
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 125, Number 6, June 1997, Pages 1635–1641
S 0002-9939(97)03938-5
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Abstract. Some progress is made in the calculation of local fundamental
groups.

0. Introduction

In my 1955–1966 papers [1] to [7], while working on resolution of singularities of
algebraic varieties in positive characteristic p, I was led to investigate Galois groups
of local and global coverings of these varieties. Such Galois groups are the alge-
braic reflection of local and global (topological) fundamental groups in the complex
case. Thus the systems of these Galois groups may be called algebraic fundamental
groups. The general surmise which I formed from this investigation was that usu-
ally a finite group occurs in a particular characteristic p situation if and only if its
maximal prime-to-p quotient occurs in the corresponding complex or characteristic
zero situation. In some cases, such as (1) for punctured lines (or more generally,
for affine curves), I had stated this surmise as an explicit conjecture. In some other
cases such as (2) at normal crossings, and (3) for complements of hyperplanes (or
more generally, for complements of hypersurfaces) meeting normally, I had only
hinted at it. As we shall see in Section 1, the explicit conjecture has recently been
settled by Harbater and Raynaud. This suggests that the hinted conjectures also
be made explicit, and I shall do this in Sections 2 and 3 respectively. In Section 4, I
shall formulate a local-global conjecture which links the local conjecture of Section
2 with the global conjecture of Section 3. In the various Sections, I shall provide
some evidence for the corresponding conjectures.

1. Punctured lines

In 1851, Riemann [18] achieved desingularization of a complex (algebraic) curve
f(X,Y ) = 0 by constructing the Riemann Surface of Y as a function of X . In this
construction, a crucial role is played by the Galois group of f which is the algebraic
reflection of the (topological) fundamental group of the multipunctured complex
line.
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This leads to the definition of the algebraic fundamental group πA(Lk,t) of
the t-punctured affine line Lk,t over a field k, as the set of all Galois groups of finite
Galois extensions of the affine line Lk over k which are ramified at most at the t
punctures, where t ≥ 0 is any integer.

For a prime number p, let Qt(p) = the set of all quasi-(p, t) groups, i.e., finite
groupsG such that G/p(G) is generated by t generators, where p(G) is the subgroup
of G generated by all of its p-Sylow subgroups; members of Q0(p) are called quasi-p
groups, and we put Q(p) = Q0(p). We extend this for p = 0 by agreeing that the
identity group 1 is the only 0-Sylow subgroup; note that then Qt(0) = the set of
all quasi-(0, t) groups = the set of all finite groups generated by t generators; also
note that 0(G) = 1 and Q0(0) = the set of all quasi-(0, 0) groups = the set of all
quasi-0 groups = {1}. Riemann proved that if k is the field of complex numbers
then πA(Lk,t) = Qt(0). In my 1957 paper [3], as an immediate consequence of the
Riemann-Hurwitz genus formula, I proved the following

Result (1.1). If k is an algebraically closed field of char p ≥ 0 and 0 ≤ t ≤ 1 then
πA(Lk,t) ⊂ Qt(p).

In my 1957 paper [3], I also made the following conjecture which was settled
affirmatively by Harbater and Raynaud in their 1994 papers [13] and [17].

Conjecture (1.2). If k is an algebraically closed field of char p ≥ 0 and t ≥ 0
then πA(Lk,t) = Qt(p).

Note (1.3). What Harbater proved in [13] was the more general conjecture which
I had made in [3] and which says that: if Cg,w = Cg minus w + 1 points, where
Cg is a nonsingular projective curve of genus g over an algebraically closed field k
of characteristic p ≥ 0 and w is a nonnegative integer, then πA(Cg,w) = Q2g+w(p),
where πA(Cg,w) is again defined to be the set of all Galois groups of unramified finite
Galois coverings of Cg,w. This again concurs with the enough room philosophy
according to which a finite group G occurs in a characteristic p > 0 situation if and
only if G/p(G) occurs in the corresponding characteristic zero situation, provided
there is “enough room”. As an example of “not enough room”, for unpunctured
Cg with g > 0, in characteristic p > 0 we do not even get all G which occur in
characteristic zero; for a discussion of this see Stevenson [19]. For unpunctured C0,
regardless of the characterisitc, there are no nontrivial unramified coverings, and
so there is “no room”.

2. Normal crossings

In 1871, Noether [16] desingularized the curve f(X,Y ) = 0, over a general ground
field k, by applying a sequence of quadratic transformations to the (X,Y )-plane.
In 1882, Dedekind [12] obtained desingularization of the curve f(X,Y ) = 0 in one
swoop by passing to the integral closure of the residue class ring k[X,Y ]/f(X,Y ).
Out of the three approaches to curve desingularization, only Noether’s approach
keeps track of the (X,Y )-plane. Even then, strictly speaking the (X,Y )-plane is
changed to a nonsingular surface, but for local considerations it continues to look
like a plane.

In 1908, Jung [14] proved local complex surface desingularization by mixing
all three ideas. To describe Jung’s proof briefly, given a surface φ(X,Y, Z) = 0,
consider the branch locus ∆(X,Y ) = 0 as we project it onto the (X,Y )-plane,
where ∆ is the Z-discriminant of φ. Note that if the Z-degree of φ is n then the
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projection is n to 1 except at the points of ∆ = 0 above which there are less than
n points of the surface. The branch locus actually consists of certain irreducible
components of ∆ = 0. At any rate, in view of Noether’s curve desingularization,
after applying a finite number of quadratic transformations to the (X,Y )-plane, we
may assume that ∆ = 0 has only normal crossings. If a point of the surface projects
outside ∆ = 0 then it is automatically simple, whereas if it projects into a normal
crossing of ∆ = 0 then, as observed by Jung, it is easy to resolve because of the
topological fact that the local fundamental group at a normal crossing is abelian.

In the failure part of my Ph.D. Thesis [1] published in 1955, I algebracized the
above topological fact by considering the local algebraic fundamental group
πLA(Nd

k,t) at a t-fold normal crossing.
To define this let P ∈ W ⊂ V where P is a simple point of an irreducible algebraic

variety V of dimension d ≥ 2 over the ground field k, and W is a subvariety of V
having a t-fold normal crossing at P , i.e., in the local ring R of P on V , the ideal of
W is of the form x1 . . . xtR where x1, . . . , xd is a basis of the maximal ideal M(R)
of R. Let K = the function field k(V ), i.e., K = the quotient field of R. Let Ω∗

be the set of all finite Galois extensions K∗ of K, in a fixed algebraic closure of
K, such that x1R, . . . , xtR are the only height one prime ideals of R which are

possibly ramified in K∗. Let K̂ be the quotient field of the completion of R. For

every K∗ ∈ Ω∗ let K̂∗ be the quotient field of the completion of a localization of the
integral closure of R in K∗ at a maximal ideal in the said integral closure. Then
πLA(V,W, P ), or briefly πLA(Nd

k,t) with Nd
k,t = (V,W, P ), is defined to be the set of

all Galois groups Gal(K̂∗, K̂) as K∗ varies in Ω∗. In other words, πLA(V,W, P ) is
the set of all local Galois groups of finite Galois coverings of V at P whose branch
locus at P is contained in the subvariety W having a t-fold normal crossing.

For p = a prime number or 0, let Pt(p) = the set of all (p, t)-groups, i.e., the
set of all finite groups G such that G/p(G) is an abelian group generated by t
generators. Note that then Pt(p) = Qt(p) for 0 ≤ t ≤ 1, but Pt(p) is much smaller
than Qt(p) for t > 1. In [1] I explicitly proved the following

Result (2.1). If k is an algebraically closed field of char p ≥ 0 and t > 0 then
πLA(Nd

k,t) ⊂ Pt(p).

Moreover, in [1] I implicitly made the following

Conjecture (2.2). If k is an algebraically closed field of char p ≥ 0 and t > 0
then πLA(Nd

k,t) = Pt(p).

Remark (2.3). The proof of Result (2.1) uses Zariski’s [20] Purity of Branch Locus.
Since Nagata [15] has proved Purity for any regular local ring, Result (2.1) remains
true for πLA(R, I,M(R)) where R is any regular local ring of dimension d ≥ 2,
k is the residue field R/M(R), and I = x1 . . . xtR for some basis x1, . . . , xd of
the maximal ideal M(R) of R. The definition of πLA(R, I,M(R)) is exactly as

above, i.e., it is the set of all Galois groups Gal(K̂∗, K̂) as K∗ varies in Ω∗. Note
that now char k is allowed to be different from char R. It is rather likely that
Conjecture (2.2) remains valid in this general case. In the equicharacteristic case,
i.e, when char k = char R, we may still write πLA(Nd

k,t) = πLA(R, I,M(R)) with

Nd
k,t = (R, I,M(R)). In the unequicharacteristic case, i.e, when char k 6= char R,

we may write πLA(Ud
k,t) = πLA(R, I,M(R)) with Ud

k,t = (R, I,M(R)).
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Remark (2.4). If we extend the meaning of πLA(Nd
k,t) to t = 0 in an obvious manner,

then by Purity, regardless of the characteristic, we would have πLA(Nd
k,t) = {1}.

However, for p > 0, the family P0(p) is quite large as it contains all finite simple
groups whose orders are divisible by p. This is why in (2.1) and (2.2) we have
stressed the condition that t > 0.

Remark (2.5). In [1], in support of Conjecture (2.2) I wrote down an example of a
surface with branch locus having a simple point but with unsolvable local Galois
group. A slightly simplified avatar of the said example is given by the surface
F = 0 over an algebraically closed ground field k of characteristic p > 0 where
F = Zn + Y Z + X with 0 < p < n ≡ 1 mod p. Note that DiscZ(F ) = Xn−1

where DiscZ(F ) is the Z-discriminant of F , and hence we have a case of Nd
k,t with

d = 2 and t = 1. In [1], I showed that for n = p + 1 and p = 5 the Galois
group Gal(F, k((X,Y ))) is unsolvable, and, for n = p+1 and any p > 0, its order is
divisible by p(p+1) and hence it is quite complicated. Thus I concluded that Jung’s
surface desingularization method could not be used for nonzero characteristic. This
is why I have called [1] the failure part of my Thesis. In the success part [2]
published in 1956, I proved surface desingularization in nonzero characteristic by
other means. Later on, in 1965 [6] I extended it to arithmetic surfaces, and in 1966
[7] to three-dimensional varieties over ground fields of nonzero characteristic. Now,
having learnt some more group theory, I can show that, for n = 1 + q + q2 + · · ·+
qm−1 where q > 1 is any power of p and m > 1 is any integer, we actually have
Gal(F, k((X,Y ))) = PGL(m, q). Clearly this follows by taking R = k[[X,Y ]] in the
following slightly more general result whose proof, given in (5.3) of [11], occurred to
me while listening to a masterful lecture of Walter Feit in the May 1995 Ohio-State
Conference in honor of his Sixty-Fifth Birthday.

Result (2.6). Let n = 1+ q+ q2 + · · ·+ qm−1 where q > 1 is any power of a prime
number p and m > 1 is any integer. Let K be the quotient field of a regular local
domain R of dimension d ≥ 2 with M(R) = (X,Y, Y3, . . . , Yd)R such that GF(q) is
a subfield of R. Let F (Z) = Zn+Y Z+X and Φ(Z) = Zqm−1 +Y Zq−1 +X. Then
Gal(F,K) = PGL(m, q) and Gal(Φ, K) = GL(m, q) in a natural manner in such a
way that Gal(F,K) is the image of Gal(Φ, K) under the canonical map of GL(m, q)
onto PGL(m, q). [Note that DiscZ(F ) = Xn−1 and DiscZ(Φ) = −(−X)q

m−2.]

Remark (2.7). Let k be an algebraically closed field of characteristic p > 0, let q > 1
be any power of p and let m > 1 be any integer. In support of Conjecture (2.2),
the above Result (2.6) shows that the groups PGL(m, q) and GL(m, q) belong to
πLA(Nd

k,t) for t = 1 and hence for all t > 0 with t ≤ d. In my 1958 paper [4], I had

also shown that, in case p = 2, the symmetric group Sm belongs to πLA(Nd
k,t) for

t = 1 and hence for all t > 0 with t ≤ d.

Note (2.8). Clearly Conjecture (2.2) concurs with the “enough room philosophy”
propounded in Note (1.3). An example of “not enough room” is provided by Remark
(2.4). Yet another example of “not enough room” is obtained by extending the
meaning of πLA(Nd

k,t) to d = 1 in an obvious manner; now, for p = 0, by Newton’s

Theorem, πLA(N1
k,1) consists of all finite cyclic groups; however, for p > 0, by

Generalized Newton’s Theorem, every member of πLA(N1
k,1) is solvable and hence

πLA(N1
k,1) is much smaller than P1(p). Reverting to d ≥ 2, we note that the evidence

for Conjecture (2.2) provided in Remark (2.7) is really for d = 2 with d− 2 dummy
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variables. In case of characteristic zero, it is easy to provide evidence which is
genuine for any d. Indeed, in case of characteristic zero, by adjoining roots of the
variables (i.e., of a minimal set generators of the maximal ideal of the regular local
ring), we easily see that πLA(Nd

k,t) = Pt(0) = the set of all finite abelian groups
generated by t generators.

3. Complements of hyperplanes

Let Ldk be the d-dimensional affine space over a field k with d ≥ 2, and let
Ldk,t = Ldk − H where H is a union of t (distinct) hyperplanes in Ldk such that

H ∪H∞ (where H∞ is the hyperplane at infinity) has only normal crossings, i.e.,
H ∪ H∞ has a t(P )-fold normal crossing at every point P of H ∪ H∞ for some
positive integer t(P ) ≤ d depending on P . Let Ω′ be the set of all finite Galois
extensions K ′ of k(Ldk), in a fixed algebraic closure of k(Ldk), such that the prime
ideals of the various irreducible components of H are the only height one prime
ideals in the affine coordinate ring k[Ldk] which are possibly ramified in K ′. Then
the algebraic fundamental group πA(Ldk,t) is defined to be the set of all Galois

groups Gal(K ′, k(Ldk)) as K ′ varies in Ω′. In my 1959–1960 paper [5] I explicitly
proved the following

Result (3.1). If k is an algebraically closed field of char p ≥ 0 and t ≥ 0 then
πA(Ldk,t) ⊂ Pt(p).

Moreover, in [5] I implicitly made the following

Conjecture (3.2). If k is an algebraically closed field of char p ≥ 0 and t ≥ 0
then πA(Ldk,t) = Pt(p).

Remark (3.3). A Bertini argument (see [5]) shows that, in case of 0 ≤ t ≤ 1,
Conjectures (1.2) and (3.2) are equivalent to each other.

Note (3.4). To state a stronger version of (3.1) proved in [5], let V be the d-
dimensional projective space over an algebraically closed field k of characteristic
p ≥ 0 with d ≥ 2, let t ≥ 0 be an integer, and let W be a hypersurface in V having
t+1 irreducible components W1,W2, . . . ,Wt+1. Assume that at every point P of it,
W has an s-fold normal crossing for some positive integer s which may depend on
P ; note that then each Wi is nonsingular. Let P ∗t (p) be the set of all finite groups
G such that G/p(G) is an abelian group generated by t+ 1 generators a1, . . . , at+1

satisfying the relation
∏

1≤i≤t+1 a
e(i)
i = 1 where e(i) is the degree of Wi. Then the

said stronger version of (3.1) proved in [5] says that πA(V −W ) ⊂ P ∗t (p) where
πA(V −W ) is again defined to be the set of all Galois groups of unramified finite
Galois coverings of V − W . In [5] it is also shown that for p = 0 we have the
equality πA(V −W ) = P ∗t (p). In concurrence with the “enough room philosophy”
propounded in Note (1.3), the corresponding version of (3.2) would conjecture that
also for p > 0 we have the equality πA(V −W ) = P ∗t (p).

4. Plane sections

As said in Remark (2.5), in my 1955 paper [1] I found unsolvable surface cov-
erings above a simple point of the branch locus. By taking plane sections of these
surface coverings, in my 1957 paper [3] I was led to write down explicit equations of
unramified coverings of Lk and Lk,1 over a field k of characteristic p > 0, and this is
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what motivated Conjecture (1.2). In the 1992–1995 papers [8] to [10], I computed
the Galois groups of some of these equations. For instance, in (3.2) of [9] I proved
the following

Result (4.1). Let n = 1 + q + q2 + · · · + qm−1 where q > 1 is any power of a
prime number p and m > 1 is any integer. Let k be an overfield of GF(q). Let

F̃ (Z) = Zn +XZ + X and Φ̃(Z) = Zqm−1 + XZq−1 + X. Then Gal(F̃ , k(X)) =

PGL(m, q) and Gal(Φ̃, k(X)) = GL(m, q) in a natural manner in such a way that

Gal(F̃ , k(X)) is the image of Gal(Φ̃, k(X)) under the canonical map of GL(m, q)

onto PGL(m, q). [Note that DiscZ(F̃ ) = Xn−1 and DiscZ(Φ̃) = −(−X)q
m−2.]

Again let Ldk be the d-dimensional affine space over a field k with d ≥ 2, and

let us consider Ldk,1 = Ldk − Ld−1
k where Ld−1

k is a hyperplane in Ldk. Let Ω′ be the

set of all finite Galois extensions K ′ of k(Ldk), in a fixed algebraic closure of k(Ldk),

such that the prime ideal of Ld−1
k is the only height one prime ideal in k[Ldk] which

is possibly ramified in K ′. Let Ω′∗ be the set of all K ′∗ ∈ Ω′ for which there exists
an affine line Lk in Ldk which meets Ld−1

k in a point P = Ld−1
k ∩ Lk such that the

integral closures in K ′∗ of the local rings of P and Lk on Ldk are local. Let us define
local-global algebraic fundamental group πLGA (Ldk,1) to be the set of all Galois

groups Gal(K ′∗, k(Ldk)) as K ′∗ varies in Ω′∗, and about it let us offer the following

Conjecture (4.2). If k is an algebraically closed field of char p ≥ 0 then πLGA (Ldk,1)

= P1(p).

Remark (4.3). Conjecture (4.2) is obviously stronger than the t = 1 case of each
of the three Conjectures (1.2), (2.2) and (3.2). All these are trivially true for
p = 0. In the nontrivial case of an algebraically closed field k of characteristic
p > 0, equationally speaking, given any G ∈ Q1(p), Conjecture (4.2) asks us to
find a monic polynomial Ψ(Z) in Z with coefficients in A = k[X,Y, Y3, . . . , Yd] such
that XA is the only height one prime ideal on A which is possibly ramified in the

splitting field K ′∗ of Ψ(Z) over K = k(X,Y, Y3, . . . , Yd) and upon letting Ψ̃(Z)
be obtained by putting Y = Y3 = · · · = Yd = 0 in Ψ(Z) we have Gal(Ψ, K) =

Gal(Ψ, K̂) = Gal(Ψ̃, K̃) = G where K̂ = k((X,Y, Y3, . . . , Yd)) and K̃ = k(X). If in
doing this we can also arrange that DiscZ(Ψ) = cXe with 0 6= c ∈ k and integer
e ≥ 0 then it would be like sugar in the milk or icing on the cake. Given any q > 1
which is a power of p and any integer m > 1, in view of Results (2.6) and (4.1), for
G = PGL(m, q) we can achieve this by taking Ψ(Z) = Zn + (Y + X)Z + X with
n = 1 + q + q2 + · · · + qm−1, and for G = GL(m, q) we can achieve it by taking
Ψ(Z) = Zqm−1 + (Y +X)Zq−1 +X .

Note (4.4). Again we note that the evidence for Conjecture (4.2) provided in Re-
mark (4.3) is really for d = 2 with d − 2 dummy variables. This is not surprising
because Conjecture (4.2) is essentially 2-dimensional in nature. A truly higher
dimensional version of Conjecture (4.2) remains to be found.
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