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Abstract

Multi-Criteria Decision Making is an increasingly accegpt®ol for decision
making in management. In this work, we highlight the appiaa of a novel
Multi-Objective Evolutionary AlgorithmNSGA-IIto the risk-return trade-off for
a bank loan portfolio manager.

The manager of a bank operating in a competitive environfaaes the stan-
dard goal of maximizing shareholder wealth. Specificahys attempts to maxi-
mize the net worth of the bank, which in turn involves maximigthe net interest
margin of the bank (among other factors, such as non-iriténesme). At the
same time, there are significant regulatory constraintsgolaon the bank, such as
the maintenance of adequate capital, interest-rate riggsxe, etc.

The Genetic Algorithm based technique used here obtainpximation to
the set of Pareto-optimal solutions which increases thésidecflexibility avail-
able to the bank manager and provides a visualization toafe of the tradeoffs
involved. The algorithm is also computationally efficientdas contrasted with a
traditional multi-objective function - the epsilon-coraiht method.
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1 Multi-Objective Decision-making in Banking

1.1 Multi-Objective Optimization vs. Multi-Criteria Decision M ak-
ing

Multi-Objective optimization is today a well known methaut problems in areas such

as product design, finance, facility planning, etc. In thirky we propose to apply

a novel Multi Objective Evolutionary AlgorithmMISGA-1I(Deb, Agrawal, Pratab, and

Meyarivan 2000) to the risk-return tradeoff problem for amk¢oan portfolio manager.

Classic research in psychology and Multi-Criteria Degidibaking has highlighted
many aspects of the human decision-making process whieh ofguire the simulta-
neous consideration of more than one objective functiote(de1982; Steuer 1986;
Miettinen 1999). Quite often these objectives may be cdflicso that there is a trade-
off between the criteria, and effective solutions will net bnique, but will lie among
a set of “non-dominated solutions” where any particulaeechye cannot be improved
upon without worsening some other. Here we define the baselaigam in bank credit
management in terms of the multiple objectives of return im&ation and risk min-
imization, and apply a novel evolutionary algorithm for aiing the non-dominated
solution set. We compare our results with the traditionaltihubjective method of
epsilon-constraints and show how NSGA-II results in a $ofuthat is both computa-
tionally efficient and also more disbursed along the sotutfeont”. It must be noted
that in both the traditional and the evolutionary methodsdyshe solutions obtained
are only approximations of the exact solutions, which remaeiknown.

Consider the problem as one where we are attempting to nieimiobjectives
fi(X), ..., fm(X) overan univers&. Givenp, q € U, pdominateg if f;(p) < fi(q)
forall i € [1,m]. A solutionp is efficient if for there are no otheX € U such that
X dominateg. The set of such efficent solutions are called the paretorapset, or
the non-dominated front. One of the problems in multiobjectptimization methods
is that the solutions tend to be clustered along a small painieonon-dominated front
(Miettinen 1999). Finding a spread of non-dominated sohgipermits the decision
maker greater flexibility in decision making.

Such situations involving a tradeoff arise quite frequenflor example, industrial
product design may consider a tradeoff between the life abdyrct and its cost, or a
firm may consider a tradeoff between shareholder wealth aci@tal benefits (see the
classic (Zeleny 1982) for many well-characterized exasiple traditional optimiza-
tion practice, it is customary to unify mcalarizethese disparate objectives (for ex-
ample, using lagrangian weighting) into a single objectind then use normal single-
function optimization procedures (see (Ehrgott and Gadedib2000) for an annotated
bibliography). If we wish to obtain a number of points on tlemrdominated front, this
procedure requires as many runs as the number of points. ®attier hand, multi-
point searches such as Genetic Algorithms obtain many goimthe non-dominated
front simultaneously. Also, even for single objective agiation, in problems like
this, where the objective function may be non-linear, tHatgan space is often hard to
characterize, and the derivative may be unknown, so thattemathods are not avail-
able or computationally intractable. A good review of maderethods in traditional
optimization may be found in (Miettinen 1999).



The human decision maker often considers these tradeoéfs implicit manner.
The process of explicitly formulating the problem as a maitteria problem, and the
subsequent possibilities for visualization of the non-@@ted solutions over a wider
range of the solution space permits more lucid decisioningategarding the trade-
offs, and also the queries raised by other interveners irdéusion process. Also,
sometimes small sacrifices in one objective may lead to tnelm@s improvements in
the other - or constraints may be observed which were so farmal to the optimiza-
tion process, thus clarifying the optimization task furth&n excellent discussion of
the human and management aspects of the decision makingssrowy be found in
(Zeleny 1982)

Genetic algorithms (GAs) are search and optimization égms inspired by the
principles of natural evolution. Conceived by John Hollaméarly Sixities (Holland
1975; Goldberg 1989), GAs have been applied to a wide rangeoblems since then,
including, increasingly, applications in multi-objectioptimization. A recent com-
pilation of of various multi-objective genetic algorithman be found in (Deb 2001,
Ehrgott and Gandibleux 2000; Coello 1999). GAs gain thdicieihcy in search and
optimization by searching simultaneously along a set afdtls (called @opulatior),
and scaling up the efficiency of the search by exchangingnmdtion between these
search threads (callectossovey (Goldberg 1989). While theoretical results on the
effectiveness of such methods are limited (e.g. speciaitfoms as in (Vose 1999)),
practical benefits have long endeared these methods to agnedg@ of optimization
practitioners. Multi-objective evolutionary algorithrfdd OEA's) provide the following
advantages over traditional multi-objective tools:

e Since the search front in an evolutionary algorithm tygdicalvolves a popula-
tion, a number of points on or near the pareto-optimal fra@rt be obtained in
a single simulation as opposed to point-by-point methodsaiditional methods
(Rakowska, Haftka, and Watson 1991).

¢ In the novel approach NSGA-II used here, specific care igtakethat the non-
dominated points are not all bunched up in a small part ofritvetf In traditional
MO optimization methods, a uniform set of weight vectors {aectors) does
not guarantee finding a uniformly distributed set of Pamgtimal solutions.

e No a priori knowledge is required of minimizer functions -fact, the function
need not even be analytic.

e Problems of arbitrary dimensionality (any number of objezs) can be handled.

The methodology of the NSGA-II algorithm and its advantagéth respect other
Multi-Objective Evolutionary Algorithms are highlighted section 2.

The growth of multi-objective optimization methods in a &daange of disciplines
has received considerable impetus in recent years fromdistiplinary work that in
the areas of Multi-Criteria Decision Aid and Decision MagiMCDA / MCDM),
which highlights the organizational and human difficultyaentifying a uniform set of
objective criteria for any optimization task. In contrgstlicy aspects (e.g. one banker
has more experience with high-risk loans and has a highst appetite” than another)
result in differing subjective evaluations - and whenebhesse criteria are conflicting -



i.e. no single solution optimizes all the criteria - therestle some trade-off, and these
methods highlight the decision-making benefits of presgmiareto-optimal solutions
in such cases.

1.2 TheMulti-Objective Bank L oan Optimization Problem

The failure of a bank imposes significant negative extetiralilcosts on other eco-
nomic agents) and this is what makes banks unique (James E@8% 1985). This
also makes a case for society to regulate banks more sttiggban other firms, es-
pecially with respect to safety and soundness, monetaigypatedit allocation, con-
sumer and investor protection, and entry and charteringth@rother hand, like any
other firm, the bank also maximizes shareholder wealth. THzds to some unique
tradeoffs in bank management. For instance, in order tomiga interest rate risk,
banks must match maturities / duration (average maturifygssets and liabilities.
However, usually with a positively sloped yield curve, lergllong term maximizes
interest income and borrowing short term minimizes inteexpense; thus balancing
average maturities is contrary to maximizing net intereatgim. Considering the en-
tire balance sheet of the bank, the situation gets more ampDepending on the
interest rate risk exposure (and other sources of risk) prek is required to hold a
certain level of capital. This again, is contrary to maximgshareholder wealth.

In this paper however we focus on a simpler tradeoff, i.e. rible-return trade-
off faced in loan portfolio management. We use a simpler fofrthe return model,
and show how NSGA-II results in computationally efficiemnttuitively valid non-
dominated solution points.

2 Genetic Algorithms and Multi-Objective Optimiza-
tion

Over the past decade, a number of multi-objective evolatipmlgorithms (MOEAS)
have been suggested (Fonseca and Fleming 1993; Horn, Niafpemnd Goldberg
1994; Knowles and Corne 1999; Srinivas and Deb 1995; Zitafet Thiele 1998;
Ranijithan, Chetan, and Dakshina 2001). The primary reasothfs is their ability
to find multiple non-dominated solutions in a single simigiat Since the principal
reason why a problem has a multi-objective formulation isguse it is not possible to
have a single solution which simultaneously optimizes bjéotives, an algorithm that
gives a large number of alternative solutions lying on orrriba Pareto-optimal front
is of great practical value.

In the following, we discuss one such multi-objective EA —niNslominated sort-
ing genetic algorithm (NSGA-II), which is used in the simida studies of this paper.
The details of three main operations — non-dominated gprtensity estimation and
the crowded comparison operator — are given below. Moreildatay be found the
original study (Deb, 2001). It will suffice here to mentioratlthe non-domination ap-
proach used here is computationally the fastest procedp@ted so far. The density
estimation procedure is also computationally fast, inv@vobjective-wise compar-
isons of solutions, thereby making the procedure easilgredable to higher objective



problems. The crowded comparison operator requires minitfmange in an existing
pair-wise tournament selection opeartor yet allows NSG#-lachieve both tasks of
progressing towards the Pareto-optimal front and maiirtgia diverse set of solutions.

2.1 NSGA-II Algorithm: The main loop

Initially, a random parent populatioh, is created. The population is sorted based on
the non-domination. Each solution is assigned a fitnessl| ¢guis non-domination
level (1 is the best level). Thus, minimization of fitnessdswmed. Binary tournament
selection, recombination, and mutation operators are teseckate a child population
Qo of size N. From the first generation onward, the procedure is differ€he elitism
procedure fot > 1 and for a particular generation is shown in the following:

Ry = P, UQ, combine parent and children population
F =fast-nondom nat ed- sort ( Ry) F = (F1,Fs,...), all non-dominated
fronts of R,

Py =0
until |Pyyq| < N till the parent population is filled

crowdi ng- di st ance- assi gnment ( F;) calculate crowding distance if;

P =P 1 UF; includei-th non-dominated front in the parent pop
Sort(Pyy1, <n) sort in descending order using,
Piy1 = Pyq[0: N choose the first N elements &%
Q++1 =make- new pop( P;11)  use selection, crossover and mutation to create
t=t+1 a new populationd) ;1

First, a combined populatioR; = P; U (), is formed. The populatio®; will be
of size2N. Then, the populatio®; is sorted according to non-domination. The new
parent populatior;, ; is formed by adding solutions from the first front till the siz
exceedsN. Thereafter, the solutions of the last accepted front areedaccording
to <, and a total ofV solutions are picked. This is how we construct the poputatio
P;.4. This population of sizéV is now used for selection, crossover and mutation to
create a new populatio); ., of size N. Itis important to note that we use a binary
tournament selection operator but the selection criteisomow based on the niched
comparison operatog,, .

2.2 A Fast Non-dominated Sorting Procedure

In this approach, every solution in a GA population is chelckéth a partially filled
population for domination. To start with, the first solutifsom the population is kept
in a setP’. Thereafter, each solutign(the second solution onwards) is compared with
all members of the seP’ one by one. If the solutiop dominates any membaerof

P', then solutiony is removed fromP'. This way non-members of the non-dominated
from get deleted fromP’. Otherwise, if solutiorp is dominated by any member of
P’, the solutionp is ignored. If solutiorp is not dominated by any member &%, it

is entered inP’. This is how the seP’ grows with non-dominated solutions. When



all solutions of the population is checked, the remainingniners of P’ constitute the
non-dominated set.

fast - nondom nat ed-sort ( P)

P ={1} include first member iP’

foreachpe PAp & P’ take one solution at a time
P'=P'U{p} includep in P’ temporarily
foreachg e PPAqg#p comparep with other members of’

if p < q,thenP’ = P'\{q} if p dominates a member @', delete it
else ifg < p, thenP’ = P'\{p} if p is dominated by other members Bf,
do notincludep in P’

To find other fronts, the members 6f will be discounted and the above procedure is
repeated.

2.3 Density estimation

To get an estimate of the density of solutions surroundingiqular point in the
population we take the average distance of the two pointdtbereside of this point
along each of the objectives. This quantify,;.... Serves as an estimate of the size
of the largest cuboid enclosing the pointvithout including any other point in the
population (we call this therowding distancg In Figure 1, the crowding distance of
thei-th solution in its front (marked with solid circles) is theeaage side-length of the
cuboid (shown with a dashed box). The following algorithnuéed to calculate the

fa
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o

Figure 1: The crowding distance calculation is shown

crowding distance of each point in the get

crowdi ng- di st ance- assi gnnment ( Z)

l=17| number of solutions il
for eachi, setZ[i]istance = 0 initialize distance
for each objectivg € [1,m]
7 =sort(Z, ) sort using each objective value
T aistance = L[ aistance = 00 so that boundary points are always selected



fori=2to(l—1) for all other points
Z[i]distance = I[i]distance + (Z[Z + 1]] - I[Z - 1].7)

HereZ[i].j refers to thej-th objective function value of théth individual in the
setZ. The complexity of this procedure is governed by the sorétgprithm. In the
worst case (when all solutions are in one front), the sorteguiresO(mN log N)
computations.

2.4 Crowded comparison operator

The crowded comparison operatok,() guides the selection process at the various
stages of the algorithm towards a uniformly spread-out tBawptimal front. Let us
assume that every individualn the population has two attributes.

1. Non-domination ranki{qx)
2. Local crowding distance {;s:ance)

We now define a partial ordet,, as :

i <n 7 |f (irn,nk < jrrz,nk) or ((irn,nk‘, = jrrz,nk) and édista,nce > jdisf,ance) )

That is, between two solutions with differing non-domioatranks we prefer the
point with the lower rank. Otherwise, if both the points beddo the same front then
we prefer the point which is located in a region with lessember of points (the size
of the cuboid inclosing it is larger).

Let us now look at the complexity of one iteration of the emtigorithm. The
basic operations being performed and the worst case coitipteassociated with are
as follows:

1. Non-dominated sort i©(mN?),
2. Crowding distance assignment¥mN log N), and
3. Sorton<,, iIsO(2N log(2N)).

As can be seen, the worst-case complexity of the above #igois O(mN?). where
N is the population size and the number of objectives isAt most N points along the
pareto-optimal front are identified by the algorithm so tbenplexity of the algorithm
is directly a function of the accuracy to which the paretdiopl front s to be identified
(N).

3 Modeéling the Risk-return tradeoff

What are the decision variables for the loan portfolio mamagrhe primary decision
made by the portfolio manager is regarding the allocatiomoahs in the different
categories, oloan allocation In addition, he may also make decisions regarding the
interest rates to be charged for loans in different categoii particular, the quantity of
loans demanded in a particular category may be influenceldeinterest rate charged.
This latter consideration is often not very important inditeonal banking practice



where in the short run, this demand curve for loans is comsitl®o be inelastic - i.e.
the volume of loan applications remains unchanged irreégeeaf the interest charged.

In the first model below, the decision variables for the pwitf manager is the
loan allocation. GivernV loan categories or tranches (e.g. “AAA’, “BBB”, etc.), with
interest rated?; what fraction of loansX; should be allocated in each category?

In the second model, the demand for loans is not inelastit tlag total loan ap-
plications received in categoiyis assumed to have an upper bound, which is a nega-
tively sloped function of the interest rat&. Thus the loan manager faces a negatively
sloped demand curve for loans, and he needs to allo€agibject to this additional
constraint. However, it is clear that i; is far below this bound, then it is more ef-
ficient for him to charge a higher intereBf for the category, such that his return is
higher for the same allocatiof;. This implies that in an equilibrium model th€;’s
will settle to a value close to the bound imposed by the loanai® function. This
in turn implies that the loan manager’s primary decisionafale is the interest rate,
which then, given a loan demand function, determines the ddlacationx;.

3.1 Traditional models- allocation under inelastic demand

In traditional banking each loan was considered sepatdtaled on their credit-risk
worthiness, evaluated on their credit history, defauk,riguality of return and other
traditional measures. Based on Portfolio Theory, one assuimt the loan portfolio
manager applies the idea of diversification to the Loan pbetas well.

The Modern Portfolio Theory (MPT) (Elton and Gruber 1998)d=l of Credit
Risk (Saunders 1999) assumes that individual asset retwensormally distributed.
An alternate assumption may be that loan portfolio managengbit quadratic utility
preferences. Both these assumptions lead to models foetherand risk on a given
loan portfolio. One model of risk, based on the Black-Sciderton model, consid-
ers the borrower’s incentive to pay back as positive so Isthe value of his assets
beyond a certain date exceeds the loan amount. This leadslist@ance from default”
model of Credit Risk based on the difference between totdtasand loan amount as a
function of the annual volatility in value or the standardiddion in the firms’ equity.
Applying such metrics to a portfolio leads to very complexdals requiring individual
borrower information. In this work, we adopt a simpler modg&portfolio credit risk
based on the standard deviation of the return over the qutir#olio.

Return

Mean return on portfolid?, = weighted average of the retuff) on the individual loan
categories 2 X; R;, whereX; is the proportion of total loans allocated to thth cate-
gory. The return is determined by other factors such as tinegaate, processing costs,
expected default rate, probability of unexpected losses,le our partial equilibrium
analysis, we assume these factors to be external to theiaption task, and therefore
the returnR; is the interest rate charged on the loan categdegs some constant, and
thus maximizing the return is equivalent to maximizing thiefest income.



Table 1: Interest rates charged for loan risk categories

Loan Cat | BenchmarkRk; More Risk-Averse Less Risk-Averse
1 (AAA) 4.0 3.75 4.25

2 (AA) 45 4.25 45

3 (A 5.5 5.5 5.25

4 (BBB) 7.0 7.25 6.75

5 (BB) 8.0 8.25 7.5

6 (B) 8.5 9.0 8.0

7 (CCC) 10.0 11.0 9.25

Table 2: Standard Deviatiarn; on returns of loans in categoty
1(AAA) 2(AA) 3(A) 4(BBB) 5(BB) 6(B) 7(CCC)
g 0.06 0.17 1.56 3.37 8.63 12.84 22.67

Risk
A number of measures are today used for measuring risk in ticpkar credit port-

folio (Altman and Saunders 1997; Leland 1998; Shearer 1895 is assumed to be
correlated to the standard deviation of returns on the pliotf

U; = Z()(Z'QUZ'Q) + Zi7 Z7()(2)(70—17)

whereo;; is usually approximated as correlatipyo;o;. If the correlation is negative,
say, then the portfolio manager can increase the correspgradlocation to reduce
overall risk exposure.

Note the additional constraint

X =1

arising from the fact that th&’; are fractional allocations of the total sum.

M ulti-Objective Optimization M odel

The optimization model for the allocation under inelastarthnd case is as follows:
e f1(): Maximize mean return on portfoli® + p
¢ f>(): Minimize variance on returm,

e Variables: assetX; in each set of credit risk classes with given interest réges
(return).

[ ] (Tp2 = E,;Xﬁ()‘,f + E,ijXinpij(TiO'j,
wherep;; = correlation between returns on i-th and j-th assets.



Table 3: Coefficient of correlatiop;; matrix

LoanCat | 1(AAA) 2(AA) 3(A) 4(BBB) 5(BB) 6(B) 7(CCC)
1 (AAA) 1 045 045  0.45 0.15 0.15 0.15
2 (AA) 0.45 1 0.45  0.45 015 0.5 0.5
3 (A 0.45 0.45 1 0.45 015 0.5 0.5
4 (BBB) | 0.45 0.45  0.45 1 015 0.5 0.5
5 (BB) 0.15 015 0.15  0.15 1 035  0.35
6 (B) 0.15 015 0.15  0.15 0.35 1 0.35
7 (ccc)| 015 015 0.15 0.15 035 0.35 1

For developing the test case we use data from the Creditddetiechnical Doc-
ument!. Seven loan categories (AAA, AA, A, BBB, BB, B, CCC) were usadth

interest rates, standard deviation of returns, and cros®lations as given in tables 1,
2,and 3.

GA Run parameters

All the runs used binary version of NSGA-II with 7 bits alldteo each variable making
each solution a 49 bit string. The mutation rate was fixed @2 . 1/49) and the
crossover rate was 0.9. All the simulations were run for 180egations.

Before evaluating the fitness, the x-values of each soluias mormalized to take
care of theX; X; = 1 constraint.

3.2 Elastic Loan Demand M odd

In this model, we assume that the amount of loan applicatieasived in a given
loan category is a function of the interest rate charged.icBly this loan demand
function is negatively-sloped - i.e. the demand falls ashbignterests are charged.
Traditionally loan managers have not been concerned withidhn elasticity since
demand for loans typically outstripped supply and applisamere available at most
realistic interest rates. However, this results in a skewarformance - loan officers
charging higher interest rates are modeled with bettermstsince this does not reflect
on volumes. Furthermore, with increased access to infoomaind mobile assets, and
also with risk-based loan pricing at banks, the customer mergasingly prefer to go
to cheaper sources of loans.

However, the precise structure of this function is a mattesome uncertainty. This
is particularly so because empirical identification of laemand or supply functions is
made difficult since only the actual intersection of theseesiis observable, and also
because of the large number of extraneous factors (sucHlagadn rate, time, GNP,
etc.) which affect this function. However, there is some gitgl evidence for a linear
model of the loan demand as a function of the interest ratetle@&NP (Hulsewig,
Winkler, and Worms 2001), based on which we have also assartieear function for
the loan interest rate.

1CreditMetrics Technical Document, JP Morgan, April 1997
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11



9 T T
Benchmark o
e High Risk +
Low Risk ©

Return

75

65 | | | | | | | |
0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
Risk

Figure 3: Results for Model 1 (Inelastic Demand for Loans)IR& (120 points)

As observed earlier, the demand function provides the baittk tre maximum
applications possible in a loan categargharging interest rat&®;. The loan portfo-
lio manager can still optimize his allocations in each catggo as to optimize his
risk-return tradeoff. However it is clear that a better ratgan be obtained in those
categories where the actual allocation is less than the démhbere the interest rate
can be raised a bit until the demand drops to precisely that, lthus increasing return
for the same allocation. In an equilibrium situation then@aanager would have ad-
justed his interest rates to match this, and hence we sipthif model by keeping only
the interest rates as the decision variables for the loaragem given these interest
rates and a loan demand functidh = f(R;), the actual allocationX; are directly
identified. The results for this model are presented for fetpn sizes of 30 and 60 in
figures 4 and 5 respectively.

For the NSGA-II run, the independent variables were the@serates?; and from
these the allocatioX; is calculated based on a demand functipn= %R, + 200
where(); is the quantity allocated in loan categargnd the corresponding allocation
is obtained by normalizing thisY; = @);/X@);. The initial values for the interest rates
R; are randomly seeded from the range [4,12] to obtain the teptdsented.

3.3 Comparison with traditional MO approaches

Traditional Multi-Objective optimization techniques easally reduce the multi-objective
problem to a single objective problem in such a manner thel eptimum point is

12
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guaranteed to lie on the pareto-optimal front. A separatiopation run is needed for
each desired point on the front. The algorithm is even sldftbkere are more than two
objectives, Furthermore, it is difficult to pre-determirmhthese points will be spread
out along the front, and the main problem in most of these @ggires (and in many
MOEAYS) is that the points are bunched up over a small parthefdareto-frontier.
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Risk

Figure 6: Comparative pareto-optimal fronts obtained by &w by epsilon method .

One of the popular non-evolutionary methods is the epsilmmstraint approach,
which converts the problem into a one-dimensional one bipnewlating some of the
objectives as constraints. For example, fd?alimensional probleml) — 1 objectives
are reduced to constraints. Thus in our case, we can minifjiges.t. fo() < e
where a different;, is chosen for each pareto- point. Unlike some other tradtio
methods, this approach does not require the normalizafidgheoobjectives, but the
epsilon vectors need to be chosen carefully, often withigdantndsight. In our case,
we have chosen the a set of 10 epsilon vectors from the rar@arefo points obtained
using NSGA-II which results in a far more uniform distribani than would have hap-
pened in ab initio search. Even then, one can see that mdw ebtutions are bunched
towards the lower-risk end of the spectrum. We have used plsisingle-objective
GA (and not NSGA-II) as our optimization method.

Note that the pareto-frontier itself is quite strongly daied by the high degree of
overlap between these two approaches.

14



4 Conclusion

In this work, we have presented the application of a novdlftmanulti-objective opti-
mization problems in finance. The method permits one to haameyrariteria, does not
require any prior knowledge of the optimizer functions, aath generate a complete
pareto-optimal front in a single simulation run.

The problem addressed is that of the risk-return tradeoffank loan portfolio
management. This problem is well known in the literature e equiring a possible
multi-objective formulation. One of the models for conwegtit to a single objective
is to hypothesize a tsingle combination - e.g. return petrnigk - which is to be max-
imized. One such measure is the Sharpe Ratio (Saunders -19999imize“?'ﬁ,if)
where R; is the risk-free interest, and, is the standard deviation on return for the
portfolio. Any such combination however, is in the final aysd$ subject to discussion
and criticism by other decision makers and it is always arfullgdternative to have
a number of solutions, and to be able to visualize and disthese (at least in the
two-objective scenario) which is what is provided by thislto

In the coming years, as banks enter an era of even tightefategy constraints,
and also face greater competitive pressures from wideedisgation of information,
new modalities like internet banking, and greater fluidifyaesets worldwide, it will
be necessary to deploy more and more decision making todlauit them to match
the needs of a wider group of people. At the same time, it iardleat the tool de-
veloped here, which is standalone, will need to be used irermieractive ways by
the Decision Makers so that situations involving more thvemtariables can be sliced
along appropriate sections for better visualization, tampowering the DM with new
tools which were hitherto not within reach.

One of the problems that we hope to focus on next is one of inat®doncern
to the banking community. One of the modern requirementsainking practice is
to minimize the interest-rate risk exposure of the bankallgein order to maximize
their immediate net worth, banks want to minimize the amafrtapital they hold
and would like to have no constraints on the amounts of ista@ge sensitive assets
(IRAs) and interest-rate sensitive liabilities (ISLs)yH®ve on their balance sheets. In
practice, since interest rates rise with duration, it is htlesirable to hold long-term
loans (IRAs) and short term deposits (ISLs) - but this is éyalee kind of mismatched
portfolio that would be subject to severe risk under interate fluctuations. We believe
the multi-objective MOET approach may be one of the bessttmhddress this type
of problem in practice.
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