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Abstract

Optimization of truss-structures for finding optimal cressctional size, topology, and configuration of 2-D
and 3-D trusses to achieve minimum weight is carried outguedal-coded genetic algorithms (GAs). All the
above three optimization techniques have been made pessihising a novel representation scheme. Although
the proposed GA uses a fixed-length vector of design vasailgresenting member areas and change in nodal
coordinates, a simple member exclusion principle is intazdl to obtain differing topologies. Moreover, prac-
tical considerations, such as inclusion of important nadeke optimized structure is taken care of by using
a concept of basic and non-basic nodes. Stress, deflectidrkimematic stability considerations are also han-
dled using constraints. In a number of 2-D and 3-D trussesptbposed technique finds intuitively optimal or
near-optimal trusses, which are also found to have smakéght than those that are reported in the literature.

1 Introduction

Optimal design of truss-structures has always been aneaativa of research in the field of search and
optimization. Various techniques based on classical apétion methods have been developed to find op-
timal truss-structures (Dorn, Gomory, and Greenberg, 1B@dig and Arora, 1989; Krish, 1989; Ringertz,
1985; Topping, 1983; Vanderplaat and Moses, 1972). Howewest of these techniques can be classified
into three main categories: (i) Sizing, (ii) Configurati@md (iii) Topology optimization.

In the sizing optimization of trusses, cross-sectionahsief members are considered as design vari-
ables and the coordinates of the nodes and connectivity @vaoious members are considered to be fixed
(Goldberg and Samtani, 1986). The resulting optimizatiorbfgem is a nonlinear programming (NLP)
problem. The sizing optimization problem is extended andernaactically useful by restricting the mem-
ber cross-sectional areas to take only certain pre-spédiicrete values (Rajeev and Krishnamoorthy,
1992).

In the configuration optimization of trusses, the changeadah coordinates are kept as design vari-
ables (Imai and Schmit, 1981). In most studies, simultasempiimization of sizing and configuration
has been used. The resulting problem is also a NLP probleim mwémber area and change in nodal
coordinates as variables.

In the topology optimization, the connectivity of membarsitruss is to be determined (Krish, 1989;
Ringertz, 1985). Classical optimization methods have senbused adequately in topology optimization,
simply because they lack efficient ways to represent coivityodf members.



Although the above three optimization problems are dissdiseparately, the most efficient way to
design truss-structures optimally is to consider all thopémization methods simultaneously. In most
attempts, multi-level optimization methods have been (Badbbs and Felton, 1969; Ringertz, 1985). In
such a method, when topology optimization is performed, memareas and the truss configuration are
assumed to be fixed. Once an optimized topology is found, #mlmer areas and/or configuration of the
obtained topology are optimized. It is obvious that such dtiffevel optimization technique may not
always provide the globally best design, since both theskl@ms are not linearly separable.

Genetic algorithms (GAs) have also been in all the aboveetbpimization problems. Goldberg and
Samtani (1986) and Rajeev and Krishnamoorthy (1992) haae aisly size optimization, whereas Hejela,
Lee, and Lin (1993) have used a two-level optimization saheftiirst finding multiple optimal topologies
and then finding the optimal member areas for each of the topgdogies. Rajan (1995) has used all three
optimization methods to only two 2-D truss design problerivember connectivity is coded by using
boolean variablesl(for presence an@ for absence). Member areas and change in nodal displacement
are used separately as variables. Since a separate binagyisused to denote presence and absence of all
members, the representation scheme is highly sensitiva@gdinary string, thereby introducing atrtificial
nonlinearity in the optimization problem.

In this paper, we have used a representation scheme whighatyatallows all three optimizations to
be used simultaneously. Moreover, the representatiomnselaso allows a canonical real-coded genetic
algorithm (GA) to be used directly. In order to make the soha practically useful, a concept of basic and
non-basic nodes is introduced, which emphasizes impantaaes to be present in the optimized solution.
Stress, deflection, and kinematic stability consideratiare also added as constraints to find functionally
useful trusses. The proposed technique is applied to a nuofitiriss-structure design problems. The
optimized trusses are compared with that reported in teealitire.

2 Proposed M ethodology

In a truss-structure design, certain nodes are importashtaust exist in any feasible design. And certain
nodes are added for load sharing and are optional. The isntartbdes are usually the ones which carry a
load (a force) or which support the truss. These informagignusually specified by the user (or designer)
and must be honored in the design process of a truss-steuciiirese important nodes are named as the
basic nodes, in this paper. On the other hand, the optional nodesametimes used in a truss to help
distribute the stresses better on individual members. & hedes are named asn-basic nodes. Thus, the
objective in a truss-structure design, (with all three gesiptimization methods) is to find which optional
nodes are necessary in a truss, what coordinates of themmalpbodes and which members must be
present so that a goal (often, the weight of the truss) isvopéid by satisfying certain constraints (often,
the stresses in members and displacements of nodes).

The proposed algorithm assumegraund structure, which is a complete truss with all possible mem-
ber connections among all nodes (basic or non-basic) inttbetsre. Thus, in a truss having nodes,
there are a total ofn = (}) different members possible. A ground structui a collection of all these
members.

A truss in the proposed GA is represented by specifying asesestional area for each member in
the ground structure. Thus, a solution represented in thepQdulation is a vector ofn real numbers
within two specified limits. Although every solution in a GApulation will havem cross-sectional
areas, its phenotype (the truss itself) may not haverathembers. The presence or absence of a member
in the ground structure is determined by comparing the esestional area of the member with a user-
defined small critical cross-sectional area,lf an area is smaller thag that member is assumed to be

!Itis absolutely not necessary to have(éjy members in a ground structure. Problem knowledge can betaskscard some
members in the ground structure. We shall show later how d gboice of a ground structure aids in finding better trussésgu
a GA.



absent in the realized truss. This is how trusses with diffetopologies can be obtained with a fixed-
length representation of the truss member areas. Thisseptation scheme has another advantage. Since
member areas are directly used, the values higher dtsgecify the actual member cross-sectional area.
It is interesting to note that the critical areaand lower and upper bounds on the cross-sectional areas
must be so selected that, although working in the rapgf8™, A™2*), there is an adequate probability of
making a unwanted member absent in a solution. We have ch&%8h= — A™# and a small positive
value fore, so that there is almost an equal probability of any membieiggresent or absent in a truss. If
a member is absolutely essential in a truss, the genetiatgsrquickly make the corresponding member
area in all solutions in a population positive. This reduttes chance of making the member absent in
children trusses.

In subsequent discussions, we denatas the number of members present in a realized truss and not
the total number of members in the ground structure, fottglar

With the above discussion, we now present the formulatidgh@fruss-structure optimization problem
as a nonlinear programming (NLP) problem:

Minimize f(A) = 7, pit; A,

Subjectto G1 = Truss is acceptable to the user
G2 = Truss is kinematically stable
G3=S;—0;(A,€) >0 j=1,2,....,m (1)
G4 =0 —0,(A,6) >0 k=12....,n
Gs=APR < A; < AP i =1,2,...,m
G6 = ¢min < ¢, < gmax i=1,2,...,n

)

)

,

In the above NLP problem, the design variables are the @estenal areas of members present in
a truss (denoted ad) and the coordinates of all’ non-basic nodes (denoted &s The parameters;
ando;"** are the allowable strength of theth member and the allowable deflection of theh node,
respectively. We describe each of the above terms in thevioil:

Objective function: In this paper, we have considered the weight of the overafistras the objective
function, whereas other criteria such as reliability anciayic characteristics can also be considered.
The parametep; and/; are the material density and lengthjeth member, respectively.

Constraint G1: The user specifies the location and the number of basic nadesipports and loads.
Thus, a feasible truss must have all the basic nodes. Thitreamt is checked first. If any one of the
basic nodes is absent in the truss, a large constant pesadtysigned to the solution and no further
calculation of objective function or constraints is done.

Constraints G2: Since trusses with different topologies are created by tijeoeerators, trusses which
are not kinematically stable can also be generated. Trusastsbe kinematically stable so that it does
not generate into a mechanism. One of the ways to check tleenlaitic stability of a truss is to check
the positive-definiteness of the stiffness matrix createthfthe member connectivities. If the matrix is
positive-definite, the truss is kinematically stable. Heerethe computation of the positive-definiteness
of a matrix of a reasonable size is enormous. We reduce tlgedrey of such computations by first
checking the Grubler’s criterion (Ghosh and Mallik, 1988).

Degree-of-freedom (D-O-F 2n — m — ny, (2)

wheren; is the number of degrees-of-freedom lost at the supportsidéithe D-O-F is non-positive, the
corresponding truss is a not a mechanism. Since a truss tesaaon-mechanism, we first check the
above simple criterion. If the truss is a mechanism, we peadhe solution by assigning a large value



which is proportional to the D-O-F obtained by the above &quna Thereafter, the corresponding truss
is not sent to FEM routine for further calculations such #hngtss matrix, stresses and displacements. If
the truss is not a mechanism, we then sent the truss to the B&ive and check the positive-definiteness
of the stiffness matrix. If the matrix is not positive-defia large penalty proportional to the violation
of positive-definiteness is assigned to the solution andurnthér calculation of stress or deflection is
made.

Constraints G3: In a feasible truss, all members must have stresses withialtbwable strength of the
material. Since, usually a truss is subjected to a numbéffefent loading conditions applied separately,
these constraints must be used for each loading conditiomce $he trusses of various topologies are
created on the fly, some of them may be statically determiaate some of them may be statically
indeterminate. Thus, we have used a finite element methadd )Edcalculate the stresses and deflection
in a truss. Itis also noteworthy that since each truss iudifit in its topology, the members and nodes
of the truss is needed to be automatically numbered befdliegca FEM routine. FEM procedure is
developed for 2D as well as 3D trusses. A suitable automatie mumbering scheme is also developed.

In order to have significant effect of all constraints, wemalize all constraints shown above in the
following manner so that all constraint violations get ddogortance:

Si
70—]-(A,§) 1>0. 3

In the case of any constraint violation (that isSif < o;(A, €)), a bracket-operator penalty term (Deb,
1995; Rao, 1984) is added to the objective function.

Gl =

Constraints G4: Like in Constraints G1, all nodes (basic or non-basic) intthes must not deflect more
than the allowable limit due to the application of loads. d_fRonstraints G1, these constraints are also
normalized and the constraint violation (if any) is addedhe objective function by using a bracket-
operator penalty term.

Constraints G5 and G6: Since real-coded GA allows the variables to be bounded mvgpecified limits,
these constraints will be automatically satisfied.

The fitness of a solution is dependent on the constrainttidois and thus calculated as follows:

[ 10°, ifGlis violated,
108 (constraint violation),
if G2 is violated with D-O-F constraint,
107 (constraint violation),
F(A€) = if G2 is violated with (4)
positive-definiteness constraint,
f(A &) +10° 27, [(G3)))|
+10° 0, [(G4y)|
| otherwise.

In the above expression, the operatoris the bracket-operator penalty term.

3 Proposed Optimization Algorithm

Since the design variables take any real number, a realdcgeeetic algorithm is used in this study. In
a real-coded GA, variables are not coded in binary stringslderg, 1989), instead GA operators are
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directly applied on real numbers. Although any selectioarafor can be used, specialized crossover and
mutation operators must be used to effectively create @hldolutions from parent solutions. In the
study here, we use simulated binary crossover (SBX) andanpeter-based mutation operator (Deb and
Agrawal, 1995). We describe these operators in the follgvginbsections.

3.1 Simulated Binary Crossover (SBX)

A probability distribution is used around parent solutitd€reate two children solutions. In the proposed
SBX operator, this probability distribution is not chosenbiaarily. Instead, such a probability distri-
bution is first calculated for single-point crossover oparan binary-coded GAs and then adapted for
real-parameter GAs. The detailed analysis can be founavetze (Deb and Agrawal, 1995). To make
this distribution independent of parent solutions, we\astithe probability distribution as a function of a
non-dimensionalized parameter:

y@ — @)
z(2) — ()

p= ; ()

wherey() andy(? are children solutions and? andz(!) are parent solutions. The chosen probability
distribution is as follows:
0.5(n +1)8%,  fB<1;
P(B) = ( ) o . (6)
0.5(n. +1)/p"%*=, otherwise,

wherer,. is a parameter which controls the extent of spread in child@utions. A small value of.
allows solutions far away from parents to be created as m@nldolutions and a large value restricts only
near-parent solutions to be created as children solutidiee following two observations are found in
crossover operators used in binary-coded GAs:

1. The mean decoded parameter value of two parent stringsdsiant among resulting children strings,
and

2. If the crossover is applied between two children stringhe@ same cross site as was used to create the
children strings, the same parent strings will result.

The above probability distribution preserves both thesseolations by keeping the average of the parent
and children solutions the same and by assigning equal lbyecdability for creating solutions inside
and outside the region enclosed by parent solutions. Int,gherimplication of this crossover is that near-
parent solutions are more likely to be created than solatianaway from parents. Although this property
in a crossover operator is intuitively a good property, & baen shown elsewhere (Deb and Agrawal, 1995)
that this operator respecisterval schema processing, an important matter in the successfkirgoof
any real-parameter GA.

The procedure of computing children solutiofid) andy(? from two parent solutiong(") and (%)
are as follows:

1. Create a random numbeibetween 0 and 1.

2. Find a parametes using the polynomial probability distribution (equatioj, @leveloped in Deb and
Agrawal (1995) from a schema processing point of view, ded:

! (7)

(g(f,u) ) T otherwise.

{ (2u) 7T, if u < 0.5,



3. The children solutions are then calculated as follows:
y@ = 05 [(x(U +2®) + Blz® — $(1)|] _

The above procedure is used for variables where no lower apdruoounds are specified. Thus, the
children solutions can lie anywhere in the real spaeed, oc] with varying probability. For calculating
the children solutions where lower and upper bounesagd z*) of a variable are specified, equation 7
needs to be changed as follows:

- (8)

1
. (o) me+T ) ifu<i
( ! )”C“ , otherwise

2—au

wherea = 2 — g~ (e+1) andg is calculated as follows:

2

ﬁ mln[(x(l) — xl), (.’Eu — x(Q))}
Yy =y

B=1+

It is assumed here that!) < z(?). A simple modification to the above equation can be made:for>
z(2), The above procedure allows a zero probability of creatmgchildren solution outside the prescribed
range [!, 2*]. Itis intuitive that equation 8 reduces to equation 74be= —occ andz® = oc.

For handling multiple variables, each variable is choseih aiprobability 0.5 in this study and the
above SBX operator is applied variable-by-variable. Thig/\ebout half of the variables get crossed over
under the SBX operator. SBX operator can also be applied onceline joining the two parents. In all
simulation results here, we have usgd= 2.

3.2 Parameter-based Mutation Operator

A polynomial probability distribution is used to create dudimn y in the vicinity of a parent solution
(Deb, 1997). The following procedure is used for variabldserme lower and upper boundaries are not
specified:

1. Create a random numbebetween 0 and 1.
2. Calculate the parametés follows:

(2u) ¥ — 1, if u < 0.5,

0= 1 . )
1—[2(1 —u)]m+7, otherwise,

wheren,, is the distribution index for mutation and takes any nonatieg value.

3. Calculate the mutated child as follows:
y=x+ SAmaxu
whereA,ax IS the maximum perturbance allowed in the parent solution.

For variables where lower and upper boundari¢sagdz") are specified, above equation may be changed
as follows:

7 9 + (1 — 2u)(1 — §)m+1]7mT — 1 if u <05
5:{[u+( u)(1 = 6y 1] , if u < 10)

1~ [2(1 — u) + 2(u — 0.5)(1 — 8)™=+1] 777, otherwise,
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Figure 1: The 15-member, six-node ground struc- Figure 2: Optimized truss obtained from 15-
ture. member, six-node ground structure using popula-
tion sizes 300 and 450.

wheres = min[(z — z'), (z* — z)]/(z* — ). This ensures that no solution would be created outside the
range [/, z"]. In this case, we seh,.x = z* — z!. Equation 10 reduces to equation 9 fér= —oo and
% = oo.

Using above equations, we can calculate the expected riaedaderturbance( — z)/(z" — z')) of
the mutated solutions in both positive and negative sidesragely. We observe that this valugi$l /7, ).
Thus, in order to get a mutation effect of 1% perturbance lntems, we should sej,,, =~ 100.

We terminate a GA simulation when a pre-specified number néggions is elapsed.

4 Resaults

In all simulations presented in this section, we have usessover probability of 0.9 and a mutation
probability of 0.1. The population size used in a simulati®lependent on the number of members in
the ground structure. Since an initial random populatioaligays used, it is expected that the required
population size would depend on the problem complexity.s lintuitive that in truss-structure design
problems, as the number of members in the ground structaredses there exist many different topologies
with almost equal overall weight. This suggests that withititrease in members in the ground structure,
the resulting NLP problem becomes multi-modal and hencege lpopulation size is necessary to find
optimal or near-optimal solutions.

In the following, we discuss the performance of GAs in sajvirarious 2-D and 3-D truss structures
and compare the obtained solutions with the best solutieaitahle in the literature. In all figures showing
trusses, the dimensions are in inches.

41 15-Member, Six-Node Truss

With six nodes, there could be a maximum (§j or 15 members possible. This 15-member, six-node
truss (we called the ground structure) and the loading avershin Figure 1. For clarity, the overlapping
members are shown with a gap in the figure. Following desigamaters are used:



Young's modulus = 10" Ksi

Density ) = 0.1 1Ib/ir
Allowable compressive strength = 25 Ksi
Allowable tensile strength = 25Ksi
Allowable displacement = 2in

Amin gmax = —35.0,35.0 in?

Critical area €) 0.09 ir

All 15 cross-sectional areas are used as variables. Thesmwnding optimized truss obtained using
two population sizes of 300 and 450 have the same topologysasttbwn in Figure 2. The figure shows
that only 7 members (out of 15) are necessary in the optiminess. Although the same topology is
obtained for two different GA simulation runs with diffefgoopulation sizes, the cross-sectional areas are
a little different (Table 1). The run with larger populatisize has been able to find a better truss (with an
overall weight of 4731.650 Ibs.). In this case, the popatatit 1st generation has the best solution with an
overall weight equal to 9285.18 Ibs. The above optimizedt8m of an weight of 4731.650 Ibs has been
obtained at generation 189.

Table 1: Results of 2D, six-node truss with 15-member gratnatture.

Area of members (if)

Member number | Population Size 300 Population Size 45(
(refer Figure 2)

0 05.172 05.219

1 20.054 20.310

2 14.845 14.593

3 07.821 07.772

4 28.286 28.187

5 20.446 20.650

Weight of Truss (Ib) 4733.443 4731.650

In order to show that the solution obtained using populasize 450 is a likely optimal solution, we
tabulate the stresses in all members and displacementkrindds in Table 2. It is clear from the table

Table 2: Stresses and displacements obtained for the @gtihsolution with population size 450.

Member No.| Stress (Ksi)
0 —19.161 Displacement (in)
1 —06.962 Node number x Yy
2 —06.852 2 —0.690 | —2.000
3 18.194 3 0.255 | —0.757
4 07.095 4 —0.493 | —2.000
5 06.865

that although stresses developed in all members are wiikialtowable strength of (25 Ksi), the solution
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lies on the intersection of two critical displacement camists. Since, a maximum absolute displacement
of 2 inch is allowed in any node in any direction, both nodes@ 4 achieve this limit. In other words, the
above calculations suggest that if the weight of the ovémadis is attempted to reduce by making member
cross-sectional areas any smaller, these displacemetd Wirould have been violated, thereby making this
optimized solution a likely candidate for the true optimuatusion.

The optimized solution shown in Figure 2 has two members ingnbetween the nodes 0 and 2.
Although this may not be practical to implement, but GAs hfmeend this solution as optimal. In the next
simulation, we avoid such solutions by excluding duplicatmbers in the ground structure.

4.2 11-Member, Six-Node Truss

The 11-member, six-node ground structure is shown in Fi@urélopology and size optimization are
carried out for this truss using 11 variables correspondingiembers areas. The same design parameters
as that used in the previous simulations are used here.

After 225 generations, the best truss-structure obtairstguGAs with a population size of 220 has
an overall weight of 4,899.15 Ibs. (Recall that when all 15mwher were used in the ground structure, a
truss with smaller overall weight was obtained.) The optidi truss satisfies all constraints and is shown
in Figure 4. Although there were 11 members and 6 nodes inrbeng structure, the GA is able to find
a structure with only 6 members and 5 nodes. For the optintizess, the deflection of the node furthest
away from the supports (intersection of members 2 and %) andy directions are—0.562 and 2.000
inches, respectively. Since the deflectioryidirection is equal to the maximum allowable deflection, it
can be argued that the obtained truss is either optimal aromanal.

Figure 5 shows that the best solution in the initial popolathad a weight over 9,000 Ibs and was
feasible. The figure also shows how the GA with a populatiae sf 110 finds a truss of weight 4,950.75
Ibs, which is a little higher than that obtained using a papah size of 220.

The member areas obtained using the proposed GA is compdtethe/best-known solution available
(Ringertz, 1985), which used a multi-level linear and noedir programming method, where the same
topology with 6 members and 5 nodes was obtained. Table 3ssti@atthe proposed GA is able to obtain
a truss with slightly smaller weight than that reported imgrirtz (1985). It is also interesting to note that
although both weights are very similar, the combination ehmber areas in both trusses is a little different.
Comparing to another GA implementation on the same problarmwith discrete member areas) (Rajan,
1995) which found a truss with a weight of 4,962.1 Ibs, ouusoh is much better.

Next, we make the member areas to take only discrete valudisgistep of 1 if). In this case, we use
the discrete version of the SBX and mutation operators (0887), thereby allowing only discrete values
to be created using crossover and mutation operators. Tthmiaed truss obtained using GA has the same
topology as in Figure 4, but now has an overall weight of 4,832bs. The best known solution in the

L00000 b 100000 Lo 100000 o 100000 o

Figure 3: The 11-member, six-node ground struc- Figure 4: Optimized truss obtained from 11-
ture. member, six-node ground structure.
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Figure 5: The improvement in the best solution versus geéioaraumber.

Table 3: Member areas of the optimized truss for 2-D, 11-menrgix-node ground structure.

Area of members ()
Continuous Areas Discrete Areas
Member number | Proposed| Ringertz| Proposed Hajela, Lee, and Lin
(refer Figure 4) (1985) (1993)
0 29.68 30.10 30 28
1 22.07 22.00 24 24
2 15.30 15.00 16 16
3 06.09 06.08 6 6
4 21.44 21.30 20 21
5 21.29 21.30 21 22
Weight of Truss (Ib)| 4899.15 | 4900.00| 4912.85 4942.7

literature for the discrete case has the same topology am@ eeight of 4,942.70 Ibs (Hajela, Lee, and
Lin, 1993), which is about 30 Ibs more than that obtained hbyadgorithm. The corresponding member
areas are presented in Table 3. Since the proposed GA has éomass which requires 1%ress area in
both members 4 and 5 (which are the largest members in the&) wompared to that in Hajela, Lee, and
Lin (1993), the overall weight is smaller. However, to make truss safer from stress considerations, the
cross-sectional area in member 0 had to be increased By 2 in

In order to investigate the effect of the maximum limit oflacement on the optimal design, we redo
the simulation runs with three othéx values. In all cases, the optimized truss has the same coatiigu
as in Figure 4. It is interesting to note that with = 4 and 6 inches, the optimized truss makes one of
the displacement constraints active. However, wheg 8 inches is used, the stress constraint in member
2 becomes active, and the displacement constraint is nohporiant. For any further increase in the
allowable displacement, the optimized truss is going toriiieal in terms of failure due to strength con-
sideration. Figure 6 shows that the optimized weight of thes reduces polynomially with the allowable
displacement. The fitted polynomial allows us to computeoemal weighti¥ of the truss for smaller
deflection limitsA asW = 8,695.6A~°816, This is because foA < 8 inches, the optimal truss makes
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Figure 6: Optimized weight with allowable deflection.

at least one of the deflection constraints active. For exanifpA = 1.0 is chosen, the optimal weight is
extrapolated to be around 8,695.6 Ibs.

4.3 Ten-Node, 2D Truss

Next, we apply the proposed GA to a 10-node truss with a graindture having all pair-wise inter-
connections (a total ]20) or 45 members). All parameters are the same as before, excepghthktwer
and upper bounds of cross-sectional areas-dré) and 1.0 in?. Although symmetry along the middle
nodes could have been used to reduce the number of variaddsave not used this information in this
application. With a population size of 1,800, the proposddfiads the truss shown in Figure 7, which is
symmetric. It is seen that out of the 45 members, only 7 mesnéer present in the optimized truss. The

‘¢ 100 i 100 i 100 i 100 "

10000 Uo 10000 o 10000 o

Figure 7. Optimized truss resulting from a ten-node, 45-inenground structure.

overall weight of this truss is 44.033 Ibs. The cross-secti@rea of members for this optimized truss are
listed in Table 4.

44 Two-Tier Truss

Next, a two-tier, 39-member, 12-node ground structure (fé$) is used for the following optimization
studies:

1. Sizing and topology optimization, and

11



Table 4: Member areas for the optimized truss obtained femmniode, 45-member ground structure.

Member number

(refer Figure 7) Areas of members ()
0 0.566
1 0.477
2 0.477
3 0.566
4 0.082
5 0.321
6 0.080

Weight of truss (Ibs.) 44.033

‘«— 120 ‘ 120 ‘ 120 : 120 a‘

20000 lb 20000 b 20000 lb

Figure 8: Two-tier, 39-member, 12-node ground structure.

2. Sizing, shape and topology optimization.

The overlapping members are shown with a small gap in thedigurclarity. Symmetry about middle
vertical member is assumed, thereby reducing the numbearables to 21. The material properties and
maximum allowable deflection are the same as in the previootdgm, except the allowable strength is
20 Ksi. Lower and upper bounds of member areas ®25 to 2.25 il are used and a critical area of 0.05
in? is chosen.

44.1 Sizing and Topology Optimization

Simultaneous optimization of sizing and topology is catr@it taking 21 continuous variables corre-
sponding to 39 members after considering symmetry. Opéthibpology corresponding to a simulation
run with population size of 630 is shown in Figure 9 and men#rens are listed in Table 5. Of the 39
members and 12 nodes in the ground structure, only 17 menabelrd0 nodes are retained by the pro-
posed GA. Starting from a weight of 570 Ibs found in the bekttgm in the initial population, the GA has
found a truss with a weight of 198 Ibs. Since no study of thteRtruss is available in the literature, we
cannot compare our solution with any other method. Nevkr#ise Figure 9 shows that optimized truss is
intuitively a much better truss than the ground structurerédver, all the critical members carrying large
loads have utilized the material maximally so that the stoes/eloped in each of them is almost equal to
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Table 5: Member areas for the optimized truss structure enctise of sizing and topology optimization
with a population of size 630.

Member| 0,1 2,3 4,5 6,7 8,9 | 10,11| 12,13 | 14,15| 16
Area (ir?) | 0.050| 1.501| 0.052| 0.050| 1.416| 1.118| 1.001| 0.050| 1.002

0 12 13 1 1o 1 i

aunny 5 A

20000 b 20000 b 20000 lb

s
20000 o 20000 b

Figure 9: Optimized truss for two-tier, 39- Figure 10: Optimized truss for two-tier, 39-
member, 12-node ground structure for sizing and member, 12-node ground structure for sizing and
topology consideration with a population of size topology consideration with population size 840.
630.

the allowable strength of material (20 Ksi), as shown inWelo

Member: (2,3) (8,9) (10,11) (12,13) (16)
Stress (Ksi): 19.987 19.9720.000 19.980 19,960
This suggests that the obtained truss is a near-optimaicolu

When we increase the population size to 840, a truss withlsnwlerall weight emerged (Figure 10).
The overall weight of this truss is 196.546 lbs. The membeasiare shown in Table 6. It is interesting to

Table 6: Member areas for the optimized truss structure enctise of sizing and topology optimization
with population size of 840.

Member| 0,1 2,3 4,5 6,7 8,9 | 10,11 12,13| 14,15| 16,17| 18
Area (ir?) | 1.502| 0.051| 1.063| 0.051| 1.061| 0.751| 0.251| 0.559| 0.052 | 1.005

note that both this trusses are different in their connégtand yet have very similar overall weight.

4.4.2 Sizing, Topology and Shape Optimization

In simultaneous optimization of sizing, configuration, dopology, cross-sectional area of each member,
number of members in the truss, and coordinates of the nsig-hades (nodes that do not carry a load and
nodes that are not support nodes) are kept as decision keigbeven extra nodal displacement variables,
in addition to 21 member area variables discussed previoaist considered here. Nodal displacement of
7 non-basic nodes in andy directions with respect to their original coordinates ie tiround structure

are denoted as variables. Using symmetry about the vertieaiber at the center of the trusses, we reduce
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the number of these nodal displacement variables to 7 (fhemmst node at the center is assumed to have
a fixedz coordinate). These extra variables are assumed to varynwithl 20, 120) inch.

The optimized nodal configuration and topology correspogdd a GA run with 1,680 population size
(up to 300 generations) is shown in Figure 11, and optimizethber areas are listed in Table 7. This truss
requiring only 15 members and 9 nodes has a weight of 192s]&vhich is 3% smaller than that obtained
using only sizing and topology optimization. The shape efttiass is also different from that obtained in
the previous subsection.

Table 7: Member areas for the optimized truss structureerctise of sizing, topology, and configuration
optimization.

Member| 0,1 2,3 4,5 6,7 8,9 |10,11| 12,13| 14
Area (ir?) | 0.595| 1.615| 1.293| 1.155| 0.051| 1.166 | 0.504 | 1.358

45 3-D, 25-member, 10-Node Truss

Here, we consider a couple of applications with three-disimral trusses. First, a 39-member ground
structure as shown in Figure 12 is considered. To make rsatieple, we apply two downwards loading

of 500 lbs each at both top-most nodes. Members are groupeibening the symmetry on opposite sides
and cross-members to be symmetric on all the sides, thusirggdthe number of variables to 11. This

grouping is done in the following way (refer Figures 12 ang: 14

Group: O 1 2 3

Member: (0) (1,2,3,4) (5,6,7,8) (9,10,11,12)
Group: 4 5 6

Member: (13,14,15,16) (17,18,19,20) (21,22,23,24)
Group: 7 8 9 10

Member: (25,26,27,28) (29,30) (31,32,33,34) (35,368),3

Young’s modulus and density of the material are the same fasebeHowever, an allowable tensile and
compressive strength of 40 Ksi is used. An allowable detieatif 0.35 inch is used. The lower and upper

20000 lb 20000 o 20000 lb

Figure 11: Optimized truss for two-tier, 39-member, 12-@@tound structure for sizing, topology, and
configuration consideration.
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bounds on the member areas are assumed to® 3 ir? and a critical area of 0.0053ns chosen. The
optimized truss is shown in Figure 13 and the member crostsesal areas are shown below:

Member Area (ir?)
(Refer Figure 13)

0 0.166
1,2,3,4 0.409
5,6,7,8 0.071
Weight (Ibs.) 47.930

Out of 39 members, only 9 members remain in the optimizedtamsl all middle nodes have been elimi-
nated. This is an intuitive solution for the loading casestid@red and the proposed GA has been able to
clean the undesired members to find the optimized trusstatel

Figure 12: The ground structure for the 3D 39- Figure 13: Optimized truss for 3D 39-member,
member, 10-node truss design. 10-node ground structure.

We now consider the ground structure for the same 10-nodiefr8ss, but containing only 25 mem-
bers, taken from the literature (Haug and Arora, 1989). Tiwugd structure is shown in Figure 14.
Members are grouped as before, except that now there exilstshe first 7 groups.

This truss is optimized for two separate loading conditidngoading case 1, a force vect@r; 20, 000;
—5,000) lbs is applied on node 1 and a force vectdr—20, 000; —5,000) Ibs is applied on node 2. In
loading case 2, four force vectors are appli€t:000; 10, 000; —5,000) on node 1(0; 10, 000; —5, 000)
on node 2, and500; 0; 0) on nodes 3 and 6. The same loading cases were also used in hthdgaa
(1989). The optimized weight found with the proposed GA wétpopulation size of 140) has an overall
weight of 544.984 Ibs, which is smaller than that reportetiaug and Arora (1989). The member areas
are compared in Table 8.

Next, we attempt to consider both size and topology optitiina The optimized truss topology
obtained using the proposed GA with a population size 280ahagight of 544.852 Ibs. Out of seven
groups of member areas used in the ground structure, theniggti truss has only five groups (Groups 0
and 3, totalling five members have been deleted). Membes a@aesponding to this solution are listed
in Table 9. This truss is also optimal or near-optimal, beeathe deflection of top two nodes (1 and 2)
is equal to the maximum allowable deflection (0.35 inch),allsuggests that the truss has adjusted its
member areas and member connectivity in such a way which srthkeweight of the truss minimum by
allowing the deflection to reach the allowable limit.
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Figure 14: 3-D, 25-member, 10-node ground structure.

5 Conclusions

In this paper, we have developed a GA-based optimizatioogghare for designing 2-D and 3-D truss
structures. Nodes in a truss are classified into two categoli) Basic nodes, which are used to sup-
port the truss or to apply a load, (ii) Non-basic nodes, wldomot support the truss nor they bear any
load. The concept of basic and non-basic is introduced tchasipe creation of user-satisfactory trusses
and also to reduce the computational time by not performipmersive FEM analysis for unsatisfactory
trusses. The trusses of varying topology (connectivity agnmembers) is obtained with a fixed-length
vector representation of member areas and with an impbaitusion of small area members. This way
any member having an area smaller than a critical area isdemes! to be absent in the corresponding
solution. This representation scheme allows conventi@raloperators to be used directly. Moreover,
since the member areas are used as variables, simultaneogs as well as topology optimization are
achieved. In the case of simultaneous application of adletaptimization methods with sizing, topology,
and configuration considerations, additional variablesesponding to change in nodal coordinates have
been added.

In a number of different truss-structure problems rangiramf 2-D, 6-node trusses to two-tier, 39-
member truss to 3-D 25-member trusses, the proposed #&lgolis been able to find trusses which
are better than those reported in the literature and whiidizag material properties or deflection limits
optimally. These results suggest the use of the proposhkditge in other truss-structure design problems,
where a complete optimization with optimal sizing, topglognd configuration is desired.
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