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Boltzmann schemes for continuum gas dynamics
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Abstract. Many problems arising in the aerodynamic design of aerospace
vehicles require the numerical solution of the Euler equations of gas
dynamics. These are nonlinear partial differential equations admitting
weak solutions such as shock waves and constructing robust numerical
schemes for these equations is a challenging task. A new line of research
called Boltzmann or kinetic schemes discussed in the present paper exploits
the connection between the Boltzmann equation of the kinetic theory of
gases and the Euler equations for inviscid compressible flows. Because of
this connection, a suitable moment of a numerical scheme for the Boltzmann
equation yields a numerical scheme for the Euler equations. This idea
called the “moment method strategy” turns out to be an extremely rich
methodology for developing robust numerical schemes for the Euler
equations. The richness is demonstrated by developing a variety of kinetic
schemes such as kinetic numerical method, kinetic flux vector splitting
method, thermal velocity based splitting, multidirectional upwind mcthod
and least squares weak upwind scheme.

A 3-D time-marching Euler code called BHEEMA based on the kinetic
flux vector splitting method and its variants involving equilibrium
chemistry have been developed for computing hypersonic reentry flows.
The results obtained from the code BHEEMA demonstrate the robustness
‘and the utility of the kinetic flux vector splitting method as a design tool in
aerodynamics.

Keywords. Boltzmann equation; kinetic schemes for Euler equation; gas
dynamics; computational fluid dynamics; robust numerical schemes.

1. Introduction

Many problems arising in the aerodynamic design of aerospace vehicles require the
numerical solution of the Euler equations of gas dynamics. Some notable examples
are flow past delta wings, flow through ramjet type intakes of missiles, external
supersonic flow around launch vehicles and missiles, and hypersonic re-entry flow.
Generally any flow which is nearly attached (that is, not involving separation of the
thin viscous layer from the body surface) needs the solution of the Euler equations
of motion. These equations also need to be solved in cases of flow problems where
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viscous effects are approximately taken into account by solving the famous boundary
Jayer equations which again require the inviscid solution. Such problems -involve
weak viscid-inviscid coupling. Therefore, constructing numerical schemes for solving
these equations has been one of the principal subjects of research among the CFD
community for the last decade. The Euler equations are nonlinear vector conservation
equations and, further, are hyperbohc These equations are known to admit shocks,
which are known as weak solutions from the mathematical point of view. At the
Euler level, shocks are gas dynamic discontinuities across which the physical variables
density, pressure and temperature, undergo sudden jumps. The challenge in
constructing numerical schemes for solving the Euler equations then lies in correctly
and accurately computing the weak solutions within the framework of the inviscid
approximation. It is therefore highly desirable from the point of view of accuracy
and robustness to design numerical schemes which are conservative and upwind, that
is, which respect hyperbolicity.
Before the advent of the Boltzmann or kinetic schemes, upwinding has been enforced
via flux-vector splitting (see, for example, Van Leer 1982) or via flux-difference
~ splitting (Roe 1981). In the former approach, the flux-vector G is split into two
flux-vectors G* and G~, so that the flux-Jacobians (the Jacobians of G™ and G~
with respect to the conserved vector U) have all-positive and all-negative eigenvalues.
In the flux-difference splitting approach, the domain is divided into cells in each of
which the state is assumed constant. The fluid variables will, in general, be discontinuous
across the cell interfaces. Local 1-D Riemann problems are then solved exactly or
approximately and the solutions of these are used to obtain the numerical solution
of the Euler equations. Both these approaches have to grapple with the nonlinearity
of the Euler equations. The third line of approach employed in constructing
conservative upwind schemes is based on what Deshpande (1986c) calls the moment
method strategy which is based on the fact that the Euler equations are suitable
moments of the Boltzmann equation of the kinetic theory of gases. In some sense,
the Boltzmann equation is more fundamental than the Navier—Stokes equations of
fluid dynamics because the latter follow from the former when the mean free path of
the molecules is much smaller than the characteristic length of the body. In this case,
the velocity distribution function is the well-known Chapman-Enskog distribution.
The Chapman-Enskog theory is intimately connected with the Navier—Stokes
equations, If, on the other hand, the velocity distribution is taken as the Maxwellian
distribution, then the suitable moments of the Boltzmann equation yield the Euler
equations. Several other workers have also exploited this connection between the
Boltzmann and the Euler equations for constructing the Boltzmann schemes (see
Pullin 1980, Rietz 1981, Elizarova & Chetverushkin 1985, Kaniel 1988, Perthame
1990, Croisille & Delorme 1991, and Crosille & Villedieu 1992). One of the major
advantages of dealing with the Boltzmann equation is that it reduces to a linear
partial differential equation (PDE) in the Euler limit (as the collision term vanishes
for the Maxwellian distribution). Designing an upwind scheme for this linear PDE is
very much simpler than for the Euler equations which, as noted earlier, are nonlinear
vector conservation equations. The principal subject matter of the present paper is
to survey several Boltzmann schemes developed by the author and his coworkers
and point out some promising future directions of research into the rapidly growing
-area of Boltzmann (also called kinetic) schemes.
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2. ' Basic theory of Boltzmann schemes

Let us illustrate the basic idea with reference to 1-D unsteady Euler equations
. (0U/ar) + (9G/ox) =0, 1)

where U is the vector of conserved variables, G is the flux-vector and are given by

. p
U=|“u |, . 2
pe
. [ pu ; .
G=| p+pu* |. ' ‘ - A3)
| (pe+p)u |

Here p = mass density, u = fluid velocity, p = pressure, e = total energy per unit mass
=p/[p(y — 1)] + (1/2)u*. Equation (1) can be obtained as the ¥-moment of the 1-D
Boltzmann equation (without the collision term) :

(0F/ot) 4+ v(0F /ox) =0, : “
where F is the Maxwellian veloCity distribution given by
- F=(p/lo)(B/ny*exp[— (v —u)* — (I/I,)] | ®)

B=1/2RT), R=gas constant per unit mass, v= molecular velocity, I = internal
energy variable corresponding to nontranslational degrees of freedom, and

Io=03—y)/[4(y— 1B . (6)
The moment function vector is defined by |
¥ =[1,0,1+ %27 | o

. The Euler equat’ions (1) can then be cast in the compact form

(¥, (0F/dt) + v(dF/dx)) =0, '_ : (8)
where the scalar product (¥, f) is defined ‘by |

(P, /)= Jw dI Jw do¥f (v). 9

, o —w ‘

2.1 KFLIC method

Equation (8) is the basis of many kinetic schemes. One of the earliest schemes called
kinetic-fluid-in-cell (KFLIC) method due to Deshpande & Raul (1982) exploits the
above connection between the Euler equations and the Boltzmann equation. To
obtain the state update formulae for the scheme let us consider 1-D interval a < x < b
which is assumed to be divided into cells. If a particle moves from xeC; to x'eC;
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during time interval At, then this particle will have molecular velocity v = (x' — x)/At.

Hence the mass, momentum and energy transfer from cell C; to C; during At are
given by

Ma(C;»C)=| dx v [F(x, x')/At], | (10)
v Ci v Cj .
Mo(C;—C))= ” dx [ dx'[(x' — x)/At]1[F(x,x")/At], (11)
v G JCy .
En(Ci—-»Cj.) = P dx [ dx'{I, + [(x' — x)*/2At*]} [F (x, x")/At], (12)
where T e '
F(x,x') = p(x)[B(x)/nTt exp{— B)[((x' —x)/At) — u(x)]*}. (13)

At the end of the transport of mass, momentum and energy from all cells C; to the
cell C;, we have "

Ma(C;)= Y. Ma(C;—~C)), Mo(C;)= ), Mo(C;—C)),

alli alli
En(C;) = z En(C;— Cj), (14)
alli
pressure
[
E
© | temperature
(T8
a
E W
L]
-
¢
=1
0
8
a
‘ ‘ Figure 1. Application of KFLIC
U to6 1-D shock propagation pro-

- blem, no. of cells=500 and
X 4 At = 10.
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which are the state update formulae for the method. Deshpande & Raul (1982) have
used the KFLIC method for the 1-D shock propagation problem and the results are
shown in figure 1. A large number of mesh points (500) were required for crisp shock.
The KFLIC method is explicit, unconditionally stable, and first-order accurate in space
and time. It can be regarded as a forerunner of Morton’s characteristic Galerkin
approach (Morton 1985). The method involves double integrals which have to be
computed numerically and, hence, the method is computationally very expensive.
Also, extension to multidimensions involves some problems in dealing with boundary
conditions and keeping track of several possibilities as a particle moves from any cell
to any other cell. Therefore this line of approach is not followed hereafter.

2.2 Kinetic numerical method

A faster version of the KFLIC method is the kinetic numerical method (KNM) which
has the simple state update formula,

Ut = (¥, F"(x, ~ vAt, v, ) (15)

where F"(x;,v,I) is the local Maxwellian at the grid point x; and time level n. Rietz
(1981) was the first one who developed this KNM and applied it to the 1-D shock
problem. Deshpande (1986a) has shown that the KNM satisfies the entropy condition,
upwinding property and has TVD (total variation diminishing) property. For the
purpose of proving that the entropy condition is satisfied, Deshpande (1986a) has
used a slightly modified H function and flux-function H,,

= ”{Flnm [(5—3y)/2(y — 1)]FIn B} dvdl,

H,= f f o{FInF +[(5—3y)/2(y — 1)]FIn B} dvdl, (16)

and has fufther shown that these functions satisfy the cntr‘opy conservation
(0H/ot) + (0H ,/dx) = 0.

Developing higher order accurate versions of KNM is not straightforward. The
difficulty arises due to the fact that the governing equations are (8) and not (4), hence
it is not possible to construct higher order schemes for (8) by taking moments of
higher order schemes of (4). We emphasize that (0F/dt) + v(dF/dx) # 0; in fact

OF OF [dp aﬁ)aF (au 5u> ( o aﬁ)aF

—+v —+v— | —+| =+ Hl—+o— | —=. (17

o ox (at vax)op T\ae T )a T\a oo Jop 7
The right-hand side of (17) is very characteristic of the Chapman—Enskog theory.

Replacing the time derivatives of p, u, f above in terms of space derivatives using
the Euler equations we get

(OF/3t) + v(dF [0x) = PcgF, o | » (18),

where Pz is a polynomial Slmllal‘ to the Chapman- Enskog polynomial and is given
by*

*This polynomlal is exactly the same as the polynomlal that appears when Chapman-Enskog

arfalysis is applled to the one-dlmensmnal BGK model of the Boltzmann equation.
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Peg = (3u/6x) P, + (9B/6x) P, | )
P,=[(3y—5y/2]+ 3 —»[(v—w?2RT] - [4(y—1)*/3 ~ v)](I/ZRT(éé)
Py=5RT(v—~u)—[4(y —D/3 =) H -4~ (0~ u)>. 21)

The polynomial Pg; has the interesting property |

W,PsF)=0. o @

We are now ready to construct the second-order accurate KNM of Deshpande
(19864, b). Start with

U1 = (P, F*H ) = (W, F")+ At [P, (OF"/00)] + (At/2) [, (6* FY/6t2)] + ---.
Using (17) we obtain ’ , |
Ut = (B, F") — At [, 0(0F"/0x)] + AL [, (32 F"/66%)] + -+, 23)
where we have used (18) and (22). For the second derivative 82 F/dt* we have
| (02F/0t?) = — 0(8/8%)(OF3t) + (6/5t)(PCEF) |
= v?(9> F/0x?) — v(08/0x)(Pcg F) + (8/0t)(Pce F).

Substituting the above expression for the second derivative of F with respect to time
in (23) and rearranging we get

Un* L = (W, F(x — vAf)) — (A/2)['Y, v(8/6x) P F1 + O(AF), (24)

which shows that in addition to the F"(x — vAf) term we have one more term
containing the polynomial P.;. Hence the Maxwellian distribution alone will not
yield a second-order accurate KNM. Defining

Jee=FL1 +(At/2)Pg], (25)
(24) can also be recast as ' |
U™ =Y, frp(x — vAD) ]+ O(A®). - ‘ (26)

When (25) is compared with the usual Chapman—Enskog distribution,

fee=FI1—(t/p)P,— (aB*/p)P,],

we observe that the distribution (25) is antidiffusive showing that such antidiffusive
terms are necessary to achieve second-order accuracy. The first-order accurate KNM
given by (15)is very diffusive as many first-order upwind methods are. The antidiffusive
terms cancel this hefty amount of numerical diffusion to achieve second-order
accuracy. Figure 2 shows the density and velocity plots for 1-D shock propagation
problems solved by using the state update formula (26). Slope limiters have been
used to suppress wiggles (Deshpande 1986a). It is observed that the method yields
accurate results with high resolution.
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Figure 2. Computed and exact p and U profiles for shock tube problem with
the antidiffusive Chapman-Enskog ansatz with TvD modification. J = 101,
t,=000041s.

3. The kinetic flux vector splitting scheme

The KNM involves only one numerical integration with respect to the space variable
- and is therefore faster than the KFLIC method. It is tempting to enhance the speed
further by modifying the KNM, and this can be accomplished by reducing its support.
This brings us to the kinetic flux vector splitting (KFVS) scheme of Deshpande (1986b)
and Mandal & .Deshpande (1988). The KFVS method is obtained by splitting the
Maxwellian into two parts corresponding to v>0 and v <0. The flux-vector G
therefore spllts as

=[¥,(v+|v|)/2F] and G~ =[¥, (v — |v|)/2F]. (27)

The split flux-vectors G* and G~ are integrals of vF'¥ over positive and negative
half spaces in velocity v. They can be evaluated m closed form in terms of error
functlons as
puA* + [p/2(np)*1B

G* = (p+pu)A* £ [pu2(=p*1B |, (28)
| (pu + pue)A* + [(p/2) + pel[B/2(np)*]
where ‘

A* =(1terfs)/2, B=exp[—s2] and s =speed ratio = up?t,
In tefms of the split fluxes the Eu]crbeqﬁé‘tions become .

(@U/ot) + (6G* Jox) + (8G ™~ [9x) = 0. (29)
Upwind differencing the split-flux terms in (29) we obtain the first order KFVS scheme

(@U/ot) + (G} — G+"1)/ij1+[(c;;:1 G "/Ax] =0,  (30)
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Substituting for U,G* and G~ in terms of F we get

(©/00(¥, F1) + (1/AX) D, (0 + l)2(F} = F}-,)]
T (1/AXDE, (0= [o])/2(F} . = F1=0,

which is obviously the ¥-moment of the Courant-Isaacson—Rees (CIR) differenced
Boltzmann equation ' .

(OF /oyt + [+ o])y21[(F} — Fj_ AT + [0 = D)/ 2] L(F}, , — F})/Ax] '—-(—301-)

Now an interesting question arises whether the KFVS scheme (30) which is obtained
from (31) remains an upwind scheme after moments are taken. In order to demonstrate
that the scheme (30) obtained by differencing (29) is an upwind scheme, it is necessary
to transform (29) to a symmetric hyperbolic form. Deshpande (1986¢) has shown that
(29) can be transformed to ~

P(3q/ot) + B* (8g/0x) + B~ (0q/0x) =0, (32)

g=[Inp + [Inp/(y — 1)1 — pu’, 2Bu, — 281",

P is a positive symmetric matrix, and B*, B~ are positive and negative symmetric
matrices respectively. It then follows that P~'B* and P™'B™ have real positive and
real negative eigenvalues, respectively, thus justifying the backward differencing of
B (9q/0x) and forward differencing of B~ (9g/0x). It has been found that the eigenvalues
of P~'B* and P~ !B~ are smooth functions of the Mach number (Mandal 1989).
Mandal & Deshpande (1988) have shown that the above KFVS scheme can be made

higher order accurate by following the analysis of Chakravarthy & Osher (1983). For
this purpose we difference (29) as

QU+ [(Gy = Gy VAT =0 o 3

The first-order KFVS given by (30) is obtained by choosing

where ¢ is the transformed vector given by

Gy =L(G;+ Gy, )21+ DG - DG}, )], (34)
where the flux differences DG, , are defined by -
DGE,, = {¥,[(v+ [o])/2)(F;,, — F)} = (G}, — G )2 (35)

Equations (33) and (34) express the KFVS scheme in a flux-difference splitting format
implying that the KFVS scheme can also be looked upon as a flux-difference splitting
scheme. Higher order schemes can now be obtained by modifying the formulae for

G, as ‘ “ »
G, ., =EFS + (1/4)[(1 + $}(DG},, — DG, )+ (1 — ¢)(DG]_, — DG )],
(36)

where the expression for the first order scheme (EFS) is the right-hand side of (34).
The parameter ¢ takes on respectively the values —1 and 1/3 for the second- and

12
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third-order upwind schemes. In order to suppress the spurious wiggles in the solutlon
it is necessary to introduce the modified differences

DGﬁr% = minmod [DG¥, %,R x DG 4] ) (37)
DGJ“LH =minmod [DG¥ +*}’R x DG 3] : (38)

where R is a limiter with 0< R < (3 — ¢)/(1 — ¢) and
minmod[a, b] = [(sgn(a) + sgn(b))/2]min[|al, |b|], (39)
sgn(a)=+1,ifa>0, —1if a<0, 0-0 if a=0-0. . (40)
With these modified differences the formula (36) becomes

6,0, =B + (/AN + DG, — 5G17+%)+(1—¢)(SG;_%_SGJZ=;)%41)

Figure 3 shows the computed density and fluid velocity profiles using the first-order,
second-order and third-order KFVS schemes for which G, ‘3 given by (34) and (41)
are used. The accuracy of the results and the crispness of the shock are evident.

o ’ :
< ’ X 4
(0] 1 L 4 - 1 ! -

(o) 0.1 02 03 0.4 05 0.6 0.7 08 09 1.0

Figure 3. Computed p, u and exact (—) profiles for shock tube problems for
KFVS. First order (A), second order (x) and third order (O).
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4. KFVS applied to multidimensional flows

After having proved the capability of the KFvS method for a 1-D test case it is
necessary to find out how it performs on 2-D and 3-D flows for low subsonic to
hypersonic Mach numbers. Mandal (1989) has applied the high resolution finite
volume KFVS method to the standard test cases of shock reflection and bump-in-a-
channel problems. Figures 4 to 9 show the pressure contours and residue history for
these problems. Mathur & Weatherill (1992) have applied the first order as well as
high resolution KFVs schemes to a variety of 2-D problems with structured and
unstructured meshes. They have used the cell-centred finite volume KFVS method. In
order to use the high resolution KFVS method (which is a must in transonic regime)
on a triangular mesh it is necessary to obtain the fluxes on the edges of a cell using

extrapolation. Consider for example, a cell centre P of a triangular cell whose edges

are shown hatched in I. The problem is to determine the flux on the edge AB in

conformity with the upwinding principle. Let n be the outward normal to AB and ¢
the tangent to the edge. Then applying the usual upwinding criterion we get

Gpp=G"(u,y, Uy) + G (U, 1) (42)

Here we have suppressed the dependence of G* and G~ on density and temperature.

In obtaining G, as above we have used only the data at cell centres 1 and 2. In order to

obtain high resolution KFVS it is necessary to use the data at other neighbouring cell
centres. Mathur & Weatherill (1992) consider the cell centres 13, 14, 15 and 3 and
select that cell centre of this set which is closest to the straight line joining the centres
1 and 2. Assuming that this centre is 15, the flux G, is then obtained by extrapolation
based on G; and G . By using the same criterion G+ can also be obtained. Obviously
to suppress the wiggles minmod operators as explained before need to be used again.
Figures 10 and 11 show typical results obtained by Mathur & Weatherill (1992) for
the flow past an airfoil and flow through a ramp in a channel. They have made
extensive comparisons between the results obtained by KFVS and Jameson’s methods
and concluded that the results obtained using the KFVS method generally compare
favourably with those obtained using the Jameson scheme.

-
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Figure 4. Pressure contours
from 09 to 41 with an interval
of 0-2 for shock reflection pro-
blem at supersonic Mach num-
ber (M, =29, oblique shock
angle = 29°) obtained using first-
order time-marching finite diffe-
rence KFVS scheme.

Figure 5. Pressure contours
from 09 to 41 with an interval
of 0-2 for shock reflection pro-
blem at supersonic Mach num-
ber (M =29, oblique shock
angle = 29°) obtained using (a)
second-order, and (b) third-
order time-marching finite diffe-
rence KFVS scheme.

X first order

DO second order

% third order
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o | ‘ 2
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Pressure distribution at y=105 computed uéing first, second and
third-order time-marching finite difference K¥vs schemes.
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Figure7. Convergence history
for the shock reflection problem
at supersonic Mach number
using first-order time-marching
finite difference KFVs scheme.

Figure8. Convergence history
for the shock reflection problem
at supersonic Mach number
using second-order time-march-
ing finite difference KFvS scheme,

-Figure 9. Pressure contours,

from 065 to 145, with an
interval of 0-025, for supersonic
flow (M, = 1-4) over a 4% thick
circular arc bump in a channel
obtained using (a) first-order,
and (b) high-resolution time-
marching. finite volume XFvs
schemes.
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Figure 11. First (a), second (b), and third (¢) refined meshes and contours of
density. :

Recently Deshpande et al (1992) have developed a 3-D time-marching Euler code
(called BHEEMA) using the KFVS method for computing high speed flows around
hypersonic re-entry configurations consisting of cone-cylinder-flares and control
surfaces. This code uses finite volume method and operates on a hexahedral mesh
generated by using stacked grids. Figures 12 and 13 show the pressure contours for
axisymmetric configuration at M = 4 and & = 2°, and a plot of the pressure coefficient
for the re-entry configuration with wings at M =4 and « = 0°. Based on an elaborate
comparison of the aerodynamic coefficients (C,, Cy, C,, etc.) obtained from BHEEMA
with the wind-tunnel results, they conclude that the time-marching 3-D Euler code

T
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] 1 1 ) 1 1
0 1.6 3.2 4.8 Figure 12. Pressure distribution along blunt
L/D cone-cylinder-flare (with lifting surfaces).

BHEEMA is a reliable design tool for predicting aerodynamic coefficients within 15%.
Recently Deshpande & Dass (1992) have successfully used the convergence acceleration
device called general minimum residual (GMRES) algorithm in combination with
KFVS for obtaining faster convergence.

As a last example of the application of KFVS, mention may be made of the work
of Theerthamalai & Deshpande (1992) who computed hypersonic reacting flow over
a hemisphere using the KFVS method and an equilibrium chemistry model. For this
purpose they considered 5 species (O, N, NO, O,, N,) and 3 reaction models

R;: O, +M=20+M,
R,: N, +M=2N+M,
R,: N, + 0,=2NO.

Here M stands for any one of the 5 species. For a specified y the Euler equations were
solved by BHEEMA for computing density, fluid velocity and temperature, everywhere
in the flow field. Then the chemistry module was used to compute mass fractions,
temperature and y, everywhere in the flow field. The results of the computations reveal
that the drag coefficient for Mach 10, 15, 20 was within 2% of that obtained by using

Figure 13. Iso-pressure contours for the configura-
tion without lifting surfaces. ' '




420 S M Deshpande

PERFECT AR | /

PSTAG /Poe = 32.63
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Tswe /Te = 6.067
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Psg /Pa = 3
AN
EQUILIBRIUM AIR N

TSTAG /Ta, = 6.0
- EQUILIBRIUM AIR

Figure 14. Pressure (a), and temperature (b) contours for reacting flow past a
sphere (M = 5).

the nonreacting perfect gas model. However, the temperature differs substantially.
Figures 14 and 15 show the temperature and pressure contours for M, = 5, 15.

It is therefore reasonable to conclude that the KFVS method has travelled a long
way since its modest beginning in 1982 and is now a fully tested and validated kinetic
upwind method capable of computing inviscid compressible flows past any con-
figuration. : ' '

5. Promising future directions
The search is continuously on for the elusive best method for obtaining numerical

solutions of the Euler equations. The two guiding principles for developing new
methods are that the method be less dissipative as compared to the existing ones

ot
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PERFECT AIR
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TSTAG /Tw = 2342 ,\'
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Figure 15. Pressure (a), and temperature (b) contours for reacting flow pdst a

sphere (M = 15).

and further that it should mimic the physics of the flow as closely as possible. The
development of upwind schemes is a consequence of following the second principle.
We discuss briefly here four new ideas for developing upwind schemes exploiting the
connection between the Boltzrann equation and the Euler equations.

5.1 Use of exponential switch

Considering the 1-D problem again for the sake of demonstrating the idea, we observe
that KFVS is equivalent to assuming that the flux at the boundary B of a cell (see II)

is given by

Se=[(Fr+F)/2] — [(Fr— F)/2]sgn(v).

(43)
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left right
state state

% L E R )
cell B ‘

Here Fg and F, are.the Maxwellians corresponding to the right and left states,
respectively, and sgn(v) is the usual sign function. We now replace the sign function
by the exponential function giving

fo=[(Fx+F1)/2] — [(Fx— F1)/2]exp(— (alo]At)/Ax), for 030,
Jo=[(Fr+ Fr)2]+ [(Fg— F1)/2]exp(— (xlv|At)/Ax), forv<0,  (44)

where « is a nonnegative real number. When the controlling parameter « is zero we
get the standard KFVS scheme, and when « is infinity we obtain the central difference
scheme which has zero diffusion. Thus by continuously varying « we can control the
numerical diffusion in the scheme. Raghurama Rao & Deshpande (1991a) have applied
the above scheme to the 1-D shock tube problem. The results are shown in figure 16
from which it is obvious that the above modification does reduce the diffusion in the
scheme. Further investigation is essential to develop the idea even more. -

52 Kinetic splitting based on thermal velocity

One of the criticisms that may be raised against the KFVS is that the method assumes
the existence of the rest frame as the splitting of the flux requires the division of
velocity space into two halves v>0 and v<0. As the rest frame is physically

12 o
.0 3
3 ~— exdact sojution
0.8 3
] —— KFVS
3 ——w— - exponential switch.
T E KFVS (2=1.9)
£
< 3
s -
= 3
0.4 o
. ‘0'25 A
Q llllllll"llllllllfll]’llllllllilTl‘ril‘lmrrlrllllll|lllllilll .
© 0.2 04 06 o8 1.0 l.2  Figure 16. Results (KFvs) for

X 1-D shock tube problem.
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meaningless it may be a good idea to do the splitting without assuming the existence
of a rest frame. One possibility is to do the splitting based on the thermal (or what
is also called peculiar) velocity. The thermal velocity ¢ appears in the formulae for
pressure, temperature and stress tensors of the kinetic theory of gases, and is thus
physically more meaningful than the variable v. The motion of a molecule can be
thought of as consisting of a random movement with velocity ¢ superimposed on an
orderly motion with velocity u. The random variable ¢ is a Gaussian-distributed
variable if we are dealing with inviscid gas dynamics. It may therefore be rewarding
if a numerical scheme is constructed exploiting the above ideas. For the present we
do splitting based on c¢. Towards this end we write the Boltzmann equation (without
the collision term) in the form

(8F/3t) + u(0F/0x) + c(8F/dx) = 0. (45)

Taking the moments we obtain

(0U/or) + (0G*/0x) + (0G*/ox) = 0, (46)
where
pu 0
G'=w¥Y,F)=| pu* |, and G°=(c¥,F)=| p (47)
peu ' pu

The eigenvalues of the flux Jacobian (0G'/0U) are all u,u,u showing that (0G'/0x)
corresponds to the transport of fluid with velocity u. The eigenvalues of (6G*/dU) on
the other hand are 0, + a[(y — 1)/y]*/* where a i$ the local sonic velocity. The dynamics
of the fluid can therefore be considered as being influenced partly by the particle

_ motion (movement with velocity u) and partly by the wave motion (random movement

or movement of waves with velocity 0, + a[(y — 1)/y]*/?). Loosely speaking the fluid
motion can be considered partly particle-like and partly wave-like. Balakrishnan &
Deshpande (1991, 1992) were the first ones who experimented with numerical schemes
exploiting the wave—particle behaviour of fluid motion. Here we attack the problem
from a different angle, namely, the construction of the Boltzmann scheme by treating
the u and ¢ terms differently. Following Raghurama Rao & Deshpande (1991a, 1992)
we split G* into G** and G*~, defined by

* = (W, [(c+|cl)/21F} and G~ = {®, [(c — |el)2] F}, (48)
which can be simplified as ‘
+ p/2(np)t
Gt = (p/2) + [pu/2(np)*] o (49)
(pu/2)  [1/2(=B)* 1L(p/2) + pe]

Raghurama Rao & Deshpande (1991a, 1992) have solved the 1-D shock tube problem
and 2-D shock reflection problem using the above upwind method (which they term
the peculiar velocity based upwind (PVU) method). Figures 17 and 18 show the results
obtained. The PVU method is found to be much less expensive compared
to the KFVs method. The basic idea of treating uf, and cf, terms in:a different fashion
seems quite sound and definitely needs much more study and testing on a variety of
multidimensional problems. : :
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53 Multidirectional Boltzmann schemes
Many multidimensional upwind schemes advance the solution through a sequence

of one-dimensional operators. The underlying physical model therefore involves wave
propagation only along coordinate directions while the physical situation is that the
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Figure 18. (a) & (b). Shock reflections with PvU method. -
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waves can propagate along all possible directions. Powell & Van Leer (1989) have
observed that the inability to take the physics properly into account leads to a strong
coupling between numerical schemes mentioned above and the grid on which they
operate. Thus there is a need to design grid independent numerical schemes.
Raghurama Rao & Deshpande (1991b) (see also Deshpande & Raghurama Rao 1992)
have developed a genuinely multidimensional upwind Boltzmann scheme. Following
the recent terminology this method can also be called the multidirectional upwind
Boltzmann scheme. '
Consider the Boltzmann equation without the collision term

(f /3t) + v-(9f /%) = 0. (50)

Considering a 2-D flow, the central problem in developing a multidirectional upwind
scheme for the Euler equations (via the moment method strategy) is to develop a
suitable discrete approximation to v,(df/0x) + v,(9f/0x) on the quadrilateral mesh,
a portion of which is shown in III.

The mesh point P is surrounded by eight other mesh points. Particles arrive at P
from all directions and not just along coordinate directions x and y since the molecular
velocities v;, v, vary from — o0 to + co. The problem then boils down to obtaining
a finite difference approximation to v-grad f for each v. Keeping in mind that v-grad
f =v(df/0s), where s = coordinate along v, we can obtain the first-order finite difference
approximation as

v(0f/0s) = v[(fe — fQ)/As], | - (51)

where As = distance between the points P and Q. We notice that on the right hand
side of (51) the difference fp — f, appears instead of f, — fp because particles having
velocity antiparallel to direction s send information to P. A slight rearrangement of
(51) yields

v(0f/0s) = [v(An/As) 1[(fe — fo)/An] = vu[(fp — fo)/An], (52)

where An is the perpendicular distance of P from the segment 12. The next problem
is to calculate f, from the data at the nodes 1,2,...,8. The position of the donor
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Figure 19. Shock reflections with KFvSs (a) and GMBU (b) schemes.

point Q depends on the velocities (v, v,) and could be anywhere on any of the eight
segments 12,23,...,81. Consider the segment 12. Assuming linear variation between
the nodes 1 and 2 the distribution function f, can be computed easily. Raghurama
Rao & Deshpande (1991b) have given all the details involved in interpolation, obtaining
appropriate limits of integration with respect to v,,v,. Of the two integrations they
have been able to perform one, while the other one has to be performed numerically.
Integrations with respect to velocities v,, v, appear in the formulation when we pass
- from (51) to the Euler equations via the moment method strategy. As the resultant
scheme takes into account all possible directions it is aptly called a multidirectional
upwind Boltzmann scheme. They have applied this scheme to the standard shock
reflection problem and the results are shown in figure 19 where the pressure contours
from this scheme are compared with those from the usual KFVS scheme. It is obvious
that the multidirectional scheme has much less smearing. Unfortunately, this scheme
is very expensive and further research is necessary to improve it. Constructing a new
multidirectional scheme using the thermal velocity is an attractive idea.

5.4  Least squares weak upwind scheme

Presently development of Euler solvers on unstructured meshes is mostly limited to
finite element and finite volume based methods. The use of finite difference formulation
on an unstructured grid is still a challenging task. Recently Deshpande et al (1988,
1989) have tackled this problem from a completely different point of view. At the
heart of this formulation is the least squares discrete approximation to the derivatives
~ fy and f, of any function f which in the present case is the Maxwellian velocity
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distribution

f=F=[p/2nRT]exp{—[(v; —u,)*/2RT] ~ [(v; —u,)*/2RT] — [I/I,]}.
(53)

6

Let us consider a part of the triangular mesh shown in IV where the node O is
surrounded by nodes 1,2, 3,... and let x;, y; be the coordinates of the node i. Introduce
the notation

Afl zfi_fm Axi =X Xps Ayi=yi — Yo
The Taylor expénsion gives
Afi= frohxi+ fyhy, i=12,...n. (54)

Thus we have two unknowns f, and /,, and n linear equations. By minimizing the
square of the error

M=

e =
i

(Bf i — froAX: = fL0 AV, | (55)

1

]

we get the least squares approximation
7 = 1AYIP(Ax, Af) — (Ax, Ay)(Ay. A7)
o (AP Ay]? — (Ax, Ay)?

_ 1Ay1*(8y, Af) - (Ax, Ay)(Ax, Af)
|Ax]* Ay |12 - (Ax, Ayy?

, | (56)

5 , 57

where ,
IAx12= . Ax, IAyI?= Y Ay

(x8)= 3 Axdfi, (Ay8)= 3 Ayt (58

The formulae (56) and (57) are only first-order accurate. The second-order accurate
approximations are obtained by replacing Af; in (56) and (57) by Af; defined by

A}:i=Afi”%AxiAfxi_'liAyiAfyi’j'Afxi:'fxo—fxi: Afyizfyo._‘fyi' (59)
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Figure 20. Pressure contours
for shock reflection problem
using least squares upwind
method: first order without (a)
and with (b) rotation; second
order with rotation (c). (Contour
levels 09 to 4-1 at intervals of
0-2)

An upwind scheme for the solution of the 2-D Boltzmann equation

(0f/08) + v,(8f/9x) + v, (9f /0y) = 0, | (60)

can now be constructed using the discrete approximation (56) and (57). For v, >0
and for obtaining discrete upwind approximation to f,, we take the stencil to the

* left of the y-axis, and for v, < O we take the stencil to its right. A similar approach
can be used for obtaining the discrete upwind approximation to f,,. We term this
approach x—y splitting. It is important to note that we can locally rotate the coordinate
system as (56) and (57) are valid for any arbitrary frame. It is possible to reduce the
numerical diffusion in the scheme by locally rotatmg the x, y frame to x’, ¥’ such that
the x'-axis is parallel to the local streamline and the y’-axis is normal to the streamline.
We then do the upwinding for f_, along the x'-axis and take all the nodes around
O for obtaining f,,,. Once (60) is upwind differenced the least squares weak upwind
scheme for the Euler equations can be obtained by the moment method strategy.
The capability of the method has been demonstrated on a 2-D shock reflection
problem. The first-order scheme without rotation (x-y splitting in global frame) and
with rotation (x—y splitting in local frame) and the second-order accurate scheme
with rotation have been applied to this problem. The pressure contours are shown
in figure 20. These plots show that the scheme with rotation even though of first
order captures the shock cnsply The second-order scheme captures the shock even
more crisply.

6. 'Concluding remarks

In this paper, an attempt has been made to survey the tremendous development that
has taken place over the last ten years in kinetic schemes. We have concentrated on
the work done in the field by the author and several of his coworkers; for lack of
time and space, the contributions of other researchers have been only passingly
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referred to. The KFVS scheme and its other variants have made steady progress over
the years from its modest beginning in the early eighties to a mature numerical method
for computing 3-D flows. The richness of the moment method strategy has been amply
demonstrated by considering many possible directions such as wave-particle splitting,
least squares upwinding and multidirectional upwinding.

The work presented in this paper is based on the research work done by several
graduate students at our laboratory and collaborators from research and
development organizations within the country. The author is specially thankful to
J C Mandal, S V Raghurama Rao, A K Ghosh, A K Dass, M Nagarathinam, S Sekar,
R Krishnamurthy, P K Sinha and P S Kulkarni. Financial support obtained from
the Indo-Soviet Integrated Long Term Programme of Coordination in Science and
Technology and the Indo-French Centre for the Promotion of Advanced Research
(IFCPAR)/Centre Franco-Indien pour la Promotion de la Recherche Advancé (CFIPRA)
is gratefully acknowledged.
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