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Abstract

Multi-Criteria Decision Making is an increasingly accepted tool for decision
making in management. In this work, we highlight the application of a novel
Multi-Objective Evolutionary Algorithm,NSGA-IIto the risk-return trade-off for
a bank loan portfolio manager.

The manager of a bank operating in a competitive environmentfaces the stan-
dard goal of maximizing shareholder wealth. Specifically, this attempts to maxi-
mize the net worth of the bank, which in turn involves maximizing the net interest
margin of the bank (among other factors, such as non-interest income). At the
same time, there are significant regulatory constraints placed on the bank, such as
the maintenance of adequate capital, interest-rate risk exposure, etc.

The Genetic Algorithm based technique used here obtains an approximation to
the set of Pareto-optimal solutions which increases the decision flexibility avail-
able to the bank manager and provides a visualization tool for one of the tradeoffs
involved. The algorithm is also computationally efficient and is contrasted with a
traditional multi-objective function - the epsilon-constraint method.
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1 Multi-Objective Decision-making in Banking

1.1 Multi-Objective Optimization vs. Multi-Criteria Decision Mak-
ing

Multi-Objective optimization is today a well known method for problems in areas such
as product design, finance, facility planning, etc. In this work, we propose to apply
a novel Multi Objective Evolutionary AlgorithmNSGA-II(Deb, Agrawal, Pratab, and
Meyarivan 2000) to the risk-return tradeoff problem for a bank loan portfolio manager.

Classic research in psychology and Multi-Criteria Decision Making has highlighted
many aspects of the human decision-making process which often require the simulta-
neous consideration of more than one objective function (Zeleny 1982; Steuer 1986;
Miettinen 1999). Quite often these objectives may be conflicting so that there is a trade-
off between the criteria, and effective solutions will not be unique, but will lie among
a set of “non-dominated solutions” where any particular objective cannot be improved
upon without worsening some other. Here we define the basic problem in bank credit
management in terms of the multiple objectives of return maximization and risk min-
imization, and apply a novel evolutionary algorithm for obtaining the non-dominated
solution set. We compare our results with the traditional multi-objective method of
epsilon-constraints and show how NSGA-II results in a solution that is both computa-
tionally efficient and also more disbursed along the solution “front”. It must be noted
that in both the traditional and the evolutionary methods used, the solutions obtained
are only approximations of the exact solutions, which remain unknown.

Consider the problem as one where we are attempting to minimizem objectivesf1(X); : : : ; fm(X) over an universeU . Givenp; q 2 U , p dominatesq if fi(p) < fi(q)
for all i 2 [1;m℄. A solutionp is efficient if for there are no otherX 2 U such thatX dominatesp. The set of such efficent solutions are called the pareto-optimal set, or
the non-dominated front. One of the problems in multiobjective optimization methods
is that the solutions tend to be clustered along a small part of the non-dominated front
(Miettinen 1999). Finding a spread of non-dominated solutions permits the decision
maker greater flexibility in decision making.

Such situations involving a tradeoff arise quite frequently - for example, industrial
product design may consider a tradeoff between the life of a product and its cost, or a
firm may consider a tradeoff between shareholder wealth and societal benefits (see the
classic (Zeleny 1982) for many well-characterized examples). In traditional optimiza-
tion practice, it is customary to unify orscalarizethese disparate objectives (for ex-
ample, using lagrangian weighting) into a single objectiveand then use normal single-
function optimization procedures (see (Ehrgott and Gandibleux 2000) for an annotated
bibliography). If we wish to obtain a number of points on the non-dominated front, this
procedure requires as many runs as the number of points. On the other hand, multi-
point searches such as Genetic Algorithms obtain many points on the non-dominated
front simultaneously. Also, even for single objective optimization, in problems like
this, where the objective function may be non-linear, the solution space is often hard to
characterize, and the derivative may be unknown, so that exact methods are not avail-
able or computationally intractable. A good review of modern methods in traditional
optimization may be found in (Miettinen 1999).
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The human decision maker often considers these tradeoffs inan implicit manner.
The process of explicitly formulating the problem as a multi-criteria problem, and the
subsequent possibilities for visualization of the non-dominated solutions over a wider
range of the solution space permits more lucid decision-making regarding the trade-
offs, and also the queries raised by other interveners in thedecision process. Also,
sometimes small sacrifices in one objective may lead to tremendous improvements in
the other - or constraints may be observed which were so far external to the optimiza-
tion process, thus clarifying the optimization task further. An excellent discussion of
the human and management aspects of the decision making process may be found in
(Zeleny 1982)

Genetic algorithms (GAs) are search and optimization algorithms inspired by the
principles of natural evolution. Conceived by John Hollandin early Sixities (Holland
1975; Goldberg 1989), GAs have been applied to a wide range ofproblems since then,
including, increasingly, applications in multi-objective optimization. A recent com-
pilation of of various multi-objective genetic algorithmscan be found in (Deb 2001;
Ehrgott and Gandibleux 2000; Coello 1999). GAs gain their efficiency in search and
optimization by searching simultaneously along a set of threads (called apopulation),
and scaling up the efficiency of the search by exchanging information between these
search threads (calledcrossover) (Goldberg 1989). While theoretical results on the
effectiveness of such methods are limited (e.g. special functions as in (Vose 1999)),
practical benefits have long endeared these methods to a widegroup of optimization
practitioners. Multi-objective evolutionary algorithms(MOEA’s) provide the following
advantages over traditional multi-objective tools:� Since the search front in an evolutionary algorithm typically involves a popula-

tion, a number of points on or near the pareto-optimal front can be obtained in
a single simulation as opposed to point-by-point methods intraditional methods
(Rakowska, Haftka, and Watson 1991).� In the novel approach NSGA-II used here, specific care is taken so that the non-
dominated points are not all bunched up in a small part of the front. In traditional
MO optimization methods, a uniform set of weight vectors (or�-vectors) does
not guarantee finding a uniformly distributed set of Pareto-optimal solutions.� No a priori knowledge is required of minimizer functions - infact, the function
need not even be analytic.� Problems of arbitrary dimensionality (any number of objectives) can be handled.

The methodology of the NSGA-II algorithm and its advantageswith respect other
Multi-Objective Evolutionary Algorithms are highlightedin section 2.

The growth of multi-objective optimization methods in a broad range of disciplines
has received considerable impetus in recent years from interdisciplinary work that in
the areas of Multi-Criteria Decision Aid and Decision Making (MCDA / MCDM),
which highlights the organizational and human difficulty ofidentifying a uniform set of
objective criteria for any optimization task. In contrast,policy aspects (e.g. one banker
has more experience with high-risk loans and has a higher “risk appetite” than another)
result in differing subjective evaluations - and whenever these criteria are conflicting -
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i.e. no single solution optimizes all the criteria - there must be some trade-off, and these
methods highlight the decision-making benefits of presenting pareto-optimal solutions
in such cases.

1.2 The Multi-Objective Bank Loan Optimization Problem

The failure of a bank imposes significant negative externalities (costs on other eco-
nomic agents) and this is what makes banks unique (James 1987; Fama 1985). This
also makes a case for society to regulate banks more stringently than other firms, es-
pecially with respect to safety and soundness, monetary policy, credit allocation, con-
sumer and investor protection, and entry and chartering. Onthe other hand, like any
other firm, the bank also maximizes shareholder wealth. Thisleads to some unique
tradeoffs in bank management. For instance, in order to minimize interest rate risk,
banks must match maturities / duration (average maturity) of assets and liabilities.
However, usually with a positively sloped yield curve, lending long term maximizes
interest income and borrowing short term minimizes interest expense; thus balancing
average maturities is contrary to maximizing net interest margin. Considering the en-
tire balance sheet of the bank, the situation gets more complex. Depending on the
interest rate risk exposure (and other sources of risk), thebank is required to hold a
certain level of capital. This again, is contrary to maximizing shareholder wealth.

In this paper however we focus on a simpler tradeoff, i.e. therisk-return trade-
off faced in loan portfolio management. We use a simpler formof the return model,
and show how NSGA-II results in computationally efficient, intuitively valid non-
dominated solution points.

2 Genetic Algorithms and Multi-Objective Optimiza-
tion

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs)
have been suggested (Fonseca and Fleming 1993; Horn, Nafploitis, and Goldberg
1994; Knowles and Corne 1999; Srinivas and Deb 1995; Zitzlerand Thiele 1998;
Ranjithan, Chetan, and Dakshina 2001). The primary reason for this is their ability
to find multiple non-dominated solutions in a single simulation. Since the principal
reason why a problem has a multi-objective formulation is because it is not possible to
have a single solution which simultaneously optimizes all objectives, an algorithm that
gives a large number of alternative solutions lying on or near the Pareto-optimal front
is of great practical value.

In the following, we discuss one such multi-objective EA – Non-dominated sort-
ing genetic algorithm (NSGA-II), which is used in the simulation studies of this paper.
The details of three main operations – non-dominated sorting, density estimation and
the crowded comparison operator – are given below. More details may be found the
original study (Deb, 2001). It will suffice here to mention that the non-domination ap-
proach used here is computationally the fastest procedure reported so far. The density
estimation procedure is also computationally fast, involving objective-wise compar-
isons of solutions, thereby making the procedure easily extendable to higher objective
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problems. The crowded comparison operator requires minimal change in an existing
pair-wise tournament selection opeartor yet allows NSGA-II to achieve both tasks of
progressing towards the Pareto-optimal front and maintaining a diverse set of solutions.

2.1 NSGA-II Algorithm: The main loop

Initially, a random parent populationP0 is created. The population is sorted based on
the non-domination. Each solution is assigned a fitness equal to its non-domination
level (1 is the best level). Thus, minimization of fitness is assumed. Binary tournament
selection, recombination, and mutation operators are usedto create a child populationQ0 of sizeN . From the first generation onward, the procedure is different. The elitism
procedure fort � 1 and for a particular generation is shown in the following:Rt = Pt [Qt combine parent and children populationF = fast-nondominated-sort(Rt) F = (F1;F2; : : :), all non-dominated

fronts ofRtPt+1 = ;
until jPt+1j < N till the parent population is filled
crowding-distance-assignment(Fi) calculate crowding distance inFiPt+1 = Pt+1 [ Fi includei-th non-dominated front in the parent pop

Sort(Pt+1;�n) sort in descending order using�nPt+1 = Pt+1[0 : N ℄ choose the first N elements ofPt+1Qt+1 = make-new-pop(Pt+1) use selection, crossover and mutation to createt = t+ 1 a new populationQt+1
First, a combined populationRt = Pt [ Qt is formed. The populationRt will be

of size2N . Then, the populationRt is sorted according to non-domination. The new
parent populationPt+1 is formed by adding solutions from the first front till the size
exceedsN . Thereafter, the solutions of the last accepted front are sorted according
to �n and a total ofN solutions are picked. This is how we construct the populationPt+1. This population of sizeN is now used for selection, crossover and mutation to
create a new populationQt+1 of sizeN . It is important to note that we use a binary
tournament selection operator but the selection criterionis now based on the niched
comparison operator�n.

2.2 A Fast Non-dominated Sorting Procedure

In this approach, every solution in a GA population is checked with a partially filled
population for domination. To start with, the first solutionfrom the population is kept
in a setP 0. Thereafter, each solutionp (the second solution onwards) is compared with
all members of the setP 0 one by one. If the solutionp dominates any memberq ofP 0, then solutionq is removed fromP 0. This way non-members of the non-dominated
from get deleted fromP 0. Otherwise, if solutionp is dominated by any member ofP 0, the solutionp is ignored. If solutionp is not dominated by any member ofP 0, it
is entered inP 0. This is how the setP 0 grows with non-dominated solutions. When
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all solutions of the population is checked, the remaining members ofP 0 constitute the
non-dominated set.

fast-nondominated-sort(P)P 0 = f1g include first member inP 0
for eachp 2 P ^ p 62 P 0 take one solution at a timeP 0 = P 0 [ fpg includep in P 0 temporarily

for eachq 2 P 0 ^ q 6= p comparep with other members ofP 0
if p � q, thenP 0 = P 0nfqg if p dominates a member ofP 0, delete it
else ifq � p, thenP 0 = P 0nfpg if p is dominated by other members ofP 0,

do not includep in P 0
To find other fronts, the members ofP 0 will be discounted and the above procedure is
repeated.

2.3 Density estimation

To get an estimate of the density of solutions surrounding a particular point in the
population we take the average distance of the two points on either side of this point
along each of the objectives. This quantityidistane serves as an estimate of the size
of the largest cuboid enclosing the pointi without including any other point in the
population (we call this thecrowding distance). In Figure 1, the crowding distance of
thei-th solution in its front (marked with solid circles) is the average side-length of the
cuboid (shown with a dashed box). The following algorithm isused to calculate the

Cuboid

f

f

1

2

i
i-1

i+1

0

l

Figure 1: The crowding distance calculation is shown

crowding distance of each point in the setI :

crowding-distance-assignment(I)l = jIj number of solutions inI
for eachi, setI[i℄distane = 0 initialize distance
for each objectivej 2 [1;m℄I = sort(I; j) sort using each objective valueI[1℄distane = I[l℄distane = 1 so that boundary points are always selected

6



for i = 2 to (l � 1) for all other pointsI[i℄distane = I[i℄distane + (I[i+ 1℄:j � I[i� 1℄:j)
HereI[i℄:j refers to thej-th objective function value of thei-th individual in the

setI. The complexity of this procedure is governed by the sortingalgorithm. In the
worst case (when all solutions are in one front), the sortingrequiresO(mN logN)
computations.

2.4 Crowded comparison operator

The crowded comparison operator (�n) guides the selection process at the various
stages of the algorithm towards a uniformly spread-out Pareto-optimal front. Let us
assume that every individuali in the population has two attributes.

1. Non-domination rank (irank)

2. Local crowding distance (idistane)
We now define a partial order�n as :i �n j if ( irank < jrank) or ((irank = jrank) and (idistane > jdistane) )
That is, between two solutions with differing non-domination ranks we prefer the

point with the lower rank. Otherwise, if both the points belong to the same front then
we prefer the point which is located in a region with lesser number of points (the size
of the cuboid inclosing it is larger).

Let us now look at the complexity of one iteration of the entire algorithm. The
basic operations being performed and the worst case complexities associated with are
as follows:

1. Non-dominated sort isO(mN2),
2. Crowding distance assignment isO(mN logN), and

3. Sort on�n isO(2N log(2N)).
As can be seen, the worst-case complexity of the above algorithm isO(mN2). whereN is the population size and the number of objectives ism. At mostN points along the
pareto-optimal front are identified by the algorithm so the complexity of the algorithm
is directly a function of the accuracy to which the pareto-optimal front is to be identified
(N ).

3 Modeling the Risk-return tradeoff

What are the decision variables for the loan portfolio manager? The primary decision
made by the portfolio manager is regarding the allocation ofloans in the different
categories, orloan allocation. In addition, he may also make decisions regarding the
interest rates to be charged for loans in different categories. In particular, the quantity of
loans demanded in a particular category may be influenced by the interest rate charged.
This latter consideration is often not very important in traditional banking practice
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where in the short run, this demand curve for loans is considered to be inelastic - i.e.
the volume of loan applications remains unchanged irrespective of the interest charged.

In the first model below, the decision variables for the portfolio manager is the
loan allocation. GivenN loan categories or tranches (e.g. “AAA”, “BBB”, etc.), with
interest ratesRi what fraction of loansXi should be allocated in each category?

In the second model, the demand for loans is not inelastic, and the total loan ap-
plications received in categoryi is assumed to have an upper bound, which is a nega-
tively sloped function of the interest rateRi. Thus the loan manager faces a negatively
sloped demand curve for loans, and he needs to allocateXi subject to this additional
constraint. However, it is clear that ifXi is far below this bound, then it is more ef-
ficient for him to charge a higher interestRi for the categoryi, such that his return is
higher for the same allocationXi. This implies that in an equilibrium model theXi’s
will settle to a value close to the bound imposed by the loan demand function. This
in turn implies that the loan manager’s primary decision variable is the interest rate,
which then, given a loan demand function, determines the loan allocationXi.
3.1 Traditional models - allocation under inelastic demand

In traditional banking each loan was considered separately, based on their credit-risk
worthiness, evaluated on their credit history, default risk, quality of return and other
traditional measures. Based on Portfolio Theory, one assumes that the loan portfolio
manager applies the idea of diversification to the Loan portfolio as well.

The Modern Portfolio Theory (MPT) (Elton and Gruber 1998), model of Credit
Risk (Saunders 1999) assumes that individual asset returnsare normally distributed.
An alternate assumption may be that loan portfolio managersexhibit quadratic utility
preferences. Both these assumptions lead to models for the return and risk on a given
loan portfolio. One model of risk, based on the Black-Scholes-Merton model, consid-
ers the borrower’s incentive to pay back as positive so long as the value of his assets
beyond a certain date exceeds the loan amount. This leads to a“distance from default”
model of Credit Risk based on the difference between total assets and loan amount as a
function of the annual volatility in value or the standard deviation in the firms’ equity.
Applying such metrics to a portfolio leads to very complex models requiring individual
borrower information. In this work, we adopt a simpler modelof portfolio credit risk
based on the standard deviation of the return over the entireportfolio.

Return

Mean return on portfolioRp = weighted average of the returnRi on the individual loan
categories =�XiRi, whereXi is the proportion of total loans allocated to thei-th cate-
gory. The return is determined by other factors such as the prime rate, processing costs,
expected default rate, probability of unexpected losses, etc. In our partial equilibrium
analysis, we assume these factors to be external to the optimization task, and therefore
the returnRi is the interest rate charged on the loan categoryi less some constant, and
thus maximizing the return is equivalent to maximizing the interest income.
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Table 1: Interest rates charged for loan risk categories
Loan Cat BenchmarkRi More Risk-Averse Less Risk-Averse
1 (AAA) 4.0 3.75 4.25
2 (AA) 4.5 4.25 4.5
3 (A) 5.5 5.5 5.25
4 (BBB) 7.0 7.25 6.75
5 (BB) 8.0 8.25 7.5
6 (B) 8.5 9.0 8.0
7 (CCC) 10.0 11.0 9.25

Table 2: Standard Deviation�i on returns of loans in categoryi
1 (AAA) 2 (AA) 3 (A) 4 (BBB) 5 (BB) 6 (B) 7 (CCC)�i 0.06 0.17 1.56 3.37 8.63 12.84 22.67

Risk

A number of measures are today used for measuring risk in a particular credit port-
folio (Altman and Saunders 1997; Leland 1998; Shearer 1997)Risk is assumed to be
correlated to the standard deviation of returns on the portfolio:�2p = �(Xi2�i2) + �i;�j(XiXj�ij)
where�ij is usually approximated as correlation�ij�i�j . If the correlation is negative,
say, then the portfolio manager can increase the corresponding allocation to reduce
overall risk exposure.

Note the additional constraint �iXi = 1
arising from the fact that theXi are fractional allocations of the total sum.

Multi-Objective Optimization Model

The optimization model for the allocation under inelastic demand case is as follows:� f1(): Maximize mean return on portfolioR+ p� f2(): Minimize variance on return�p� Variables: assetsXi in each set of credit risk classes with given interest ratesRi
(return).� Rp = �iXiRi� �p2 = �iXi2�p2 +�i�jXiXj�ij�i�j ;
where�ij = correlation between returns on i-th and j-th assets.
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Table 3: Coefficient of correlation�ij matrix
Loan Cat 1 (AAA) 2 (AA) 3 (A) 4 (BBB) 5 (BB) 6 (B) 7 (CCC)
1 (AAA) 1 0.45 0.45 0.45 0.15 0.15 0.15
2 (AA) 0.45 1 0.45 0.45 0.15 0.15 0.15
3 (A) 0.45 0.45 1 0.45 0.15 0.15 0.15
4 (BBB) 0.45 0.45 0.45 1 0.15 0.15 0.15
5 (BB) 0.15 0.15 0.15 0.15 1 0.35 0.35
6 (B) 0.15 0.15 0.15 0.15 0.35 1 0.35
7 (CCC) 0.15 0.15 0.15 0.15 0.35 0.35 1

For developing the test case we use data from the CreditMetrics Technical Doc-
ument1. Seven loan categories (AAA, AA, A, BBB, BB, B, CCC) were used, with
interest rates, standard deviation of returns, and cross-correlations as given in tables 1,
2, and 3.

GA Run parameters

All the runs used binary version of NSGA-II with 7 bits alloted to each variable making
each solution a 49 bit string. The mutation rate was fixed at 0.02 ( 1/49) and the
crossover rate was 0.9. All the simulations were run for 100 generations.

Before evaluating the fitness, the x-values of each soluion was normalized to take
care of the�iXi = 1 constraint.

3.2 Elastic Loan Demand Model

In this model, we assume that the amount of loan applicationsreceived in a given
loan category is a function of the interest rate charged. Typically this loan demand
function is negatively-sloped - i.e. the demand falls as higher interests are charged.
Traditionally loan managers have not been concerned with the loan elasticity since
demand for loans typically outstripped supply and applicants were available at most
realistic interest rates. However, this results in a skew inperformance - loan officers
charging higher interest rates are modeled with better returns since this does not reflect
on volumes. Furthermore, with increased access to information and mobile assets, and
also with risk-based loan pricing at banks, the customer mayincreasingly prefer to go
to cheaper sources of loans.

However, the precise structure of this function is a matter of some uncertainty. This
is particularly so because empirical identification of loandemand or supply functions is
made difficult since only the actual intersection of these curves is observable, and also
because of the large number of extraneous factors (such as inflation rate, time, GNP,
etc.) which affect this function. However, there is some empirical evidence for a linear
model of the loan demand as a function of the interest rate andthe GNP (Hülsewig,
Winkler, and Worms 2001), based on which we have also assumeda linear function for
the loan interest rate.

1CreditMetrics Technical Document, JP Morgan, April 1997
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(a) Model 1 with population size 30 (30 points)
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(b) Model 1 with population size 60 (60 points)

Figure 2: Results for model 1 (Inelastic Demand for Loans). N= 30, 60
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Figure 3: Results for Model 1 (Inelastic Demand for Loans) N=120 (120 points)

As observed earlier, the demand function provides the bank with the maximum
applications possible in a loan categoryi charging interest rateRi. The loan portfo-
lio manager can still optimize his allocations in each category so as to optimize his
risk-return tradeoff. However it is clear that a better return can be obtained in those
categories where the actual allocation is less than the demand - here the interest rate
can be raised a bit until the demand drops to precisely that level, thus increasing return
for the same allocation. In an equilibrium situation the loan manager would have ad-
justed his interest rates to match this, and hence we simplify the model by keeping only
the interest rates as the decision variables for the loan manager - given these interest
rates and a loan demand functionXi = f(Ri), the actual allocationsXi are directly
identified. The results for this model are presented for population sizes of 30 and 60 in
figures 4 and 5 respectively.

For the NSGA-II run, the independent variables were the interest ratesRi and from
these the allocationXi is calculated based on a demand functionQi = 500:25Ri + 200
whereQi is the quantity allocated in loan categoryi and the corresponding allocation
is obtained by normalizing this:Xi = Qi=�Qi. The initial values for the interest ratesRi are randomly seeded from the range [4,12] to obtain the results presented.

3.3 Comparison with traditional MO approaches

Traditional Multi-Objective optimization techniques essentially reduce the multi-objective
problem to a single objective problem in such a manner that each optimum point is
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Figure 5: Results for model 2 (Elastic Loan Demand), N=60
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guaranteed to lie on the pareto-optimal front. A separate optimization run is needed for
each desired point on the front. The algorithm is even slowerif there are more than two
objectives, Furthermore, it is difficult to pre-determine how these points will be spread
out along the front, and the main problem in most of these approaches (and in many
MOEA’s) is that the points are bunched up over a small part of the pareto-frontier.
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Figure 6: Comparative pareto-optimal fronts obtained by GAand by epsilon method .

One of the popular non-evolutionary methods is the epsilon-constraint approach,
which converts the problem into a one-dimensional one by re-formulating some of the
objectives as constraints. For example, for aD-dimensional problem,D�1 objectives
are reduced to constraints. Thus in our case, we can minimizef1() s.t. f2() < �k
where a different�k is chosen for each pareto- point. Unlike some other traditional
methods, this approach does not require the normalization of the objectives, but the
epsilon vectors need to be chosen carefully, often with partial hindsight. In our case,
we have chosen the a set of 10 epsilon vectors from the range ofPareto points obtained
using NSGA-II which results in a far more uniform distribution than would have hap-
pened in ab initio search. Even then, one can see that most of the solutions are bunched
towards the lower-risk end of the spectrum. We have used a simple single-objective
GA (and not NSGA-II) as our optimization method.

Note that the pareto-frontier itself is quite strongly validated by the high degree of
overlap between these two approaches.
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4 Conclusion

In this work, we have presented the application of a novel tool for multi-objective opti-
mization problems in finance. The method permits one to have many criteria, does not
require any prior knowledge of the optimizer functions, andcan generate a complete
pareto-optimal front in a single simulation run.

The problem addressed is that of the risk-return tradeoff inbank loan portfolio
management. This problem is well known in the literature as one requiring a possible
multi-objective formulation. One of the models for converting it to a single objective
is to hypothesize a tsingle combination - e.g. return per unit risk - which is to be max-
imized. One such measure is the Sharpe Ratio (Saunders 1999)- maximize (Rp�Rf )�p ,
whereRf is the risk-free interest, and�p is the standard deviation on return for the
portfolio. Any such combination however, is in the final analysis subject to discussion
and criticism by other decision makers and it is always an useful alternative to have
a number of solutions, and to be able to visualize and discussthese (at least in the
two-objective scenario) which is what is provided by this tool.

In the coming years, as banks enter an era of even tighter regulatory constraints,
and also face greater competitive pressures from wider dissemination of information,
new modalities like internet banking, and greater fluidity of assets worldwide, it will
be necessary to deploy more and more decision making tools and to suit them to match
the needs of a wider group of people. At the same time, it is clear that the tool de-
veloped here, which is standalone, will need to be used in more interactive ways by
the Decision Makers so that situations involving more than two variables can be sliced
along appropriate sections for better visualization, thusempowering the DM with new
tools which were hitherto not within reach.

One of the problems that we hope to focus on next is one of immediate concern
to the banking community. One of the modern requirements in banking practice is
to minimize the interest-rate risk exposure of the bank. Ideally, in order to maximize
their immediate net worth, banks want to minimize the amountof capital they hold
and would like to have no constraints on the amounts of interest-rate sensitive assets
(IRAs) and interest-rate sensitive liabilities (ISLs) they have on their balance sheets. In
practice, since interest rates rise with duration, it is most desirable to hold long-term
loans (IRAs) and short term deposits (ISLs) - but this is exactly the kind of mismatched
portfolio that would be subject to severe risk under interest rate fluctuations. We believe
the multi-objective MOET approach may be one of the best tools to address this type
of problem in practice.
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