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GAs are particularly suited for the scheduling problem, because it allows an e�cient reformula-tion of the problem, which reduces the di�culties mentioned above. Although GAs have beenused in other kinds of scheduling problems related to transportation engineering (Martinelli andTeng, 1995; Wren and Wren, 1995), none of them are related to the time scheduling problem. Anumber of di�erent types of realistic transit scheduling problems are also formulated here: (i) atransit system where buses have limited available bus capacity, (ii) a transit system where busesdo not arrive at the station exactly at their scheduled times, and (iii) a transit system havingmultiple transfer stations. It is found that the same GA procedure with minimal modi�cation canbe successfully used to solve all of the above cases. The results show the e�cacy of using GAs asthe solution tool for the development of optimal transit schedules.In the remainder of the paper, the time scheduling problem is described. Thereafter, a mathe-matical formulation of a generic transit system scheduling problem is presented. The characteristicof the search space is outlined in the context of solving such problems using classical optimizationtechniques. Thereafter, a discussion on why GAs are naturally suitable to solve such complexproblems is provided. Finally, four di�erent types of transit scheduling problems are describedand solved using GAs to show the e�cacy of the proposed method.2 Time Scheduling of Transit SystemsA typical transit system consists of buses plying on various routes which intersect at a number oftransfer stations. The purpose of a transit system is to transport passengers from their stationof origin to their station of destination. However, direct routes between all pairs of origins anddestinations do not exist. Passengers with such pairs of origins and destinations, therefore, have touse more than one route to reach their destination. These passengers generally come to a transferstation on some route and wait to transfer to another route which will eventually take them totheir destinations. Thus, at any transfer station, there are two types of passengers (customers)|transferring passengers and non-transferring passengers (passengers whose station of origin is thetransfer station itself).A typical transit system operating on a network of streets (light lines) is shown in �gure 1. The
Figure 1: A typical transit system network.bold lines represent the routes and circles represent the transfer stations. Consider the transferstation S1. At this station, three routes intersect. Two types of passengers exist: (i) transferringpassengers; for example, the passengers who want to go from S1 to S4, may arrive at station S22



on route R1 and wait for a bus on route R2, (ii) non-transferring passengers; for example, thepassengers who want to go from S2 to S5.One of the objectives of a transit system design is to provide a good level of service to its users.A cost-e�ective way to achieve this goal is to optimally schedule the buses within the availableresources. An optimal schedule coordinates the arrival and departure times of the buses so asto minimize the waiting time of passengers. Thus, the time scheduling of transit system designproblem is an optimization problem having an objective and a number of constraints, which wedescribe in the next section.As there are two types of passengers, there are two types of waiting times|initial waitingtime (IWT), the waiting time of non-transferring passengers, and transfer time (TT), the waitingtime of transferring passengers. Both IWT and TT depends on the arrival and departure timeof buses in all routes. The objective function, total waiting time (TWT), is the sum of IWT andTT for all passengers.The available resource constraints such as 
eet size (the number of buses available for eachroute) and available bus capacity (the number of persons who can board the bus at the station) areassumed to be known. In addition, a number of service related constraints such as the minimumand maximum stopping time of buses at stations, the maximum headway (the time between twoconsecutive buses of the same route), and others are considered.3 Mathematical FormulationIn this section, we formulate the optimization problem of a transit network scheduling as a math-ematical program (MP). First, we outline the notations used in the formulation and then presentthe formulation.alij : Arrival time of the l-th bus of j-th route at the i-th station.dmik : Departure time of the m-th bus of the k-th route at the i-th station.hij : Policy headway of the j-th route at the i-th station; this is the maximumbound on the di�erence in the arrival times of two successive buses.M : An arbitrary large number used in the formulation.sminij : Minimum stopping time of a bus in j-th route at the i-th station.smaxij : Maximum stopping time of a bus in j-th route at the i-th station.tl(i�1)ij : Travel time of the l-th bus of the j-th route from the (i� 1)-th stationto the i-th station.T : Maximum transfer time.vlij(t) : Arrival pattern of passengers for the l-th bus on the j-th route at the i-th station.wlijk : Transfer volume from the l-th bus of j-th route to the k-route at the i-th station.�lmijk : A binary variable which is one if a transfer from the l-th busof the j-th route to the m-th bus of the k-th route at thei-th station is possible and optimal; zero otherwise (also refer to section 3.2).It may be noted that the following assumptions are made in the formulation given below.1. It is assumed that buses will arrive and depart exactly as per the schedule. This is referred toas exact (strict) schedule adherence. When arrival time of buses deviate from the scheduledarrival time, it is referred to as stochastic schedule adherence.2. It is also assumed that the available capacity of a bus arriving at the station is enoughto accommodate all passengers who are waiting to board this bus. This is referred to asunlimited bus capacity in the rest of the paper. If this assumption does not hold, we referto that condition as limited bus capacity condition.3



The following is the MP formulation (Chakroborty, Deb, and Srinivas, in press). The con-straints and the objective function are explained later.Minimize Pi Pj Pkk 6=j Pl Pm �lmijk(dmik � alij)wlijk+ Pi Pj Pl dlij�dl�1ijR0 vlij(t)(dlij � dl�1ij � t)dtSubject to G1 � dlij � alij � smaxij 8i; j; lG2 � dlij � alij � sminij 8i; j; lG3 � alij � al�1ij � hij 8i; j; lG4 � (dmik � alij)�lmijk � T 8i; j; k; l;mG5 � dmik � alij +M(1� �lmijk) � 0 8i; j; k; l;mG6 �Pm �lmijk = 1 8i; j; k; lG7 � alij � dl(i�1)j = tl(i�1)ij 8j; l; i� 2 (1)The decision variables in the formulation given in Equation 1 are the arrival times alij , the de-parture times dlij and �lmijk values. The variable �lmijk is a zero-one integer variable. A value of zeromeans that the transfer from the l-th bus of the j-th route to the m-th bus of the k-th route atthe i-th transfer station is either not possible (that is, the l-th bus of the j-th route arrives afterthe m-th bus of the k-th route has departed) or non-optimal to the passengers (that is, there isat least one bus on the k-th route which departs after the arrival of the l-th bus of the j-th routeand before the departure of the m-th bus of the k-th route). A value of one means otherwise.3.1 Objective functionThe objective function consists of two terms; the �rst term represents the total transfer time forall the transferring passengers at all transfer stations, and the second term is the total initialwaiting time for all the passengers at their station of origin.The transfer time for each of the wlijk passengers who want to transfer from l-th bus of thej-th route to the k-th route at the i-th station is(dmik � alij)�lmijk ;where dmij is the departure time of the m-th bus of the k-th route from the i-th station and alijis the arrival time of the l-th bus of the j-th route at the i-th station. The overall transfer timeis calculated by multiplying the above term by wlijk and summing over all the buses, routes andstations.The second term is arrived at by assuming that passengers boarding the l-th bus of the j-throute at the i-th station arrive according to some function vlij(t) (where t is measured from dl�1ij )between dl�1ij and dlij . The integral in the second term is therefore the total initial waiting timefor all passengers boarding the l-th bus of the j-th route at the i-th station. This term whensummed over all buses of all routes at all stations gives the total IWT.3.2 ConstraintsThere are seven types of constraints, as shown in the formulation. Constraints G1 through G4 areservice related constraints. Constraints G1 state that the stopping time (dlij�alij) for the l-th buson the j-th route at the i-th station should be less than or equal to the maximum stopping time,smaxij , and Constraints G2 state that the stopping time (dlij�alij) should be greater than or equal tothe minimum stopping time, sminij . Constraints G3 state that the headway (time di�erence between4



arrivals of two consecutive buses) should not be larger than a stipulated maximum headway, hij .Constraints G4 restrict the transfer time for any transfer to be less than or equal to the maximumtransfer time T .Constraints G5 through G7 are logic constraints which de�ne the feasibility of transfers anddependency arrival times. They are explained below. Constraints G5 assure that �lmijk is zerowhenever a transfer from the l-th bus of j-th route to the m-th bus of the k-th route at the i-thstation is not possible. Constraints G6 along with Constraints G5 assure that transfer from aparticular bus of a particular route is made to only one of the buses of another route (amongmany buses to which a transfer was possible). This fact, in the context de�ned by the objectivefunction, ensures that transfer is made only to the next available transit vehicle. Constraints G7incorporate the dependency of the arrival time of a bus at a particular station on the departuretime of the same bus from the previous station.The resource related constraint of 
eet size is implicit in the formulation. That is, we assumethat we know the number of buses in each route. However, the formulation presented aboveassumes that the available bus capacity at any station is enough to accommodate all passengerswaiting for the bus. On the other hand, if the bus capacity is limited one needs to maintain aqueue for the passengers who arrive at the station. The description of queues within the MPformulation framework is a very di�cult task and hence we postpone the discussion on limitedbus capacity till section 6.2.In the above formulation, it is assumed that the buses will arrive and depart strictly as per theschedule. In general, this a not true and the actual arrival and departure times of the buses arestochastic in nature. Such stochasticity in arrival and departure times is di�cult to incorporatein the MP formulation because of the dependencies among the decision variables. We shall dealwith this case later in section 6.3.4 Characteristics of the MP FormulationIn this section, we discuss the characteristics which make the above problem di�cult to solveusing classical techniques.1. Discrete search space2. Nonlinear search space3. Dimension of search spaceIn the above formulation, there are three types of decision variables: arrival times, alij , de-parture times, dlij , and transfer variables, �lmijk . Among them, the � variables are binary, taking a1 or a 0. This makes the search space discrete. Further, since the other two types of variablesrepresent scheduled arrival and departure times of buses, it is desirable that they are in minutesrather than in fractions of a minute. For example, a schedule arrival time of 9:35 AM is bet-ter than 9:34:22.5 AM. Hence, although not absolutely necessary, it is better (and pragmatic)that these variables are represented as discrete quantities. Thus, the above problem is a discreteprogramming problem, which necessitates the use of mixed-integer programming techniques suchas the Branch-and-Bound method. Such methods are highly iterative in nature and not verye�cient. Moreover, if the standard Branch-and-Bound technique is used to handle � variables,the algorithm may require computation of TT term for non-binary values of � variables. Thismay result in intermediate solutions which are not meaningful.The nonlinearity in the above formulation comes from the objective function and from Con-straints G4. A common method of handling such nonlinearities is to use the Frank-Wolfe technique(Deb, 1995). This technique uses successive linear approximations of the nonlinear functions to5



obtain solutions. Further, this technique introduces additional linear constraints in order to han-dle nonlinear constraints. These �x-ups make this technique slow and often cause convergenceproblems.It can be seen from the formulation that there are O(br2n2) number of variables for a networkwith b transfer stations, an average of r routes through each transfer station, and an average ofn buses on each route. For example, for a small network with one transfer station (b = 1), 3routes through the transfer station (r = 3), and 10 buses on each route (n = 10), there are a totalof 660 variables. Of these, 600 are � variables. Thus, even for a small network, together withthe nonlinearity and discreteness of the search space, the dimensionality of the problem makesthe problem hard to solve using classical methods. Not only is the dimensionality of the space islarge, the number of constraints is also large. A little computation will reveal that there are alsoO(br2n2) constraints associated with the problem. For the above single-station network, thereare a total of 1,350 linear and nonlinear constraints.These characteristics of the problem motivate us to use a di�erent optimization techniquewhich may reduce some of the above di�culties and help us obtain optimal schedules.5 Motivation for Using Genetic AlgorithmsOn examining the MP formulation it becomes clear that (i) a large number of constraints arisefrom specifying bounds on stopping times and headways (Constraints G1, G2, and G3), (ii)constraints G5, G6 and the delta variables contribute largely to the complexity of the problem;yet these variables as well as the constraints are present only to state that passengers transferto the next available bus on the route to which they intend to transfer, and (iii) Constraints G7only state that arrival time at a subsequent station is related to the departure time at a formerstation.Since, genetic algorithms (GAs) naturally work in an environment where variables are alwaysbounded, the bound constraints can be eliminated by using GAs. Further, GAs allow externalprocedure-based declarations, that is, GAs can use information obtained from procedures whichare external to the optimization algorithm. This feature of GAs allow us to eliminate ConstraintsG5, G6 and G7 by using small procedures (these are discussed later). This feature also eliminate� variables (which are binary) from the set of decision variables, as discussed in Section 6.1.1.As a result, the complexity of the GA formulation is far less than that of the MP formulationdiscussed earlier.In section 4 it was stated that it is desirable that the arrival and departure times are representedas discrete quantities. Although, such representation in the MP formulation would have increasedthe complexity manifold, doing so in the GA formulation has no e�ect on the complexity. This isso, because GAs with binary string coding inherently work with discrete search spaces.Hence, we use a binary-coded GA (with reproduction, crossover, and mutation) to solve variouscases of the scheduling problem. These cases are described in the next section. It is importantto note that even though the cases are widely di�erent (involving stochasticity in arrival times,limitations on bus capacity, and others), the same GA-based algorithm can be used as the solutiontool in all the problems.6 Case StudiesIn this section, we apply genetic algorithms to four di�erent cases of transit scheduling. Each caseconsiders a di�erent combination of network characteristics, schedule adherence, and available buscapacity. 6



Case 1: The network consists of only one transfer station; buses are assumed to arrive and departexactly as per the schedule; available bus capacity is unlimited.Case 2: The network consists of one transfer station; buses are assumed to arrive and departexactly as per the schedule; available bus capacity is limited.Case 3: The network consists of one transfer station; arrival time buses are assumed to varystochastically around the scheduled arrival time; available bus capacity is unlimited.Case 4: The network consists of three transfer stations; buses are assumed to arrive and departexactly as per the schedule; available bus capacity is unlimited.We discuss the GA formulation of each of the above cases and present the simulation results inthe following subsections.6.1 Case 1: Single station, exact adherence, unlimited capacityThis is a special case of the problem described earlier (Section 3). Here, the number of transferstations, b is equal to one. The mathematical formulation given in equation 1 remains the sameexcept that constraints G7 are no longer necessary. This is because in this case there is only onetransfer station. Even in this problem, the complexity is O(r2n2).In earlier study (Chakroborty, Deb, and Subrahmanyam, 1995), we have attempted to solvethe resulting MINLP problem (equation 1) for this case using the Branch-and-Bound techniqueof NAG software. On a Convex C220 vector machine, the algorithm repeatedly failed to convergeto any solution. We now present the GA-based formulation for this problem.6.1.1 GA formulationWe discuss how the formulation given in equation 1 (the subscript i is dropped for a single transferstation) is revised in order to use GA. Speci�cally, we present the binary string representation ofvariables, procedure-based declarations to take care of some of the constraints, and procedure ofcomputing the objective function.Recall that the scheduling problem has three types of variables|arrival times alj , departuretimes dlj , and transfer variables �lmjk . Realizing that the constraints involve headway and stop-ping time bounding constraints (Constraints G1 through G3), we use the following two types ofvariables in the GA formulation:xlj = (alj � al�1j ) The headway between l-th and (l� 1)-th bus of the j-th routedxlj = (dlj � alj) Stopping time of l-th bus of the j-th routeThe arrival and departure times (alj and dlj) can be computed from the above two types of variableswith an initial condition a0j = 0 and using the following recursive equations:alj = al�1j + xlj ;dlj = alj + dxlj :We show later how the transfer variables �lmjk can be derived from these arrival and departuretimes and how some of the constraints can be eliminated. Now, we show a typical GA stringrepresenting a complete transit schedule.In each route, there are as many arrival and departure times (or, xlj and dxlj) as there arebuses. However, to simplify the matter, we assume that all buses in a particular route has thesame stopping time. Thus, dlj = dj . Thus, for nj buses in the j-th route at a station, there are a7



total of nj + 1 variables. However, in order to restrict the schedule for a particular time window(say T ), we always �x the arrival time of the last bus at the end of the scheduling window. Thus,we vary the arrival and departure times of nj � 1 buses, instead of all nj buses. Thus, there area total of nj variables for each route in each station in the GA formulation. We represent eachvariable with binary substrings. Finally, we concatenate all nj variables for other routes togetherto get the complete string. The following string shows the sequence of variables used in a GAstring to represent all variables needed to fully represent a schedule for a single transfer stationhaving nR routes: ((dx1 x11 x21 : : :xn11 ) : : : (dxR x1R x2R : : : xnRR ))Coding stopping time and headways of all buses for a particular route together helps propagategood partial schedules through GA operators, a matter which is important from the schemaprocessing point of view (Goldberg, 1989; Holland, 1975; Radcli�e, 1991). We now discuss howthe constraints are handled in the GA formulation.Constraints G1 through G3 (shown below) are variable bounds and can be handled easily bylimiting the lower and upper bounds in the decoding of binary substrings corresponding to theheadway and stopping time variables:G1 � xlj � hj 8j; l;G2 � dxlj � smaxj 8j; l;G3 � dxlj � sminj 8j; l:The lower bound on headway xlj is kept at a suitable lower limit.Constraints G5 and G6 can be eliminated by using the following procedure to calculate �lmjk :flag=0for all combinations of routes (j; k) and buses (l;m)if dlj < amk or flag==1 then�lmjk = 0else �lmjk = 1flag = 1;Thus, the revised formulation of the scheduling problem reduces to minimizing the TWT termsubject to only one type of constraints (Constraints G4). These constraints are handled in GAusing a bracket-operator penalty term 
 (Deb, 1995; Reklaitis, Ravindran, and Ragsdell, 1983):
(g) = ( Rg2; if g < 0;0; otherwise, (2)where g is the left-hand side function value of the constraint represented as G � 0. A constantpenalty parameter R of 103 is used. The number of problem variables and constraints in the aboveGA formulation are 2rn and r(r � 1)n2, respectively. The reductions in the number of variables(from quadratic to linear in r and n) and in the number of constraints (from 3r(r � 1)n2 + 3rnto r(r� 1)n2) are the primary advantages of using GAs in the transit scheduling problem. In thefollowing, we present the simulation results of GAs.6.1.2 Simulation resultsTo demonstrate the proof-of-principle results, we assume that there a total of 30 buses (10 in eachroute) available to ply in three routes. We choose the scheduling time window (T ) to be from 7AM to 11 AM (240 minutes). Following parameters are chosen for the scheduling problem:8



� Minimum headway, hminj = 14 minutes, except for the �rst bus where hminj = 0 minutes.� Maximum headway, hmaxj = 45 minutes, except for the �rst bus where hmaxj = 31 minutes.� Minimum stopping time sminj = 2 minutes.� Maximum stopping time smaxj = 5 minutes.� Maximum transfer time T = 30 minutes.Using the above variable bounds, let us compute the total string length to represent a completeschedule. For j-th route, headways (xlj , l = 1; 2; : : : ; 9) for nine buses and one stopping time (dxj)are variables. Allowing only integer values of the variables, the chosen variable bounds suggestthat each headway requires 5 bits (having 32 alternatives) and each stopping time requires 2 bits(having 4 alternatives). Thus, the total string length for a complete schedule becomes [3(9�5+2)]or 141. The following GA parameters are chosen (using suggestions taken from the GA literatureand performing some trail-and-error experiments):� Population size is 350.� Binary tournament selection is used.� Single-point crossover on the complete string is used.� Crossover probability is pc = 0:95.� Bit-wise mutation with probability pm = 0:005 is used.� GA is terminated when 200 generations are exceeded or the di�erence in population mini-mum and average is less than 10�7.First, we consider an objective of minimizing the transfer time (TT) only. In this case, theoptimal schedule will be the one where buses of di�erent routes arrive at and depart from thetransfer station approximately at the same time. Figure 2 shows the best schedule obtained byGA. The arrows pointing to the horizontal lines represent arrival and arrows emanating from thehorizontal lines represent departure. This schedule requires only 160 minutes of total TT, whereasthe best schedule in the initial population required a TT of 1,170 minutes. It can be seen fromthe �gure that, as expected, the buses of the three routes arrive and depart more or less at thesame time.We now investigate the e�ect of initial waiting time (IWT) alone on the optimal schedule.We choose the arrival pattern of passengers (vlj(t)) to be triangular with a height Lj of 1.244,as shown in Figure 3. In this case, we expect the optimal schedule to have each headway of aroute to be equal, because this problem is similar to a multi-variable (xi) optimization problemof minimizing Pi x2i subject to Pi xi = constant (Note that IWT term is quadratic in terms ofheadways and the sum of all headways on any route must be 240 minutes). Figure 4 shows theoptimal schedule|all headways are more or less equal.To investigate the e�ect of both TT and IWT on the optimal schedule, next we considerthe objective function with TT (wljk = 1) and IWT terms. The optimized schedule is shown inFigure 5. It is interesting to note that the optimal schedule for only IWT case is also an optimalsolution for the only TT case. Thus, when TWT is minimized, the optimal solution will be thesame as that in the only IWT case. Both Figures 4 and 5 show that IWT value in the optimalsolution for only IWT case and TWT case are the same and equal to 4,477 minutes.Above simulation results show how easily GAs can be used to �nd optimized schedules. Similarperformance of GAs are also observed in many other test cases including unequal buses in each9



Figure 2: Optimized schedule for TT obtained by GAs.route and non-uniform arrival patterns of passengers. Based on the e�ciency and reliability ofthe above approach, we tackle more complicated and realistic transit scheduling problems in thefollowing subsections.6.2 Case 2: Single station, exact adherence, limited capacityIn the above case, the available bus capacity was assumed to be unlimited. Hence, it was notnecessary to keep track of the arrival time of individual passengers. However, when the availablebus capacity is limited, all passengers (both transferring as well as non-transferring passengers)who arrive to board a particular bus may not able to do so. Therefore, it becomes imperativethat we maintain a queue of arriving passengers for each route. Non-transferring passengers jointhe queue of their interest as they arrive at the station. Passengers transferring to a particularroute join that queue as and when they are brought to the station by a bus of another route.The queue for a route keeps growing in this manner till the arrival of a bus on that route. If theavailable capacity of this bus (say, l-th bus of j-th route) is Clj , then, at this time, the �rst Cljpassengers from the queue board the bus. The rest forms the initial queue for the next bus on the
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Figure 4: Optimized schedule for IWT obtained by GAs.same route. This process continues. Notice that the IWT and TT will have to be computed bysumming the times spent by individual non-transferring and transferring passengers in the queue,respectively.Although the above description seems simple, anyone familiar with modeling transient behav-ior of queues would know the di�culties in implementing the above process in terms of constraintsand objective function. Given that the classical optimization techniques failed to obtain optimalsolution to the simpler problem stated in Case 1, we do not attempt to solve this problem usingclassical techniques.6.2.1 GA formulationIn this GA formulation, the string representation procedure remains the same as in Case 1.However, the evaluation of a string varies considerably. As earlier, a string still decodes to arrivaland departure time of each bus on each route. Given the arrival pattern of non-transferringpassengers (vlj(t)) and transferring passengers (!ljk), and arrival and departure time of each bus,the queuing process described above is implemented through a procedure. Using this procedure,IWT and TT terms are computed. Notice that the procedure for determining �lmjk is no longernecessary, because the �lmjk variables as de�ned earlier are no longer meaningful.In the GA formulation described in Case 1, we penalized a schedule which gives rise to atransfer time more than T . In addition to this, we penalize a schedule if at the end of thescheduling time window there are some passengers for any route j left unserved, when the totalavailable bus capacity for the j-th route (Pl Clj) is more than the total number of passengersarriving for this route.6.2.2 Simulation resultsIn order to illustrate the sensitivity of optimized schedule to the available bus capacity, di�erentcases are studied. Here, we provide two such cases.In the �rst case, the objective function consists of only IWT term and arrival pattern ofpassengers is such that more passengers arrive in the latter half than in the former half of thescheduling time window1. It is also assumed that the arrival pattern of passengers on all the1The locus of the vertices of the inter-bus arrival patterns of passengers (for example, A in Figure 3) is assumed11



Figure 5: Optimized schedule for TWT obtained by GAs.routes are the same. GA parameters are kept the same as before except that a population size of600 and a maximum generation of 1,200 are used. Figure 6 shows the optimized schedule for thecase described above (with � = 0:2 in all routes, thereby exhibiting the peak of locus of maximumpassenger arrival at (1 � 0:2) � 240 or 192 minutes after 7AM2) and available bus capacity of35. As can be seen, more buses arrive between 120 and 240 minutes than between 0 and 120
Figure 6: Optimized schedule for IWT with more passengers arriving in the latter half of schedul-ing window.minutes. The total number of passengers arriving for a route is approximately 320, whereas theto follow the following function: 3:7 � �1���1�� � 1��� ��, where � 2 [0; 1] is the non-dimensionalized time across thescheduling time window and � (2 [0; 1]) is a parameter which �xes the maximum of the above function at � = 1��.In the �gures, the parameter � is denoted as MU.2However, it is important to note that for two consecutive buses in a route with departure times dl�1j and dlj,the peak of passenger arrival remains always at 0:75(dlj � dl�1j ) from dl�1j (refer to Figure 3).12



total available bus capacity in each route is 35� 10 or 350.For the above problem description and an assumption of unlimited bus capacity, there wouldexist an optimal schedule. This schedule will provide the least IWT per passenger for the givenproblem. However, when the bus capacity becomes limited, this optimal schedule may not beachievable. One can only expect that as the available bus capacity increases, the optimizedschedule should tend towards the optimal schedule corresponding to unlimited bus capacity. Al-ternatively, one should expect as bus capacity increases IWT per passenger for an optimizedschedule should decrease. Figure 7 shows this fact.
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Available Bus CapacityFigure 7: IWT per passenger for optimized schedules versus available bus capacity.In the other case, the TWT is considered as the objective function. The arrival pattern ofpassengers for the �rst route is such that more passengers arrive in the latter half (we choose� = 0:2); for the second route is such that more passengers arrive during the middle of thescheduling period (we choose � = 0:5); for the third route is such that more passengers arrivein the former half (we choose � = 0:8). The total number of non-transferring passengers isapproximately the same as before and the total number number of transferring passengers isapproximately 100. Figure 8 shows the optimized schedule. As expected, the buses are distributedas per the arrival pattern of passengers. In order to see the e�ect of TT on the above optimizedschedule, we put more weightage to TT in the objective function (10 times more than IWT)and rerun GAs. Figure 9 shows that average TT per transferring passenger (total TT dividedby the total number of transferring passengers)has reduced from 9.40 minutes to 6.56 minutes.The �gure also indicates that there are more transfers which require minimal transfer times (thatis, buses on the di�erent routes arrive more or less at the same time) than in the previous case(Figure 8).6.3 Case 3: Single station, stochastic adherence, unlimited capacityIt is unrealistic to assume that buses will arrive at and depart from a transfer station exactlyas per schedule. Thus, although the level of service to passengers can be increased by using anoptimal schedule, if buses do not adhere to this schedule, the realized level of service may notbe as expected. However, if, in such situations, the optimal schedule is determined based onthe assumption that buses may arrive stochastically around the announced scheduled times, therealized level of service may be better than that with an optimal schedule obtained using exact13



Figure 8: Optimized schedule with TWT minimization for di�erent arrival patterns of passengers.adherence of schedules. In this case study, we consider that buses arrive at a transfer stationstochastically with a prede�ned distribution function and formulate a stochastic programmingproblem. We �rst formulate the optimization problem and then present simulation results ofGAs.6.3.1 Stochastic considerationsAll scheduling parameters such as arrival time, departure time, transfer time, initial waiting timeand total waiting time are stochastic. However, stochasticity in all these parameters arise due tothe stochasticities in the arrival time only. It may be noted that in the subsequent discussion,a variable represented using bold characters refer to the scheduled value for the variable, thecorresponding non-bold character refers to the stochastic quantity for the same variable. Thisnotation is used only for this case study.Arrival time: Considering that the scheduled arrival time is aki , we assume that the buses arriveat the transfer station with a probability density function fa(j;l). Any reasonable continuousdensity function like normal, exponential, gamma distribution may be used for fa(j;l).Departure time: The departure time depends on the arrival time. If a bus arrives on or beforethe scheduled arrival time (that is, alj � alj), then the bus has to wait till its scheduleddeparture time dlj . On the other hand, if a bus arrives after the scheduled arrival time, thenthe bus has to wait for a time equal to the scheduled stopping time and hence it cannotdepart at the scheduled departure time. This dependency of the departure time on thearrival time makes the former also stochastic:fd(j;l) = 8<: fa(j;l); if dlj (= alj + slj) > dlj ;�(dlj � dlj) Ralj�dlj�slj fa(j;l)dalj ; otherwise (3)where � is the Dirac Delta function. Thus, the probability, P (dlj = dlj) = Ralj�dlj�slj fa(j;l)daljand P (dlj > dlj) = Ralj>dlj�slj fa(j;l)dalj . 14



Figure 9: Optimized schedule with TWT minimization for di�erent arrival patterns of passengersand large weightage to TT.Initial waiting time (IWT): The initial waiting time is dependent on the departure times oftwo consecutive buses on a route. Hence, it is also stochastic. The probability distributionfunction of IWT, f&(j;l), between (l�1)-th and l-th buses of route j can be written as follows:f&(j;l) = Zdlj fd(j;l)(dlj)fd(j;l�1)(dlj � hlj)ddlj; (4)where hlj (the headway between (l� 1)-th and l-th bus of the j-th route) and & lj (the actualIWT for the l-th bus of the j-th route) are related as follows:& lj = Z hlj0 vj;l(t)(hlj � t)dt: (5)In equation 4, vj;l(t) is the arrival pattern of non-transferring passengers for the l-th bus onthe j-th route and t denotes the time from the departure time of (l� 1)-th bus.Note that & lj and & l+1j are not independent, as both of them are dependent on the randomvariable dlj . Thus, one cannot obtain the distribution for total IWT (& = PjPl & lj), f& ,through simple extension of the above procedure.Transfer time (TT): Since departure and arrival times are stochastic, the transfer time is alsostochastic. The probability distribution, f�(j;k;l;m), for transfer time (�lmjk ) from the l-th busof j-th route to m-th bus of k-th route is as follows:f�(j;k;l;m) = Prob(�lmjk = 1) Zalj fa(j;l)fd(k;m)(alj + �lmjk )dalj : (6)This expression is the product of the probability that a transfer takes place from the l-thbus of j-th route to the m-th bus of k-th route and the probability that the di�erencebetween the departure time of the latter bus and the arrival time of the former bus is �lmjk .The de�nition of the binary variable �lmjk makes it di�cult to obtain the �rst term in theabove expression. As earlier, we cannot simply extend the above procedure to obtain thedistribution f� for the total transfer time, �, because there exists a dependency between the�lmjk terms. 15



Total Waiting Time (TWT): It is clear from the above that it is di�cult to obtain the distri-bution for � and & . The probability distribution, f�, of the total waiting time (�), which isa function of � and & is further di�cult. The di�culty arises not only due to the di�cultiesin obtaining f� and f& , but also due to the fact that � and & are not independent variables.6.3.2 Optimality criterionThe TWT cannot be used as an optimality criterion in a transit system where strict adherence toa given schedule is not possible, because the TWT computed based on a schedule is meaningfulonly if the buses arrive at and depart from the station as per the schedule. Hence, we have torede�ne the optimality criterion realizing that the TWT in this case is a stochastic quantity. Inthe following, we describe two di�erent optimality criteria.Minimize Mean TWT: As discussed earlier, for a given schedule we have a probability distri-bution for TWT, f�. Since mean is a measure of the central tendency of a distribution, wecan claim that a schedule which o�ers a lower mean TWT is, on an average, better than aschedule which o�ers a higher mean TWT. Therefore, one of the optimality criterion wouldbe to minimize the mean TWT (given by, R� �f�d�). Other possibilities include minimizingvariance of TWT or mean2 TWT + variance of TWT.Maximize Reliability: Another good measure of system performance in the case of stochasticsystems is its reliability. We de�ne the reliability, R, of a schedule as the probability thatthe TWT, �, is less than or equal to a permissible limit, �`:R = Z���` f�d�: (7)6.3.3 Classical solution techniques and their di�cultiesFrom the above discussions, it is clear that obtaining a functional description of the objectivefunction as well as constraints in this stochastic case are extremely di�cult, if not impossible. Inany case, the above problem is a stochastic, nonlinear, mixed-integer programming problem (S-NLMIP). Classical techniques for solving such problems involve making unnecessary assumptionsabout the problem like linearization, knowledge of probability distribution arising in the problem,and others (Rao, 1984; Taha, 1989). Given the di�culties experienced while trying to solve theNLMIP problem (arising in Case 1) using classical techniques, we believe that an attempt atsolving the present problem using classical methods will be futile. Again, GA's ability to useprocedure-based declarations comes useful in making the problem tractable. Here, we presenthow GAs are used to handle the S-NLMIP problem.6.3.4 GA formulationThe purpose of obtaining the optimal schedule under stochastic arrival time conditions is to obtaina schedule which will be the \best" even when the schedule is not adhered to precisely (since aki 'sare random). Thus, in practice, if one has to determine the best amongst many feasible schedules,the following procedure can be adopted:1. Create many realistic situations (referred to as \instances") for each feasible schedule byperturbing the arrival times in the schedules (and therefore the departure times) usingrandom numbers (that is, a realistic situation for a feasible schedule consists of the perturbedarrival and the consequent departure times, which may be thought of as the actual arrivaland departure times of the buses on a given day),16



2. Calculate the TWT for each of these situations for each schedule, and3. Compare the TWT (or their means or any other measure de�ned on TWT's).One could then claim that the schedule which outperformed all other schedules is the \best"schedule. This procedure is akin to making decisions about a stochastic system by performingstatistical experiments on it through stochastic simulation. It is interesting to note that theabove procedure eliminates the need for obtaining analytical descriptions of all the probabilitydistributions (except that of alj) discussed above.Since genetic algorithms allow external procedure based declarations during the optimizationprocess one could simulate the above process (using a procedure as shown below) and use theinformation on the comparisons in the optimization process. Notice that a GA string representsthe scheduled headway hlj and stopping time slj , which are deterministic variables.Procedure Objective(a,d):for a feasible schedule (known slj and hlj)obtain alj and dljmake m copies of the schedulefor each copy (u=1 to m) of the schedulegenerate a set of random numbers rlj using a given distributioncalculate alj = alj + rljcalculate dlj:if alj + slj � dlj then dlj = dljelse dlj = alj + sljcalculate �k;li;j using Procedure Delta(a, d)calculate TWT (�u) for u-th copy of the schedulecalculate combined fitness of the schedule using f(�u) (u = 1 to m)In the case of mean TWT, f(�u) is Pmu=1 �u and for reliability objective f(�u) is as follows:f(�u) = 1� Pmu=1H(�u � �`)m ;where H(�) is the Heaviside function:H(x) = ( 1; if x > 0;0; otherwise. (8)6.3.5 Simulation resultsThe scheduling problem parameters and the GA parameters are same as in Case 1, except that apopulation size of 450 is used here.We �rst present the simulation results for the mean TWT objective. The number of copies,m, considered for each schedule is 55. The following subcases which di�er in the assumptions onthe distributions of rlj are considered:1. rlj � N(0; 2) (that is, rlj follows a normal distribution with mean zero and variance 2)2. rlj � N(0; 4) 3. rlj � N(1; 2) 4. rlj � N(2; 2)5. rlj � E(2) (that is, rlj follows a negative exponential distribution with mean 2)Instead of presenting the schedules, here we present comparisons of the performance of the op-timized schedules obtained in this case (Approach S) with those obtained in Case 1 (Approach D).17



Table 1: Comparison of TWTs from Approaches S and DSC AP Ins1 Ins2 Ins3 Ins4 Ins5 Ins6 Ins7 Ins8 Ins9 Ins101 S 5124 4921 5422 5102 5154 5034 5095 5316 5076 51091 D 5172 4860 5464 5216 5204 4965 5047 5328 5128 52192 S 5608 5241 5935 5624 5598 5351 5534 6098 5568 57922 D 5640 5210 6008 5733 5750 5616 5808 5983 5796 59013 S 5409 5054 5642 5304 5374 5223 5313 5542 5264 53963 D 5480 5048 5752 5395 5372 5243 5441 5581 5445 55624 S 5624 5313 5873 5611 5560 5339 5606 5758 5514 56154 D 5861 5451 6157 5847 5797 5620 5748 6041 5740 60335 S 5160 5184 4970 5184 5084 5192 5237 5013 5063 50225 D 5138 5214 4992 5223 5089 5210 5253 4993 5092 5040SC: Subcase, AP: Approach, Insi: Instance iIn order to compare the two approaches, the following procedure is used. For each subcase andfor each of the two schedules (one obtained using Approach S and the other using Approach D),ten di�erent instances (of which �ve were not in the set of 55 instances used during optimization)are simulated using the corresponding rlj distributions. The resulting TWTs for each of the twoschedules are then compared in Table 1. It can be observed from the table that in most instancesthe TWT obtained from Approach S is lesser than that obtained from Approach D.Next, the reliability of a schedule is used as the objective function. Here, m = 100 is used.Although various rlj distributions were tested, we only present the results for rlj � N(0; 2). Sincethe choice of threshold TWT (�`) a�ects the reliability of a schedule, we have considered variousthreshold values while comparing the schedules. The results are presented in Figure 10.
Figure 10: Comparison of reliability of Approaches S and DIt can be seen from the �gure that the reliabilities of schedules from Approach S are alwaysbetter than those obtained from Approach D. Obviously for very low and high threshold valuesof TWT, the reliabilities of schedules from both the approaches are zero and one, respectively.18



The di�erence in the performance of the schedules becomes prominent for intermediate thresholdvalues.6.4 Case 4: Multiple stations, exact adherence, unlimited capacitySo far, we have considered only one transfer station. Thus, in the above cases, constraints G7were inconsequential. However, in this case, these constraints also have to be incorporated whiledetermining the scheduled arrival and departure times. Further, as will be discussed later, obtain-ing TT requires some special consideration. Since all procedures other than (i) obtaining arrivaland departure times, and (ii) obtaining TT, are the same as in Case 1, we only describe these twoprocedures.6.4.1 Obtaining arrival and departure timesOnce the headways (hlij , the l-th headway for j-th route at i-th station) and the stopping times(slij , the l-th stopping time for j-th route at i-th station) are computed for a string, the corre-sponding arrival and departure times can be calculated using a procedure described later. First,the following should be noted. In a network, at each station i, there are two types of routes: (i)independent routes (Ii), which go through only one transfer station, and (ii) common routes (Ci),which go through at least two transfer stations. To identify routes which belong to sets Ii and Ciat each station i, the following procedure is used. First, a station A is selected at random. Allroutes going through the station are included in set IA. Thus, CA = ;. Next, another stationA + j is selected. For each route going through this station, we check whether the route is in-cluded in any of the sets IA through IA+j�1. If so, that route is placed in CA+j , else it is placedin IA+j . Once the sets I and C are determined for each station, the arrival and departure timesare calculated as follows:for all stations (i = 1 to b) computefor all routes (j = 1 to ri) computeif j 2 Ii; /* independent route */ a0ij = 0;for all transit buses (l = 1 to nij) calculatealij = al�1ij + hlij; dlij = alij + slij;else /* common route, j 2 Ci */for all transit buses (l = 1 to nij) calculatealij = al(i�1)j + �; dlij = alij + slij;The parameter � mirrors the dependency of arrival times of buses on the common routes attwo di�erent transfer stations. As is clear, this procedure eliminates Constraints G7.6.4.2 Obtaining TTThe value of total transfer time for a particular schedule is obtained by evaluating the �rst termof the objective function in equation 1. However, although not apparent, there exists a di�cultyin obtaining TT for all buses. We discuss this matter and its remedy by using a procedure calledDependency of Arrival Time Algorithm (DATA) in the following.The purpose of DATA is to overcome the problem in trying to obtain the TT when the arrivalpattern of buses on one or more routes at a station gets �xed once the arrival times of the buses onthe same routes are chosen at another station. Thus, if the scheduling time window at one stationis [p; q], the travel time between this and the next transfer station is c and the stopping time ofthe buses on the common route is d, then the time window over which buses of the common routearrive at the next station will be [p + (c + d); q + (c+ d)]. If at the next station the scheduling19



time window is again [p; q], obviously the buses of the common route will not be able to meet it.A little thought into the above fact reveals that this means unde�ned transfer times for certainbuses as well as arti�cially magni�ed transfer times for other buses:1. Arti�cially magni�ed transfer time: Passengers from the �rst few buses of an isolatedroute (for example, Route R2 in Figure 1) at a station will have to wait very long justbecause the �rst bus of the connecting route (Route R3, for example) cannot arrive beforep+ (c+ d) minutes.2. Unde�ned transfer time: Passengers from the last few buses of the connecting route cannotbe allowed to transfer to the other routes (Route R2, for example), because the latter haveno more buses.These problems are arti�cial because in reality, there are buses plying on the routes even outsidethe scheduling time window being considered. DATA is a procedure-based declaration whichutilizes this fact to solve the problem of unde�ned and arti�cially magni�ed transfer times.The basic assumption DATA makes is that the scheduling time window is �xed such that thedemand pattern on all scheduling time windows are the same. That is, DATA requires that thedemand pattern in scheduling time windows [pn�1; qn�1] and [pn+1; qn+1] be the same as that inthe window [pn; qn], where [pn; qn] is the time window for which scheduling is being done andn � 1 and n + 1 in the superscript refer to the earlier and latter time windows, respectively.This assumption is justi�able since there is no restriction on the extent of the time window; itcould be 1 hour long or it could even be 24 hours long. The assumption then leads to the factthat a schedule which is optimal for [pn; qn] is optimal for all other scheduling time windows(such as [pn�1; qn�1]). Therefore, the schedules obtained for one period could be repeated forother periods. This then will represent arrivals of buses at a station much more realistically (asopposed to buses arriving only during one scheduling time period) and thereby solve the problemsof unde�ned as well as unrealistically large transfer times. Figure 11 illustrates this fact. The
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bus in Route 1 on Station 2 signi�es the travel of the same bus on Route 1 between Stations 1and 2.The above �gure illustrates how the strategy adopted in DATA overcomes the problems asso-ciated with transfer times. For example, the �rst bus of the isolated route (R2) at Station 2 cantransfer to the 4-th bus of the common route (R1) and vice versa. This avoids the following: (i)Unde�ned transfer time for passengers transferring from the 4-th bus of R1 to R2 at Station 2,and (ii) Arti�cially magni�ed transfer time for passengers transferring from the 1-st bus of R2 toR1 at Station 2.It should be noted that while presenting the results, the meaning of the solid and dashedvertical arrows and the dotted lines are the same as those mentioned here.6.4.3 Simulation resultsThe network considered here consists of three transfer stations: S1, S2, and S3. Routes R1, R2,and R3 go through station S1; routes R1, R4, and R5 go through station S2; and routes R5,R6, and R2 go through station S3; The travel time from station S1 to S2, station S1 to S3, andstation S2 to S3 are 30, 40, and 50 minutes, respectively. The GA parameters used are same asbefore except the following: (i) Population size = 1000, (ii) Mutation probability = 0.002, (iii)String length = 288.Figure 12 shows the best schedule obtained using the GA-based procedure. The objectivefunction is TWT and the number of buses on each route is 10. The �gure shows that theheadways are uniform for each route at all the stations, as expected.7 ConclusionsIn this paper, we have formulated a transit system scheduling problem (determining optimal ar-rival and departure times of buses) into a mixed-integer nonlinear programming (MINLP) prob-lem. The MINLP problem involves minimizing the total waiting time (TWT) of all passengerswhich is a sum of the initial waiting time (IWT) of non-transferring passengers and transfer time(TT) of transferring passengers. The MINLP problem also involves a number of resource andservice related constraints such as 
eet size, minimum and maximum stopping time and headway,and others.Genetic algorithms (GAs) are particularly chosen to solve the transit scheduling problembecause the classical optimization techniques had di�culties in solving the problem. Di�cultiesarise because of discrete and complex search space having nonlinear constraints, and a largenumber of integer and real decision variables. Most of these di�culties can be avoided by usingsimple procedure-based declarations. GAs provide a framework in which such procedure-baseddeclarations can be easily handled. Further, the binary string coding mechanism allowed in GAseliminates a number of constraints and provides a natural way to handle binary decision variables.The e�cacy of GA-based approach is shown by applying the proposed procedure to di�erenttypes of transit scheduling problems|limited versus unlimited bus capacity, deterministic versusstochastic arrival time, and single versus multiple transfer stations. It may be noted that the MPformulation may not be possible to write in most of the transit scheduling problems studied here.The results presented here are for equal number of buses on each route. This is done to showthat the same GA-based approach is able to �nd optimal/near-optimal schedules in all these caseswhere the optimal solutions are reasonably known a priori. Obviously, the above procedure canalso be used for unequal number of buses on each route (Agrawal, 1997; Reddy, 1996; Srinivas,1995; Subrahmanyam, 1995). These results are not provided here for brevity.21



Figure 12: Optimized schedule obtained using GA-based approach for multiple transfer stations.AcknowledgmentsThe authors acknowledge the help of a number of their students: Pulugurtha Subrahmanyam,Bandaru Srinivas, Y. S. Reddy, Ravi Agrawal, and Rajeev Mehrotra.ReferencesAgrawal, R. (1997). Transit system scheduling with limited vehicle capacity. (Master's thesis).Kanpur: Department of Civil Engineering, Indian Institute of Technology.Bookbinder J.H. and D�esilets A. (1992). Transfer optimization in a transit network, Transporta-tion science. 26(2), 106{118.Chakroborty, P., Deb, K., and Srinivas, B. (in press). Network-wide scheduling of bus transitsystems using genetic algorithms. Microcomputers in Civil Engineering.22



Chakroborty P, Deb K. and Subrahmanyam P.S. (1995). Optimal Scheduling of Urban TransitSystems using Genetic Algorithms, ASCE Journal of Transportation Engineering, 121(6),544-553.Deb, K. (1995) Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall,New Delhi.Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.Reading, MA: Addison-Wesley.Holland, J. H. (1975). Adaptation in natural and arti�cial systems. Ann Arbor: University ofMichigan Press.Kikuchi, S., and Parameswaran, J. (1993). Solving a schedule coordination problem using afuzzy control technique. Presented at Intelligent Scheduling Systems Symposium at theORSA-TIMS conference. San Francisco, CA.Martinelli, D. and Teng, H. (1995). A genetic algorithm approach for solving the train formula-tion problem. Transportation Research Record, 1497. 62{69.Radcli�e, N. J. (1991). Formal analysis and random respectful recombination. In R. K. Belewand L. B. Booker (Eds.), Proceedings of the Fourth International Conference on GeneticAlgorithms (pp. 222{229).Rao, S. S. (1984). Optimization theory and applications. New Delhi: Wiley Eastern.Reddy, Y. S. (1996). Transit system scheduling under stochastic arrival times (Master's thesis).Kanpur: Department of Civil Engineering, Indian Institute of Technology.Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M. (1983). Engineering optimization|Methodsand applications. New York: Wiley.Srinivas, B. (1995). Network-wide transit system scheduling using genetic algorithms. MastersThesis. Kanpur: Department of Civil Engineering, Indian Institute of Technology.Subrahmanyam, P. S. (1995). Transit system scheduling: Use of genetic algorithms. MastersThesis. Kanpur: Department of Civil Engineering, Indian Institute of Technology.Taha, H. (1989). Operations Research. New York: Macmillan.Wren, A and Wren, D. O. (1995). A genetic algorithm for public transport driver scheduling.Computers and Operations Research, 22, 101{110.
23


