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Monte Carlo simulation for molecular gas dynamics
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Abstract. The dynamics of low-density flows is governed by the
Boltzmann equation of the kinetic theory of gases. This is a nonlincar
integro-differential equation and, in gencral, numerical methods must
be used to obtain its solution. The present paper, after a bricf review of
Direct Simulation Monte Carlo (DSMC) methods due to Bird, and
Belotserkovskii and Yanitskii, studies the details of the DSMC method of
Deshpande for mono as well as multicomponent gases. The present
method is a statistical particle-in-cell method and is based upon the
Kac-Prigogine master equation which reduces to the Boltzmann
equation under the hypothesis of molecular chaos. The proposed
Markoff model simulating the collisions uses a Poisson distribution for
the number of collisions allowed in cells into which the physical space is
divided. The model is then extended to a binary mixture of gases and it
is shown that it is necessary to perform the collisions in a certain
sequence to obtain unbiased simulation.

Keywords. Low density flow; Boltzmann equation; Kac-Prigogine
master equation; collision dynamics; Monte Carlo method; unbiased
and consistent estimator.

1. Introduction

With the advent of space vehicles flying at altitudes of several hundred kilometers
or more, it has become necessary to study aerodynamics at low densities. The chief
parameter that governs such flows is the Knudsen number Kn, which is the ratio of
the mean free path of molecules between collisions (say A) to a characteristic linear
dimension of the body in flight (say L). Figure 1 shows the variation of A with
altitude in the International Tropical Reference Atmosphere (ITRA) (Anantha-
sayanam & Narasimha 1986). It is seen that for L = 1 m, the Knudsen number
Kn = 1 at an altitude of 110 km. At much lower altitudes, Kn is small and by

A part of the mateTial in this paper was presented at the Minisymposium 2 of the ICIAM 87 held in Paris
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implication the number of intermolecular collisions (in volume L%) is much larger
than the molecular impacts with the body. Consequently, the gas is very nearly in
thermodynamic equilibrium everywhere and may be treated as obeying the laws of
classical gas dynamics to a good approximation. In the opposite limit of a large
Knudsen number, the molecules hardly collide among themselves; the ‘free
molecule’ flow that results is then dominated by molecular impacts with the body
and the gas is everywhere far from thermodynamic equilibrium. The molecular gas
dynamics regime starts roughly when Kn = O(1) and continues all the way upto
Kn— =. In this regime the governing equation is the well-known Boltzmann
equation of the kinetic theory of gases. This is a nonlinear integro-differential
equation governing the spatio-temporal evolution of the one-particle velocity
distribution function f(t, x, v), and is given by

(affan) + v+ (3f13x) + E - (afiov) = j LA fw')
— () f(w)]gh db de Dw, (1)

where v is the molecular velocity, x is the position vector, F is the external force per
unit mass; v, w are the precollision velocities of a colliding pair; b is the impact
parameter; ¢ is the angle between the plane of motion and a reference plane (see
figure 2), and Dw is an infinitesimal volume in velocity space. Further, in (1) we
have written f(v) in place of f(t, x, v) and shown only one integration symbol for
brevity. The velocities v', w' are functions of v, w, & and the scattering angle 6 (see
figure 2) and are given by '

v =v+k(k, g), w = w-K(k,g), @)
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Figure 2. Trajectory of a particle in a
central force field.

where g = relative velocity of colliding pair = v—w 3)
and k is the unit vector given by
k = [cos (6/2) cos &, cos (6/2) sin &, sin (8/2)]. )

The scattering angle 6 has to be determined by the two-body collision dynamics
and, in general, depends on the impact parameter b, relative speed g and the
intermolecular force law.

It is clear that obtaining a solution of (1) for bodies in low density flows is a
formidable task and no exact solution to (1) is known except when the gas is
everywhere in thermodynamic equilibrium. Over the last several years the
statistical-particle-in-cell method or the Monte Carlo method for obtaining the
numerical solution of the Boltzmann equation has been developed and successfully
applied to a variety of low density flows, some of the most recent examples being
hypersonic transitional flows by Moss (1986) and Advanced Orbital Transfer
Vehicle (AOTV) entry flows by Bird (1986). We will consider in the following
sections of the paper the basics of DSMC (Direct Simulation Monte Carlo) and some
aspects of its application to free molecule as well as transitional flows. The
development of various computer codes and the Kac-Prigogine equation based
DSMC were undertaken under various ISRO*-sponsored research contracts spanning
the period from 1970 to 1983.

2. Free molecule drag calculation by Monte Carlo

In free molecule flows the intermolecular collision term in (1) is zero, and the flow
field changes because of molecular impacts with the body. It is then possible to
calculate the drag and lift coefficients as well as the Stanton number by simply
calculating the momentum and energy transferred to the body by the impacts. In
fact, assuming diffuse reflection at the body surface the free molecule drag
coefficient Cpp, for an arbitrary body is given by

Copm = U(kpa UL Areg) f dS(p) f DV[V2 + v, (xR T, 12)% - ny(p)

v, >0

"

+ vllvntlx(p) + VIZVnIZX(p)]FOO ’ (5)

* Indian Space Research Organisation
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where p= = density in the free stream,

A, = reference area,
F, = the free-stream Maxwellian distribution

i

na (Bl ) €XP [— B (v—U)]: (6)

il

n, = free stream number density,
.= 1@QRT=), T, = free stream temperature,
R = gas constant per unit mass,
U, = mean velocity in the free stream,
gB = body surface,
. dS(p) = elementary area on dB around point P,
Dy = dv,dvadvs = infinitesimal volume in velocity space (v, Va, V1),

n(p), t(p)s to(p) are respectively the x-components of normal vector n and t,
t, are two tangent vectors to the body surface 4B at the point P, and v,, Vi1, V2 aré
the corresponding components of velocity v. ;

The limits of integration with respect to v in (9) are defined by v, > 0. By
defining the characteristic function X(v,) =1, if va> (0. =0 otherwise, the
integral in (1) can be written in the compressed form

,

Com=| 450) [| Dt xR 0

a3
where
Dy(v, p) = [Vi+ val7R T2 no(p) + vavuti(p) +

+ Vt’_’VntZX(P)] F'n/(%pw U:; Arcf)‘

The sample mean Monte Carlo estimator for Cpyp, can now be constructed as
follows. First, we choose a finite volume { in velocity space in such a way that the
contribution to Copm due to velocities falling outside () is negligibly small. For
example, () can be taken as a cube centred around U, and having sides equal to
several times the mean thermal speed 1/ 2. The body surface is then divided into
several elemental surfaces A, Az.- . Ay as shown in figures 3 and 4 where the
sLv-3 surface is paneled. Then the sample mean Monte Carlo estimator for Cpyy, i

given by
N
Copm = (Q4/N) \L Dr(vis P:)X(Vni) (Ai/A) 8)

i=1

where P; is a point uniformly distributed on the SLV-3 surface, v; is a random
velocity vector uniformly distributed within the volume €, and A is the total area of
all the panels on the body. Figure 5 shows the free molecule drag coefficient of
sLv-3 with zero angle of attack and diffuse reflection using the above sample mean
Monte Carlo estimator at various speed ratios. Also shown in the same figure is
the scatter of the estimator. The statistical scatter is always present in any Monte
Carlo estimator and is a very characteristic feature of the Monte Carlo method. The
details of surface paneling, drawing of random numbers, estimation of variance,
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N ﬁ Figure 3. Paneling of SLV-3 surface (side view).

use of variance reduction techniques and calculation of drag coefficients for various
bodies including SLV-3 are given in Deshpande & Subba Raju (1973).

3. pSMC method for the Boltzmann equation

3.1 Introduction

For the purpose of Monte Carlo simulation of (1) we drop the F - (3f/dv) term and
the equation becomes

(3ffa) +v - (dflox) = J (£, f)

- [ LF(t, %, V) F(t. x, W) = £(t, %, V) (£, x, w)]gor(Q, g) Dw dQb,
%)

Figure 4. Approximate representation
of SLV-3 base (enlarged).




§ M Deshpande and P V Subba Raju

110
12
I crude Monte Carle

10 - scatter, 1[]4 points
8]
Ugl
oy

c
5 %
o
= 6 %
hes

©
0
0
ger

s
o

2 |-

0 | | |

0 2 4 6 8

speed ratio, S

Figure 5. Drag coefficient for SLV-3 at zero angle of attack in free molecule flow, diffuse reflection.

where o dQ is the differential scattering cross section, dQ2 = sin 6 dfde is the
infinitesimal solid angle, and @ is the scattering angle. In terms of impact parameter
b introduced in §1 we have o dQ = bdbde. The most difficult problem in seeking a
solution of (9) has been the tackling of the quadratic nonlinear collision term
J(f, f). Among different numerical methods used the DSMC of Bird (1970, 1976)
has been very successful in handling a variety of multidimensional flows in
aerospace engineering. The faithfulness of the Time Counter (TC) strategy of Bird
has always been doubted (Deshpande 1978; Pullin 1974; Yanitskii 1973). For
example, Yanitskii (1973) has shown that the collision-relaxation model of Bird is
not satisfactory in the sense that Bird’s method distorts the actual distribution of
the number of collisions ¢ and further that the method gives a biased value of the
mathematical expectation of g. This bias becomes vanishingly small as the number
of molecules per cell tends to infinity. Further, Deshpande (1976) has pointed out
that while trying to simulate the collision term Bird (1970) suggests that a time
counter be kept for each class of molecules whose velocity vectors fall within v and
v+dv. On the other hand, in all applications of this method to specific flow
problems, a time counter is kept for each cell in physical space, that is, for all
molecules in a physical cell. No analysis is made regarding the possible
approximation involved. Bird (1970) bas observed that the Monte Carlo would be
more directly comparable to the Boltzmann equation if a time counter is kept for
each molecule and suitably advanced. We will show that for faithful simulation it is
not necessary to keep a time counter for each cell'.

The metivation for the Kac-Prigogine based DSMC arose from'the above doubts
concerning the faithfulness of the TC strategy of Bird. The connection between the
master equation and the Boltzmann equation was exploited by Deshpande (1976)
to develop an RCN (random collision number) strategy. The theoretical basis of the
unbiasedness and consistency of the RCN method was studied in considerable detail

* In a private communication with the author in 1976 Bird stated that he no longer speculates on the
possibility of using a separate time counter for each molecule.
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by Deshpande (1978). A modified RCN (MRCN) method was developed by
Deshpande et al (1979) to keep the computing task proportional to the number of
particles by using the sampling tectinique to determine the expected number of
collisions per cell. A considerably simpler and transparent proof of the Kac-
Prigogine-equation=based DSMC method of Deshpande was given by Deshpande
(1982) in a paper at a workshop on Monte Carlo methods. This method was later
extended to multicomponent mixtures by Deshpande (1983). Further, the above
DSMC method was made computationally more efficient by Deshpande & Subba
Raju (1981) by using operator splitting.

[t may be noted here that Belotserkovskii & Yanitskii (1975) were the first to use
the master equation to develop the statistical particle in cell method, termed the
tracer method by Yen (1985). Their method is different from that of Deshpande
(1976) in that Belotserkovskii & Yanitskii (1975) use a time counter while
Deshpande uses the Poisson distribution to draw the allowed number of collisions
in a cell. A review of different DSMC methods is given by Yen (1985) and by Nanbu
(1986). As we shall see later some comments of Nanbu (1986) about Deshpande’s
method are not entirely correct. We shall study here the theoretical basis of the
Kac-Prigogine equation-based DSMC of Deshpande for mono and multicomponent
gases.

3.2 Kac-Prigogine master-equation-based DSMC

We write the Boltzmann equation (9) as

((?f/()t) = ((?f/al)con + (af/ﬁt)col (10)
where

(9f! 3t)con = streaming term = — v - (df/9x), (11)

(df/dt)er = collision term = J(f, f). (12)

Using the operator splitting theory of Yanenko (1971) we construct the solution of
(9) in two steps as:

(3191) = (3f/t)cons [**1 = Ocon (A1) f™ = fr+ At(3flat)on,  (13)
(319t) = (3f1Mcor, f**1 = Ocn(At) 7
= AL (L ), (14)

where f” = velocity distribution at the time level n, and f"*' is the solution
at the intermediate time level. The solution f”“ given by (13) is the solution
when the collision term is dropped and hence will represent the free molecule flow,
while (14) is the solution with only the collision term present and thus represents
the solution of the homogeneous Boltzmann equation. The decoupling between the
collision and streaming is possible due to the splitting and the resultant solution

1 = Ocon(A1) Oco (AL) f1+ O (AP)
Ocoi(At) Ocon (AL) f"+ O (AF), (14a)

is only first-order accurate in time. It is now necessary to develop methods for
solving the split equations or equivalently for constructing the solution operators
Ocon and Ocol'
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The solution operator O, Can be easily constructed as follows. We choose a
sufficiently large box (see figure 6) around a body to approximate the infinite flow
field. The computational domain is then divided into a network of cells (or finite
volumes). the molecules outside the box are assumed to obey the free stream
velocity distribution which in many cases is the Maxwellian distribution defined by
(6). Severai thousands of molecules are distributed initially in the box with their
positions distributed in space and their velocities are uniformly drawn from the free
stream Maxwellian distribution. Once the initialization is over the simulation of
(r%‘f/(‘ﬂr)+v-((7f/(’>'x) = () is done by moving along the characteristics

(df/ds) = (afldr)(di/ds) + (af/ax) - (dx/ds),
(dt/ds) = 1, (dx/ds) = v, (15)

that is, we just move the molecules with their velocities over the time interval Ar.
During this movement the molecules may quit the box, may hit the body and get
reflected. and thus transfer momentum and energy to the body. The various
possibilities are taken care of by developing (1) a subroutinc for influx of
molecules into the box through the boundaries, (2) a subroutine for determining
the intersection of the molecular trajectory with the body surface, (3) a subroutine
for obtaining reflected velocities after impact with the body. and (4) a subroutine
for arranging a molecular list according to the cell numbers they occupy.
Subroutines CONV and ARANG wcre developed by Deshpande et af (1977) and
validated against available results for a cone and cone-cylinder in a free molecule
flow.

3.3 Simulation of collisions

The Markoff process for the simulation of the homogeneous Boltzmann equation
(12) is based on the Kac-Prigogine model

(?PU ] \‘\‘
—_—= = dQ o (Qi. i) g
T VO[|<EF.N ik (Qjx 8ik) 8k
X[Py(t, Vi) = Py(t, V)], (16)
: Lo
! ] 1
T A,
RN AR R b
EEEEEEEEEEENEEENERE u“‘Lx
:g!fifiiiiillliiggiuxwz
‘!lll:llliilI}::llJl{}lN
20L 28L 2L
~

Figure 6. Division of flow ficld for computing flow past a cone.
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where P, is the N-particle velocity distribution function,

!

V= {V[,Vz,...,VN}, V;A = {V|,Vz,...Vj,...Vi(,...VN},
gM = W'—Vk. (17)

The master equation (16) governs the time evolution of the N-particle distribution
due to collisions among N molecules in the cell whose volume is denoted by “Vol”.
One of the very important properties of the Kac-Prigogine equation (16) is that
under the hypothesis of molecular chaos

Py(t, V) = ®(, v)@(t, vp).... 0, a), (18)

where @ (¢, v) is the one-particle velocity distribution function, the master equation
reduces to the Boltzmann equation. Further, the molecular chaos once established
perpetuates in time provided N is very large, and the initfal validity of the chaos is
ensured by taking

Po(to, V) & Fuo(vi) Fu(v2) . ... Fu(v). (19)

F is the free stream Maxwellian defined by (6).
The relationship between the simulation method and the master equation
becomes transparent if we write (16) in the form

(9Po/dt) = B(O = 1) Py(t, V), (20
where

B = number of binary interactions per unit volume per unit
time = SUM/Vol,

sum = > f 8iro(Qr, gir) O, 1)
Isi<rsN

oP,= X3 fP/k (%% gix) Po(V i) dQy, (22)
Isj<k=N ‘

Pix Qe gix) = [gix o (Qi, gix)1/sum, (23)

I = identity operator.

The operator O gives OP, which is the new N-particle velocity distribution after
one collision. Everytime there is a collision the N-particle velocity distribution
undergoes a change (O — I) Py(t, V). As there are B binary interactions per unit
time per unit volume the total change due to them will be B(O-1)P,. Equation
(20) is obtained by equating this change per unit time to dP,/dr. A formal solution
of (20) for a small time interval At is

Py(t+At, V) = exp(- BAY) exp(AtBO) P,
= exp(—BAf) D [(AtBYr]O"Py(t, V). (24)
r=0

Recognizing that
[(AtB)'Ir!]exp(— BA1), (25)
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it follows from (24) that Py(t+ At, V) is the

i i istribution
s a Poisson distri , . | | )
i (t, V) with r obeying a Poisson distribution

ematical expectation of O'Fy
n equal to BAL.
Carlo simulation of the homogeneous Boltzmann equation (12) can
d by the following algorithm:

binary interaction rate B by using (21), which requires relative
e colliding pair, and the differential scattering cross-

math
having 4 mea

The Monte
thus be performé
(a) Calculate the /
velocity for every possibl

tion o (€ 8)- . o
?E; 1DraW(a random variable r from the Poisson distribution exp(— BAf) (BA¢t)/r!

(c) Select a pair of molecules v;, vx and solid angle €, from the probability

distribution pjx (ks gk)- _ |
(d) For the collision partners drawn in step (c) determine the post-collision

velocities v/, v} from collision dynamics and replace v; and vy by vj and v}. The
determination of the post-collision velocities requires the use of (2) which in turn
requires the values of the azimuthal angle & and the scattering angle 6. The latter

can be determined from the dynamics of two-body collision.

(e) Repeat the steps (c) and (d) r times. .
Several comments are in order about the Kac-Prigogine-equation-based DSMC

method. First, step (a) requires the calculation of N. = N(N — 1)/2 pairs of relative
velocities g as j and k run from 1 to N. Hence, theﬂcollision strategy described
above will require an operation count that goes like N-. It is preferable to have an
operation count that goes like N especially when N is large. However, whenever
the number of molecules per cell is very large (as happens when the flow is
collision-dominated) it is possible to cstimate the SUM given by (21) by a sampling
procedure. In order to determine SUM in such a case all that is required is to

randomly draw N pairs g, £2----8N corresponding to partners (i, ry),
(i3, 12) - - - - (ins ry), and then determine SUM by the sample mean Monte Carlo

estimator
N
suM = 3 [ gr(Q, g) dQ. 2

=1
Further, several variance reduction techniques can be employed (importance
sampling, stratified sampling etc.) to construct an estimator for SUM having smaller
variance than for the sample mean estimator (26). The sample mean estimator (26)
is the basis of the MRCN method of Deshpande et al (1979). In summary, the
present DSMC can be easily designed to have an operation count that is linearly
related to the number of molecules in a cell. This point has not been recognised by
Nanbu (1986) in his recent article on “Theoretical basis of the DSMC method”
where he claims that unless the molecular model is Maxwellian, only Bird’s method
and Nanbu’s method modified by Babovsky are of practical use as the computing
task is proportional to the number of particles. This claim as we have seen is not
entirely correct because in the present DSMC method also the computing task is
proportional to the number of particles. Further Nanbu (1986) has stated that
Deshpande (1978) “tried to derive the method from the Kac equation but his
derivation is rather a kind of plausibility argument™. It is difficult to know the basis
of this statement. Unbiasedness and consistency of DSMC of Deshpande were
proven in the report of Deshpande (1978). The analysis of the present paper is the
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same as that of Deshpande (1982) and is much more transparent than the one given
by Deshpande (1978) earlier. The actual calculations of low density flows past a
cone at Knudsen number close to unity (see Deshpande et al 1978) show that the
RCN strategy and the TC strategy of Bird require very nearly the same CPU time
even though the RCN strategy requires an operation count that goes like N? instead
of like N for the TC strategy. This is primarily because the number of operations
required to advance the solution from one time level to the next is dominated by
the convection operator O, and not by the collision operator O, for flows having
Kn = O(1).

The step (a) above requires the calculation of SUM given by (21), and SUM in turn
depends on the intermolecular force law. For rigid sphere molecules

27 rd
f j gbdb de = 7d’g,
( (

) )

where d is the diameter of the molecules. The SUM then is given by

SUM = 7d* YN g (27)
Isi<ysN
For a molecular pair i, j retained for a collision the vector relative velocity- g; is
known. The scattering angle 9 and the azimuthal angle ¢ in (4) are drawn with
uniform distributions from the intervals [0, 7] and [0, 2m]. For these values of g,
6, and €, the post-collision velocities v', w' can then be determined from relations
(2) and (4).
In case of molecules with soft potential having point-centres of repulsion we
have,
F = intermolecular force between two molecules separated by
distance r = a/r’. (28)

Defining the dimensionless impact parameter « by
a = b[mg*/2(s — 1)a]"'v=b

we obtain
gbdbde = K\ g“adade, (29a)
where
®=(s=5)/(s=1), Ky = [2(s — 1)a/m] "D, (29b)
For such molecules SUM reduces to
SUM = mapmu Ky 23 go (30)
I<i<j<N

where ap,, is the cut-off value of the dimensionless impact parameter. The
scattering angle 6 for molecules with soft potentials is no longer a uniformly
distributed random variable. The scattering angle 6 is a function of w given by

6= 72 J " dn (1= 02~ (205 = 1)) ()12, (31)

0
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where 7, is the positive real root of the equation

1-n2=[2/(s = D](m, /ey ™" = 0. 32)
The scattering angle is determined by drawing a random number « uniformly
distributed between [0, @ma]. and then computing 6 by the evaluation of the
integral (31). This integral in general has to be computed numerically, but for some
values of s closed form results are available, e.g. for a Maxwell molecule s = 5, and
(31) reduces to

6= m—2(1-2¢) K(q), (33)

where 1
g* = H{1-1[1+ 2"}
and K(q) is the complete elliptic integral of the first kind (Abramowitz & Stegun

1965). The above detailed algorithm about drawing random numbers g, a or 8, ¢
can be briefly summarized by the simplified expressions for p(£2, g) given by

p(Q, g) = p(8. & g) = (g/2g). for rigid spheres, and
p(Q, g) = pla, & g) = (8/2g") (a/maty,y), for soft potentials.

3.4 An efficient operator-split DSMC

We have now given methods for constructing operators O.on (A1) and O, (Af) used
in advancing the solution in time. The CPU time required depends on the number of
arithmetic operations involved in Ocon(Af) and Oy (Af). For advancing the
solution through two time steps we have to usc the sequence twice, that is,

f”+2 = [Ocnn (AI) Ocol (At)] [Ocun (At) Ocnl (At)] f"~ (34)

which involves two convection and collision operators. On the other hand the
equivalent sequence

f”+2 = Ocol(A[) Ocun (2A[) Ocul (A[) fu’ (35)

involves only one convection and two collision operators. It has been found that the
sequence (35) required about half as much time as required by the sequence (34).
This time saving is due to the following reason. After the convection of molecules is
done the computer code has to arrange the molecular list according to cell
numbers. This arrangement is done by subroutine ARANG. Such an arrangement is
necessary for calling subroutine COLSN which performs collisions cell by cell. The
sequence (35) makes only one call to subroutine ARANG while the sequence (34)
requires two calls. This is the reason for the saving in CPU time when sequence (35)
is used instead of the sequence (34). Table 1 shows a comparison between the CPU
times taken by the two sequences for advancing the solution through two time
steps.

4. Extension of the Kac-Prigogine based DSMC to mixture of gases

Let us consider the binary mixture of two gases denoted by subscripts a and b. The
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Table 1. Comparison of CPU’ times

Subroutines (s) Complete
cycle
Method CONV  ARANG (s)
Sequence (34) 17-8 165-9 195-8
Sequence (35) 15-5 70-9 95-9

' Computer used is CYBER 170/730 system at VSSC,
Trivandrum. The RDP = rate of data processing defined
by the CPU time required to advance the solution through
2A1 per molecule is a measure of the efficiency of the
numerical method. The RDP for the sequence (34) is
0-032's per molecule per 2At, while it is 0-016 s for the
sequence (35).

relevant Boltzmann equations for the one-particle probability density functions
®,(t,x, v) and (1, x, v) are

(0D, /0t) + ¥y - (0D,/9x) = J(®,, ],) +J(D,, D),
(&q)b/(;[) + Vo1 ((7@[,/(7)() = J(d)h’ (Du) +J(q)/‘n (Dh)' (36)

The collision terms J are defined by

Val _WI) X

J(®,, ®,) =n, le,,l —w| o, (0,

[P, (Vi) D, (W)= D, (v,1)D,(w)] dQDw, (37a)
J(®,, ®,) =n, j|v,,| = w[o.,(Q, vy —w|) x

[D, (Vi) Dp(w') - @, (v,1)Dp(w)] dQDw, (37b)
(@, ®,) = n, []v,,l — w0 (Q, Ve —w]) x

[Dp(v) D, (W)~ Dy (vp1) D, (W)] dQDw, (37¢)
(@, @) = n, [lvm = w[op(Q, vy —w)x

[Py (Vi) Py (W) - @y (vp1) Dp(w)] dQDw, (37d)

Here n,, n, are the number densities of species a and b, a,,, o, etc. are
cross-sections for a—a, a~b etc. collisions, and dependence of ®,, ®, on fand x is
suppressed for brevity. The solution of (36) can be constructed in two steps by
adopting the split scheme:

(i) Convection step
Integrate the equations

(0 31) + ¥y - (00,1 3%) = 0, (30,138) + v, - (3Dy/9x) = 0

over small time duration At by moving particles a and particles b with their
respective velocities. This convection of the particles is exactly similar to the
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convection step described earlier for monocomponent gases. We thus obtain the

intermediate solution ®}*', ®}*', and the convection operator Ocon(Af) corres-

ponding to the solution is defined by

il @,
'—_] = Ocnn(Al) ni" (38)
o) @
(ii) Collision step
Next, construct the solution

;! o7
{q)[n+l :l = OC(’l(At) [ (I)EH:I’ (39)

by integrating the homogenous Boltzmann equations
((9@‘,/{91) = ](CD”, q)u) +J((I){“ cbh)a
(0D, /30) = J (D, B,)+J (D), D)), - (40)

over time duration At with ®/*', ®}*" as initial velocity distribution functions.
The solution so obtained will be first-order accurate in time.

The collision operator O, (Ar) for solving (40) is constructed using the
relationship between the Boltzmann equations (40) and the Kac-Prigogine master
equation. We write the master equation for a binary mixture of gases in a box of
volume “Vol™ as

(@Py/at) = J(Py)

1
= V_Ol Is%;:s/v J ‘ VYo = Vuk | (rml(ﬂik: \ Vaj = Vak |) X

[PU(V;I//\W v[)) - P()(V)] dQ,k

1 .
+o- E 2 f 1 Vo) = Vok 1 Uab(ﬂ/'kv ‘ Voj = Yok D X
=1 k=1

[P(’(V;lh/'/\‘) - P()(V)] d‘Q/k

1
+o /Y‘ v hy — Yhk b ik hi = Yhk X -
VOIisT‘éEMJ'v” V/A'“/l(Q,A A\ VIAD
[R)(‘/uv V/’I[/\)——R)(v)] deks (41)

where
V=V, Vol Vi= Vo, Var, ..., VNt
Vi = {Vprs Yoz, ooy Vam),
ak = Vals oo Vi ooy Viga ooty Van),
bk = AVbls ey Viiaoos Vg os Vour),

' — ' i
vubjk - {vulv-", Vajre oo Yans Voplaeeey Vg, oo, v[?M}‘
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Further, o0,,d{); is the differential scattering cross-section for a—a collisior}S,
045 dYy for a-b collisions and so on. In (41) Py(z, V) is a joint probability density
function. An interesting property of (41) is that it reduces to the homogenous
Boltzmann equations (36) under the hypothesis of molecular chaos. For, we then
have

PO(Z’ V) = (Da(t, val)(pa(ta vaZ) e q)a(tv vaN)q)b(t, vbl) X
Dy (1, Vi2) . - (1, Vonr). (42)

Integrating the master equation (41) with respect to all the velocity variables except
Vo1 and observing that

Z Z J dQ | Vi — kalo'bb(ﬂjk: fvbj ~ Yok {) X

1sj<ks<M

[Po(Vas Vi) = Po(V)] D¥ga. ... Dvppy = 0,

we obtain the first of the homogenous Boltzmann equations (36). In establishing
this result we have assumed that N and M are sufficiently large so that

n, = (N=1)/Vol, n,=(M-1)/Vol.

Similarly, integrating the master equation (41) with respect to all velocity variables
except v,; and invoking (42) we obtain the second of the homogenous Boltzmann
equations (36). Thus, under the condition of molecular chaos, we obtain

J((ba., (I)a) +J(q)a, CI)b) = J J(P())Dv,,z e DV,,N DV[,] e DV[,M, (43)
(@, @)+ (®y, D) = J J(Po)DVyy...DVay Dvps... Dvpyr.  (44)

These relations are very crucial to the present DSMC method for a binary mixture.
These relations enable us to tackle the nonlinear Boltzmann equations through the
linear Kac-Prigogine master equation. What is now required for the development
of DSMC is the Monte Carlo game exactly simulating the Kac-Prigogine equation
governing the time evolution of the (N + M)-particle probability density function
Po(t, V).

It may be observed that the equivalence between (40) and (41) requires the
condition of molecular chaos and even though we can ensure its satisfaction at some
initial time by properly sampling the N + M velocity vectors, its validity thereafter
is in general not guaranteed. As time proceeds correlations between velocity
vectors will appear thus destroying the chaos. However, the molecular chaos has
the self-preservation property in the limit of an infinite number of particles. It is
therefore possible to reduce the distortion introduced in the numerical simulation
by choosing sufficiently large N and M in a cell.

The development of the Markoff model for the simulation of the master equation
(41) is very similar to the case of a monocomponent gas. The details of the Markoff
model for a binary mixture are given in Deshpande (1983), only a brief description
is given here.
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5. Markoff model for a binary mixture

For the purpose of developing the Markoff model we introduce the following
probability distributions

Puujk = Putl(njkv Vaj — Vak D = ‘ Vaj — Vuk. ‘ Uaa(ij 1 Yaj = Vak ‘)/Saaa
Suu = .':\_4 .\_ J] Vaj — Vak | Uaa(ijs vaj - vak) d‘Q’jka (45)
1<j<k<N :

Pul)jk = Puh('Q‘/"kv l Vaj — Vbk ]) = l vu/ — Vi l Uuh(‘Q‘jk ’ \ v(lj — Vpk D/Subﬁ

N M

Suh = \._. >_4 J' Vai — Yok ' allb(ij’ 1 Vaj — Vbk I) der’\" (46)
=1 k=1

Pioe = Poi (s | Vioj = Yok D = 1 v = Vo | oon (s |Vij = Vok |)/Spbs

Spp = l i J‘Vl)i_vhkla'h[;(ﬂjky ‘vhj_vbkl) dek- (47)
l<j<k<M

The probability distributions Pk, Pasjk, and Pppy are functions of discrete
variables j, k and continuous variables 6, £. The dependence on 6, ¢ is because of
the dependence of the distributions on Q.

Define operators Ouu Ouwp and O, by

Ouu P()(f, v) = E Z ‘[Pu{ljk(ﬂjkv Vu/'_ Vak |) X

|<j<ks<N
Po(t, Vir) dQ, (48)
N M
OwPot. V) = 2 > JPuhjk(‘ija Vaj_vhkl)x
j=1 k=1
P()(ta V:ijk) dekv‘ (49)

OwPu(t, V)= 2 2 Jthjk(Qjle/)j—thi) X

|<j<k=sM
Po(t, Vippjr) A (50)

These operators give the (N+M )-particle probability density function after one
collision of the type a-a, a-b, and b-b. In terms of these operators (41) can be’
written in the compressed form

(ﬁP(,/ﬁt) = (Buuoau + B(:I)Oab + Bbbohb - BI) P()(l, V), (51)
where B = B, + Bus + Bob» Baa = S../Vol, By, = Su/Vol, By = Spp/Vol, and

I = identity operator. Notice that as collisions are allowed the set of velocity
vectors V changes which in turn causes changes in Su. Sa» and Spp- The variables
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Bou» Bas» Bpy and B therefore change with time. For small values of time duration
At, the variables B, Bq, Bup and By can be treated as constants and we can write
the formal solution of (51) as

Py(t+At, V)
= exp(— BAY) exp[At(BggOua + Ba Oup + Bhbohf;)]Po(L V). (52)

The operators Oy, and Oy, do not commute with O, and consequently
eXp[At(BaaOaa + BubOah + Bbhobb)]
# exp(AtBa,,O,m)exp(AtBa,,O,,b) exp(AtByyOpp)-

It is therefore not possible to develop a simulation in which b-b collisions are
performed first, a-b collisions next and a-a collisions last, or for that matter any
fixed sequence of collisions of various types. Expanding the exponential in (52) we
obtain

P()([‘*’ At, V) = exp(-— BA[) X

[(AtBaaOaﬂ + AtBabOab + AtBthbb)r/r!]PO([v V)

M8

r=0
It is now easy to construct a Monte Carlo estimator for Py(t + At, V). We first draw
a Poissonly distributed random integer 7 with mean BAt and then draw r uniformly
distributed random variables Rf;.... Rf, lying in the interval [0, 1]. We then
construct an operator O according to the following procedure. Define

0=0,0,...0, (53)

where
Ok B3 Ouav if 0< RfA < Btm/B*

Ok = Oups if Bua/B < Rfx < (Buat Bay)!B,
Ox = Opp if (Bua+ Bup)/B < Rfy < L.

Evidently the expectation of O defined by (53) for fixed r is
E{O} = (BuiOuaa + BarOur + By»Obp)' 1B

and hence 0;0,...0,Py(t, V) is an unbiased Monte Carlo estimator for
Py(t+ At, V) in the limit of At — 0.

Now if we have a sample at time t of N+ M velocity vectors, which is a
realization from the ensemble with probability density Py(t, V) then a realization
from the ensemble with probability density Po(f + At, V) can be easily constructed
using the operator sequence (53). We just let O operate on V. The operator O is an
ordered product of 04, ...0, and each of these factors can be any one of the
operators Oy, Oup» Opp- Hence, it is enough for the purpose of letting O operate
on V if we know how transformed samples OV, OupV can be obtained. The
procedure for obtaining the transformed sample consists in drawing a pair j, k of
molecules either of a—a type, a-b type, b-b type, and the azimuth ¢ and scattering
angle 6 are then sampled from the relevant distributions. A collision is then allowed
between the molecules of the pair and precollision velocities replaced by the
post-collision velocities using collision dynamics.

e RS
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In operating Oy, O,, . .. etc. on V the exact order of the various operators has to
be preserved and a-a collisions, a-b collisions etc. cannot be performed in any way
we please without introducing a bias in the estimator. No such ordering is present
for monocomponent gases. The present Markoff model for a binary mixture can be
easily extended to the mixture of several components.

6. Concluding remarks

A direct simulation Monte Carlo method based on the Kac-Prigogine master
equation has been developed for the numerical simulation of the Boltzmann
equation. This method requires the estimation of collision-rate per unit volume.
The operation count required to determine the collision can be linearly related to
the number of particles by resorting to sample mean Monte Carlo estimator. This
fact has not been noticed by Nanbu (1986) in his critique of the method. A
computationally efficient version of the present DSMC has been developed by
employing a suitable sequence of convection and collision operators. Further, the
DSMC has been extended to multicomponent mixtures of gases and it has been
shown that it is necessary to perform the collisions in a certain sequence to obtain
unbiased simulation.

A part of the work reported here was performed for a project supported by vssc,
Trivandrum. The remaining part was completed with support from ISRO through a
new project sponsored through its RESPOND programme. The authors are grateful
to ISRO for their continued financial support and in particular express their
gratitude to Prof. S Dhawan who foresaw the need for the RESPOND programme.
The authors thank Prof. R Narasimha for sustained encouragement, association
and many suggestions made during the course of these projects.
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