models and also in humans we can easily monitor the effi-
cacy of many drugs. It should also be clear that failure of one
molecule should not be taken as failure of entire class of
protein for atherosclerosis treatment. Evidence suggests that
the effect of a compound may be very specific to its structure
and mechanism of action [714]. More compounds may be
designed and synthesized using information from the crystal
structure of their protein. At the same time the compound
should be tested in various models of atherosclerosis both in
vivo and in vitro. By doing computational analysis of murine
SNP database and utilizing data from inbred parental strains,
can lead to rapid identification of QTL intervals. Computa-
tional identification of putative disease genes can be done by
coupling information from murine SNP database, tissue spe-
cific gene expression database and phenotypic information
across mouse strains as discussed in the review. Good use of
QTL and in silico analysis will reduce the time for identifica-
tion of genes involved in atherosclerosis progression. Since
several mechanisms are responsible for the development of
atherosclerosis, it is most likely that a combinatorial therapy
may work in atherosclerosis rather than one alone.
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LIST OF ABBREVIATIONS

AA = Arachidonic acid

ABCAl = ATP-binding cassette transporter Al

ABCG1 = ATP binding cassette transporter G1

ACAT = Acyl-CoA:cholesterol acyltransferase

AcLDL = Acetylated LDL

Angll = Angiotensin Il

Apo = Apolipoprotein

ASBT = Apical sodium dependent bile acid transpor-
ter

CAM = Chick chorioallantoic membrane

CCR2 = C-C motif chemokine receptor-2

CETP = Cholesterol ester transfer protein

CHF = Congestive heart failure

COX = Cyclooxygenase

CRP = C reactive protein

Cx = Connexin

ELAM = Endothelial-leukocyte adhesion molecule

ELISA = Enzyme-Linked ImmunoSorbent Assay

EMSA
eNOS
EPCs
FACS
FLAP
G-CSF
GM-CSF

5-HT
HDL
HFN-4a.
HL
HMGCoA
HOPE
HUVEC
ICAM
IFN-y

IL

iNOS
IP-receptor
JAM-A
IJNK

LA

LDL
LDLR
LOD
LOX
LOX-1

Lp(a)
LPA
LPL
LXR
MCP
M-CSF
MHC
MIF
MIG
MIP
MMPs
mTOR
NF«kB
NHPs

Singh et al.

Electrophoretic mobility shift assay
Endothelial nitric oxide synthase
Endothelial progenitor cells
Fluorescence activated cell sorting
Five lipoxygenase activating protein
Granulocyte colony stimulating factor

Granulocyte macrophage colony-stimulating
factor

5-Hydroxytryptamine

High-density lipoprotein

Hepatocyte nuclear factor-4a

Hepatic lipase
3-hydroxy-3-methylglutaryl coenzyme A
Heart Outcomes Prevention Evaluation
Human umbilical vein endothelial cells
Intercellular adhesion molecule
Interferon gamma

Interleukins

Inducible nitric oxide synthase

PGI2 receptor

Junctional adhesion molecule-A
c-jun-N-terminal kinase

Linoleic acid

Low-density lipoprotein

Low density lipoprotein receptor

Log of the odds

Lipoxygenase

Lectin-like oxidized low-density lipoprotein
receptor-1

Lipoprotein (a)

Lysophosphatidic acid

Lipoprotein lipase

Liver X receptor

Macrophage chemotactic protein
Macrophage-colony stimulating factor
Major histocompatibility complex
Migration inhibitory factor

Gamma interferon-induced monokine
Macrophage inflammatory protein
Matrix metalloproteinase

Mammalian target of rapamycin
Nuclear factor-kappa B

Non-human primates



Models to Study Atherosclerosis: A Mechanistic Insight

NKT

NO

NZW
Ox-LDL
PAF
PAI-1
PASMC
PDGF
PECAM-1
PGs
PGH,
PGI,

P13 Kinase
PKC
PLA,
PLTP
PMA
PBMAPK
PMN
PPAR
QTL
RADAR

RANTES

RAS
RCT
RNS
ROS
RT-PCR

SHR
SHR-SP
SMC
SNP
SR
STZ
TF
TFPI
TGF B
Th
THP-1
TLR
™

Natural killer T cells

Nitric oxide

New Zealand White

Oxidized LDL

Platelet activating factor

Plasminogen activator inhibitor-1
pulmonary artery smooth muscle cells
platelet-derived growth factor
Platelet/endothelial cell adhesion molecule-1
Prostaglandins

Prostaglandin H2

Prostacyclin

Phosphoinositide 3 (P13) kinase
Protein kinase C

Phospholipase A,

Phospholipid transfer protein

Phorbol 12-myristate 13-acetate
P*¥mitogen activated protein kinase
Polymorphonuclear leukocytes
Peroxisome proliferator-activated receptors
Quantitative trait loci

Rosuvastatin and Atorvastatin in different
Dosages and RCT

Regulated upon activation normal T-cell
expressed and secreted

Renin-angiotensin system
Reverse cholesterol transport
Reactive nitrogen species
Reactive oxygen species

Reverse transcriptase- polymerase chain
reaction

Spontaneously hypertensive rats
Stroke-prone spontaneous hypertensive rats
Smooth muscle cell

Single nucleotide polymorphism
Scavenger receptor

Streptozotocin

Tissue factor

Tissue facor pathway inhibitor
Transforming growth factor 8

T helper cells

Human acute monocytic leukemia cell line
Toll-like receptor

Thrombomodulin
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TNF = Tumor necrosis factor

TNFR-I = Tumor necrosis factor receptor-1

TP = Thromboxane prostanoid

tPA = Tissue plasminogen activator

X = Thromboxane

uPA = Urokinase-type plasminogen activator

VCAM = Vascular cell adhesion molecule

VLA-4 = Very late antigen-4

VLDL = Very low density lipoprotein

VSMC = Vascular smooth muscle cell

VWF = Von Willebrand factor
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