Introducing Robustness in Multi-Objective Optimization

Kalyanmoy Deb and Himanshu Gupta
Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Technology Kanpur
Kanpur, PIN 208016, India
{deb,himg}@iitk.ac.in
http://www.iitk.ac.in/kangal

KanGAL Report Number 2004016

Abstract

In optimization studies including multi-objective optimization, the main focus is placed in
finding the global optimum or global Pareto-optimal solutions, representing the best possible
objective values. However, in practice, users may not always be interested in finding the
global best solutions, particularly if these solutions are sensitive to the variable perturbations
which cannot be avoided in practice. In such cases, practitioners are interested in finding
the so-called robust solutions which are less sensitive to small changes in variables. Although
robust optimization is dealt in detail in single-objective optimization studies, in this paper,
we present two different robust multi-objective optimization procedures, where the emphasis
is to find a robust frontier, instead of the global efficient frontier in a problem. The first
procedure is a straightforward extension of a technique used for single-objective optimization
and the second procedure is a more practical approach enabling a user to set the extent of
robustness desired in a problem. To demonstrate the differences between global and robust
multi-objective optimization principles and the differences between the two robust optimization
procedures suggested here, we developed six two and three-objective test problems and show
simulation results using an evolutionary multi-objective optimization (EMOQ) algorithm. The
interesting results of this paper should encourage further studies and applications of robust
multi-objective optimization.

1 Introduction

For the past decade and more, the primary focus of the research and application in the area of evo-
lutionary multi-objective optimization (EMO) has been to find the globally best Pareto-optimal
solutions [1, 2]. Such solutions are non-dominated to each other. Simply stated, there exists no
other solution in the entire search space which dominate any of these solutions. From a theoretical
point of view, such solutions are of utmost importance in a multi-objective optimization problem.
However, in practice, often a solution cannot not be implemented to the desired accuracy and the
implemented solution may be somewhat different from the theoretical global optimal solution.
If a global optimal solution is quite sensitive to such variable perturbation in its vicinity, the
implemented solution may result in a different set of objective values than that of the theoretical
optimal solution. Thus, from a practical standpoint, such solutions are of not much importance
and the emphasis must be made in finding robust solutions, which are less sensitive to variable
perturbations in their neighborhoods.

In single-objective optimization, a number of studies have been devoted for finding robust
solutions. Branke [3] suggested a number of heuristics for searching robust solutions. In another
study, Branke [4] suggested a number of methods for alternate fitness estimation. Later, Branke



[3] also pointed out key differences between searching optimal solutions in a noisy environment
and searching for robust solutions. Jin and Sendhoff [5] considered the issue of finding robust so-
lutions in a single-objective optimization problem as a multi-objective optimization problem with
the objectives being maximizing robustness and performance. Tsutsui and Ghosh [6] presented a
mathematical model for obtaining robust solutions using the schema theorem for single-objective
genetic algorithms. Parmee [7] suggested a hierarchical strategy of searching several high perfor-
mance regions in a fitness landscape simultaneously. However, to our knowledge there exists no
study on robust multi-objective optimization till to date.

In this paper, we make an effort to extend an existing approach for finding robust solutions
in single-objective optimization for multi-objective optimization. Essentially, in this approach,
instead of optimizing the original objective functions, we optimize the mean effective objective
functions computed by averaging a representative set of neighboring solutions. Solutions which
are less sensitive to such local perturbations will fair well in terms of the mean effective objective
values and the resulting efficient front may turn out to be the robust frontier. To illustrate
the working of this approach, we suggest six different test problems and employ NSGA-II [8]
to find the robust frontier. Thereafter, we present a new definition of robustness by optimizing
the original objectives but adding a constraint limiting the extent of functional change by local
perturbations to a user-defined value. Thus, the second approach is more pragmatic and user has
a control on the desired level of robustness on the obtained solutions. The differences between
these two robust procedures and fundamental differences between global optimization and robust
optimization principles in the context of multi-objective optimization are clearly demonstrated
through an analysis of the simulation results.

In the remainder of the paper, Section 2 introduces the concept of robustness in multi-objective
optimization and stresses its importance in practice. Sections 3 and 4 discuss one of the two
robust optimization schemes and simulation results obtained using NSGA-II. Section 5 discusses
the second robust approach and presents simulation results. Finally, a conclusion of this study is
presented in Section 6.

2 Robustness in Optimization

For a single-objective optimization of the following type:

Minimize f(x), } (1)
subject to x € S,
where § is the feasible search space, a robust solution is defined as the one which is insensitive
(to a limit) to the perturbation in the decision variables in the neighborhood. Let us consider
Figure 1. Of the two optimal solutions, solution A is considered robust, as a small perturbation of
the decision variables does not alter the objective function value of the solution by any significant
amount. On the other hand, solution B is quite sensitive to the variable perturbation and often
cannot be recommended in practice, despite having a better function value than solution A. Several
EA researchers suggested different procedures of defining and finding such robust solutions (like
solution A) in a single-objective optimization context [9, 4, 5, 6, 7]. There could exist several
other ways to define and find a robust solution.

One of the main ideas portrayed in the literature is to use a mean effective objective function
for optimization, instead of the objective function itself:

Definition 1 (Robust Solution of Type I): For the minimization of an objective function
f(x), a solution x* is called a robust solution of type I if it is the global minimum of the mean
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Figure 1: Illustration of global versus ro- Figure 2: Point A is less sensitive to variable per-
bust solutions in a single-objective opti- turbation than point B.

mization problem.

effective function f*f(x) defined with respect to a 6-neighborhood as follows:

Minimize f*(x) = g5y Jyessex) f(¥)4y, )
subject to x € S,

where Bs(x) is the §-neighborhood of the solution x and |Bs(x)| is the hypervolume of the neigh-

borhood.

To use it in practice, a finite set of H solutions can be randomly (or in some structured manner)
chosen around a d-neighborhood (Bs(x)) of a solution x in the variable space and the mean
function value (f°) is used as the fitness to an EA. This way, instead of an individual’s own
function value (f), an agglomerate objective value in its vicinity is used as the objective for
optimization. Since this causes H times more function evaluations than the usual approach of
optimizing the objective function itself, the use of a dynamically updated archive of a fixed size
for choosing neighboring solutions is recommended and used for a faster computation [4].

Another approach would be to calculate the normalized difference in values between the per-
turbed function value fP and the original function f itself and declare a solution to be robust, if
the normalized difference is smaller than a chosen threshold (7):

Definition 2 (Robust Solution of Type II): For the minimization of an objective function
f(x), a solution x* is called a robust solution of type II if it is the global minimum solution of the
following problem:
Minimize f(x),
subject to 7||fpﬁ2;ﬁx)n <, (3)
x €S.

The perturbed function value fP can be chosen as the mean effective function value (f eﬁ) or the
worst function value (among H chosen solutions) in the neighborhood or any other. The operator
|| - || can be any suitable norm measure. The use of this definition may be more practical than the
previous definition, as the user has a direct control of defining the extent of desired robustness
through the parameter 7. This method also requires the computation of H neighboring solutions.
In some applications, the difference ||fP(x) — f(x)||, instead of the normalized difference, can be
restricted to 7.



A multi-objective optimization problem has a number of conflicting objectives:

Minimize (f1(x), f2(x), ..., far(x)), } @
subject to x € S.
The goal in an evolutionary multi-objective optimization is to find a finite number of Pareto-
optimal solutions, instead of a single optimum, to the above problem. Since Pareto-optimal
solutions collectively dominate any other feasible solution in the search space, they all are consid-
ered to be better than any other solution [1, 10]. The two concepts of robustness illustrated above
for single-objective optimization can be extended for multi-objective optimization as well and are
worth performing from a practical standpoint. In Figure 2, two Pareto-optimal solutions (A and
B) are checked for their sensitivity in the decision variable space. Since the local perturbation
of point B causes a large change in objective values, this solution may not qualify as a robust
solution. To qualify as a robust solution, each Pareto-optimal solution now has to demonstrate
its insensitivity towards small perturbations in its decision variable values. The main differences
with a single-objective robust solution are as follows:

1. The sensitivity now has to be established with respect to all M objectives (or to the ones
preferred by the decision-maker). That is, a combined effect of variations in all M objectives
has to be used as a measure of sensitivity to variable perturbation.

2. There are many solutions to be checked for robustness, instead of one or two solutions as in
the case of single-objective optimization.

Extending the ideas portrayed in two definitions of robustness to multi-objective optimization
raises some interesting issues. We discuss them next one at a time.

3 Multi-Objective Robust Solutions of Type I

Since there exist multiple conflicting objectives in a multi-objective optimization, Definition 1
now has to be changed as follows:

Definition 3 (Multi-objective Robust Solution of Type I): A solution x* is called a multi-
objective robust solution of type I if it is the global feasible Pareto-optimal solution to the following
multi-objective minimization problem (defined with respect to a §-neighborhood (Bs(x) of a solution

x):
(5)

Minimize (F§(x), 5 (0), ..., FF (%)),
subject to x € S,

where f;ﬂ(x) is defined as follows:
1
eff
(X)) = fi(y)dy. 6
709 = 18,60l Jyemsn Y )

Due to the variable sensitivities, a part of the original global efficient front may not qualify as a
robust front. In some scenarios, the original global efficient front (corresponding to the problem
stated in Equation 4) may be completely non-robust and an original local efficient or an original
sub-optimal front may now become robust. Depending on how robust the original global efficient
front is with respect to the above definition, there can be the following four main scenarios:

e Case 1: The complete original efficient front is robust.

e Case 2: A part of the original efficient front is no more robust.
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e Case 3: The complete original global efficient front is non-robust; instead an original local
efficient front is robust.

e Case 4: A part of the original global efficient front is robust together with a part of an
original local efficient front.

We illustrate and discuss each of the above four scenarios in the following. Later, we develop one
test problem for each scenario.

3.1 Casel

This is the simplest case in which the original efficient front remains as an efficient front with
respect to the mean effective objective functions. Figure 3 illustrates such a problem. Although
it is expected that the global efficient front constructed with the mean effective objectives will
be somewhat worse than that constructed with the original objectives, the entire set of original
Pareto-optimal solutions is robust and is the target in this type of optimization problems.
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3.2 Case 2

Here, the entire original efficient front is not robust with respect to the above definition of ro-
bustness of type I. In most real-world scenarios such a problem is expected, as some portion of
the original efficient front may lie in a sensitive region in the decision variable space. In such a
problem, the task of a multi-objective robust optimizer would be to identify only that part of
the efficient front which is robust (that is, less sensitive to the variable perturbation). Figure 4
shows that the efficient front corresponding to the mean effective objectives does not span over
the entire original efficient region.

3.3 Case 3

Cases 3 and 4 correspond to more difficult problems in which the original problem may have more
than one efficient frontiers (global and local). In a Case 3 problem, the global efficient front of
the original problem is completely dominated by a local efficient front with respect to the mean
effective objectives, thereby meaning that the original global Pareto-optimal solutions are not



robust solutions and are sensitive to local perturbation. Figure 5 demonstrates such a problem.
This type of problems, if encountered, must be solved for finding the robust efficient front, instead
of the sensitive global efficient front.
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Figure 6: Case 4: A part of the global efficient

Figure 5: Case 3: The complete global effi- front is not Tobust.

cient front is not robust.

3.4 Case 4

Instead of the complete original global efficient front being sensitive to the variable perturbation,
Case 4 problems cause a part of it to be adequately insensitive. In the remaining part, a new
front appears to be robust. Figure 6 illustrates this problem. A part of the robust frontier
corresponds to the original global efficient frontier and the rest corresponds to the original local
efficient frontier.

Certainly, other scenarios are possible, where instead of an original local efficient front becom-
ing robust, a completely new frontier emerges to be robust. However, we argue that the above
four scenarios most likely cover different types of robust multi-objective optimization problems
which can be encountered in practice and an algorithm capable of solving these scenarios would
be adequate in solving other simpler kinds.

3.5 Test Problems

In this section, we now construct mathematical test problems for each of the above four cases.

3.5.1 Test Problem 1
This problem is an illustration to Case 1 discussed above.

Minimize fi(x) = z1,
Minimize fo(x) = h(z1) + g(x)S(z1),
Subject to 0<x; <1,-1<z; <1, i=23,...,m,
where h(zi) =1— 22, (7)
g(x) = 3" 510 + 22 — 10 cos(4nz;),
S(z1) = ﬁ + B2

Here, we suggest o = 1 and 8 = 1. The efficient front corresponds to z; =0 for i =2,3,...,n and
for any value of z1 in the prescribed domain [0,1]. At these solutions, g(x) = 0, thereby making



the following relationship between original objectives:
fo=1-f1% (8)

The use of a multi-modal g() function causes optimization algorithms difficulty in converging to
the true efficient frontier. The mean effective objectives in a d-neighborhood (z; is perturbed in
the neighborhood [z; — d;, z; + ¢;]) for a Pareto-optimal solution, x, are given as follows:

Mx) = i, 9)
1 1 024+ z1+ 6
eff 2 2
= (1—2%)—= — og [ ==L
2 (x) = (1-27) -3+ [0‘251 °8 (0.2 Yo — 61)
+5 (m2 + 152)] f: (10 4 lp 10 sin47r(5-> (10)
VIR 3% 4ne; i)

The corresponding efficient front can be obtained by substituting f¢ in place of z; in the lat-
ter equation. It is interesting to note that the mean effective front depends on the chosen ¢-
neighborhood. We shall demonstrate its effect in Section 4. In the limit, limg, o f$%(x) =
1 — (f£%(x))?, which is identical to the original efficient front (given in Equation 8). However, for
0 < §; < &5, all original Pareto-optimal solutions are robust solutions — a matter we shall discuss
further in Section 4.

3.5.2 Test Problem 2

This problem is an illustration to Case 2. The mathematical formulation of this problem is
identical to that in test problem 1, except that here we use a = 1 and 8 = 10. The corresponding
efficient frontier for the original problem and that for the mean effective objectives can be obtained
from Equation 8, 9 and 10 by substituting the above parameter values. For these parameter values,
the entire original efficient frontier is not robust.

3.5.3 Test Problem 3

This problem is an instantiation of Case 3. Since, this problem requires a swapping of local
and global efficient frontiers when evaluated using the mean effective objectives, we construct a
bi-modal, two-objective optimization problem:

Minimize fi(x) = z1,
Minimize fo(x) = h(z2) (g(x) + S(z1)),
Subject to 0 < zq,29 <1,
—].SiL'ZS]., 223,4,,71,, (11)

where h(z2) =2 — 0.8exp <_ (xz()_.igé%)2> — exp <_ (3920_.7(())?_’85)2) ,

9(x) = i3 50‘7712’

S (.’L‘l) =1- \/.E .
Both local and global efficient fronts correspond to x; = 0 for all s = 3,4,...,n, so that g(x) = 0.
Thus, at these fronts, fo(z1,z2) = h(z2)S(x1). Since, fi(z1) = 1, the local and global efficient
frontiers will correspond to the local and global minima of h(z2), respectively. A careful look at
h() function will reveal that there are two minima, of which the global minimum is at =3 ~ 0.85
(with h(z3) =~ 1.0). Thus, the construction of the above problem is such that the global efficient
front corresponds to z3 &~ 0.85. Similarly, the local efficient front corresponds to z3 ~ 0.35 (with
h(z%) ~ 1.2). The approximate relationship between f; and f at these two fronts are as follows:

fo = 1—+/fi (global),
fo = 12001 —=+/fi) (local).



The mean effective objective values of the solutions at these two fronts are as follows:

P (x)

57 (x)

I,

" 50 1
H(z3, 6) [Z et (1 1

(12)

(13)
i=3 301

((131 +8;) 0 — (21 — 5i)1'5)>‘| ;

where H(x3%,02) is given as follows:

. z5+02
H(z5,02) = E/ 5 h(y)dy
x5—02
_ 0.1y/7 23— 0.35 + 6 25— 0.35 — &
= 2775, (erf( 0.25 ) - erf( 0.25 )>
0.015y/7 w5 — 0.85 + 52) (3:2 —0.85 — 52>)
OOV (g (T2 T 00T 02 (T2 T OO T 02 ) )
255 (er ( 0.03 o 0.03

For the global and local Pareto-optimal solutions, z35 ~ 0.85 and 0.35, respectively, can be substi-
tuted. Figure 7 plots H(0.85,d2) and H(0.35,d2) as they vary with do. It is clear that at do = 0
and its neighborhood, the the front corresponding to =3 = 0.85 has a smaller H() value, thereby
making it the global frontier. On the other hand, when s is greater than about 0.02723, the
reverse happens. For example, for §; = 0.03, H(0.85,0.03) > H(0.35,0.03), thereby making the
front corresponding to z5 = 0.35 the robust front. We discuss more about the robust frontier of

this problem in Section 4.
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Figure 7: Variation of H(z9,d2) with do for zo = 0.85 and z5 = 0.35 for test problem 3.

3.5.4 Test Problem 4

To represent Case 4, we construct a problem which is the same as test problem 3, with a couple

of modifications:

1. The function is h() is dependent on two variables:

—0.35 2 —0.85 2
h(z1,z2) =2 — 21 — 0.8exp (- (mg?—%) > _exp <_ (%) ) .



2. The variable bound on x5 is different: —0.15 < x5 < 1.

The problem has its global efficient front somewhere near 1 + x2 = 0.85 and the local efficient
front near z; + zo = 0.35. Although the above relationship is true for all global Pareto-optimal
solutions in the range f; € [0, 1], the above relationship for local Pareto-optimal solutions cannot
exist for f; > 0.5. At f; = 0.5 (that is, z; = 0.5), the variable zo takes the lower bound
(= —0.15) and thereafter the local front cannot satisfy z; + z2 = 0.35 constraint. Thus, for
f1 > 0.5, solutions on the local efficient front follows £o = —0.15. Thus, when the mean effective
objectives are minimized, the efficient frontier corresponds to a mix of three sets: the local Pareto-
optimal solutions satisfying z1 + zo = 0.35 (for f; < 0.5), the global Pareto-optimal solutions
satisfying z1 + zo = 0.85 (for fi; > 0.63), and an intermediate front for which zo = —0.15. We
discuss more about the robust frontier of this problem in Section 4.

3.5.5 Three-Objective Test Problem 1

We also construct a couple of three-objective test problems. The first problem is given as follows:

Minimize fi(x)

Minimize f2(x) = x2,

Minimize f3(x) = h(z1,22) + g(x)S(z1, z2),
Subject to 0 < zq,29 <1,

1<a; <1, i=3,4,...,n, (14)

where h(zi,z9) =2 — 22 — 22
g(x) = S0 4(10 + 22 — 10 cos(dmzy)),

S($1a~772) = 0_2(_1}_351 + /6-7*'213 + ()_2?(.552 + 6$g

Here we suggest @ = 0.75 and 8 = 10. The efficient front corresponds to z; =0 for 1 = 3,4,...,n
and for any value of z1 and z9 in the prescribed domain [0,1]. At these solutions, g(x) = 0,
thereby making the following relationship between optimal objective values:

fs=2—-fi—f;. (15)

The mean effective objective values in a d-neighborhood for a Pareto-optimal solution, x, are
given as follows:

Mx) = =, (16)
ST(x) = @, (17)
BT = 2-af - ad) - 07+ )
2 9 9
1 0-2+~'Ei+5i) (371 +6z) — (1171 —(51)
 Jog (AT LT G
+ lz (O‘%i ©8 (0.2 sy 3 I 189;
=1
n 1 10 |
X 2 (10 + 5512 ~ Ins, sm47r(5i> (18)

The corresponding efficient frontier can be obtained by substituting f¢f and f$f in place of z;
and z, in the latter equation.



3.5.6 Three-Objective Test Problem 2

Like the test problem 3 suggested for two objectives, we construct a bi-modal, three-objective
optimization problem:

Minimize fi(x) = z1,
Minimize fo(x) = z2,
Minimize f3(x) = h(z3) (g(x) + S(z1,12)),
Subject to 0 < z1,20,23 <1,
“1<z;<1, i=4,5,...,n, (19)

2 2
where h(z3) =2 —0.8exp (— (5”30—_35-35) ) —exp (_ (wg(;(())?.’%) ) ,
(x) = Yi4(10 + z2 — 10 cos(4mz;)),
S(1,22) =10 - /31 — V/Z2.

Similar to the test problem 3, the relationship among optimal fi, fo and f3 at the local and global
efficient fronts are well-approximated as follows:

fs = 10—fi—Vfa (global),
f3 = 12010 —Vfi — Vf2) (local).

The corresponding z; = 0 for 7 > 3. The local and global efficient frontiers correspond to x5 = 0.35
and 0.85, respectively. The mean effective objective values for the solutions of these two fronts
are as follows:

Q

(x) = i, (20)
ST(x) = @ (21)
n 2
f(x) = H(z},d3) L; (10 + %’ = 1o, s1n(47r5i))
1 1.5 1.5
10 — — ((z; + & —(x; — 6; 22
#1035 (g5 (@ + 60"~ =) ))] (22)

The expression for H(z3},03) is analogous to that presented in the case of two-objective test
problem 3. Recall that for §3 > 0.02723 the original local Pareto-optimal solutions are robust.

4 Simulation Results

Here, we use NSGA-II [8] procedure to find the robust Pareto-optimal solutions, although any
other EMO algorithm can also be used. Various parameters which would determine the extent
and nature of shift of the mean effective front from the original front are as follows:

e The extent of neighborhood (6) considered to each variable.
e Number of neighboring points (H) used to compute the mean effective objectives.

e Number of variables (n) in the problem. Although this is not a parameter a user has a
control, we show the effect of this parameter to particularly show its relation with the
extent of robustness in the Pareto-optimal solutions.

The effect of all three parameters was analyzed in detail for the first two test problems. However,
before we discuss the results, there is an important matter which we discuss first.
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There can be a number of ways of generating H neighboring points in the vicinity of a solution
to compute the mean effective objective values [9]. The simplest strategy can be to randomly
create H points in the neighborhood of every solution. However, this introduces additional ran-
domness in evaluating the same solution more than once. It was suggested that a random pattern
of points around a solution is created in the beginning of a simulation and the same pattern be
used for every solution. To create a pattern systematically, we divide the perturbation domain of
each variable (around [—§;,d;]) into exactly H equal grids, thereby dividing the d-neighborhood
into nf small hyperboxes. Thereafter, we pick exactly H hyperboxes randomly from n hyper-
boxes so that in each dimension all H distinct grids are represented. Figure 8 shows two such
patterns for a two-variable problem. Once the hyperboxes are identified, a random point within
each hyperbox is chosen and is used for the computation of the mean effective objective values.
Such a procedure also ensures that the chosen H neighboring points are distributed all around a
solution.

e =

(o

|
25,
(on

\

Figure 8: Two examples of creating H = 6 neighboring points around a solution x = (a, b).

In all simulations, we have used the simulated binary crossover (SBX) and the polynomial
mutation operator with distribution indices of 10 and 50, respectively [1]. A population size of
100 is run for a long enough (10,000) generations to have confidence in the location of the robust
optimal front.

4.1 Test Problems 1 and 2

We first show the effect of various parameters on the first two test problems.

4.1.1 Effect of neighborhood size, §

First, we show the effect of §; on the test problem 1. To not have a significant effect due to finite
neighboring points and variation in problem size, we use H = 50 and n = 5. Figure 9 shows
the theoretical mean effective front obtained using Equations 9 and 10 for four different values of
neighborhood size defined by a parameter § as follows: d; = § and §; = 26 for all i > 1 to have an
identical neighborhood size in all variables. It is clear from the figure that as ¢ increases, the shift
in the mean effective efficient front moves away from the original efficient front. Although for this
test problem, all solutions corresponding to the mean effective Pareto-optimal front are identical
to those lying on the original efficient front for the chosen neighborhood size, the change in shape
of the front is interesting. For the four § used here, the mean effective front is non-convex, whereas
the original front was convex. It is important to highlight here that for a robust optimization of
type I an EMO algorithm works with the mean effective objectives and thus may have difficulty
in solving the robust optimization problem of handling a non-convex problem compared to the
original convex problem.

11
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Figure 10: Robust solutions obtained using
NSGA-II show the effect of § on test prob-
lem 1.

Figure 9: Theoretical mean effective fronts
showing the effect of § on test problem 1.

The quantity summed for the second to n-th variable in Equation 10 can be approximately
written as 807262/3. Let us also, assume that A = > ,807202/3. Differentiating fsT with
respect to f$ (or x) and equating the term to zero, we can compute the minimum solution
corresponding to f$. A solution to the following equation will result in the corresponding f£ff
objective value (ff):

reff 7eff 2 . 05a
(024 i) = oA (23)
In order to have the entire original efficient front to remain as robust, ff > 1, yielding
A <1/(B —0.3472) (24)

from the above equation. For the test problem 1 with @« = # = 1, this means A < 1.532.
Substituting the expression of A in terms of n = 5 and d-neighborhood (61 = ¢ and §; = 2§
for 4 > 1), the maximum § which would cause all original Pareto-optimal solutions to remain as
robust is § < 6 = 0.019. Since in Figure 9, ¢ values smaller than this critical value are used, all
original Pareto-optimal solutions are robust.

Figure 10 verifies that the obtained NSGA-II (robust) solutions for the same four ¢ values
span the entire range of f1. A close investigation will reveal that the obtained front is exactly the
same as that obtained using the exact mathematical analysis (Figure 9).

Figures 11 and 12 show theoretical and NSGA-II results on test problem 2. In this problem,
not only the shape of the mean effective front is different from the original one, some original
Pareto-optimal solutions are no more optimal. Using Equation 23 and substituting o = 1 and
B = 10, we obtain A < 0.1036 for the test problem 2. This results in the maximum value of § which
will cause all original Pareto-optimal solutions to remain as robust solutions is § = §°" = 0.00496.
Figure 11 shows that for § = 0.004 all original Pareto-optimal solutions are robust, while for
¢ = 0.005 or more, not all original Pareto-optimal solutions are robust. For example, solutions
with z1 greater than about 0.403 are not robust solutions in the case of § = 0.006. This simply
means that these Pareto-optimal solutions are very sensitive to variable perturbation and are not
robust. When performing a robust multi-objective optimization, an algorithm should then only
find the Pareto-optimal solutions which are robust. Figure 12 shows that NSGA-II finds only
the non-dominated (or robust) portion of this efficient front. By finding the root of Equation 23
for different values of §, we find the boundary of different robust fronts and show it on both the
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Figure 12: Robust solutions obtained using
NSGA-II show the effect of § on test prob-
lem 2.

Figure 11: Theoretical mean effective fronts
showing the effect of § on test problem 2.

figures with a dashed line. It is interesting to how sensitive the robust solutions of test problem 2
are to the choice of neighborhood size. With a larger neighborhood size, fewer solutions become
robust. Once again, the prediction by theory is verified by simulation results of NSGA-II.

4.1.2 Effect of neighboring points, H

It is intuitive that if more neighboring points are chosen for computing the mean effective objec-
tives, the objective values will be closer to the theoretical average values; however, the computation
time will be more. Figure 13 shows the effect of using different values of H on test problem 1.
Here, we use § = 0.01 and n = 5. The theoretical mean effective front (ideally for H = o0)
is also shown with a solid line in the figure. It is clear that as H is increased, the shift of the
mean effective front from the original front is more and asymptotically approaches the theoretical
front. Figure 14 shows the effect of H on test problem 2 (with n = 5 and § = 0.007). The front
obtained using a small H overestimates the true robust front, but with a much smaller computa-
tional time. It is also interesting to note from these two figures that the frontier computed using
only one neighboring solution makes a good approximation of the true robust frontier in these
problems.

4.1.3 Effect of number of variables, n

Next, we investigate the effect of n on the robustness of the test problems 1 and 2. We use H = 50
in each problem and fix § = 0.01 and 0.007 for problems 1 and 2, respectively. Figures 15 and 16
show the change in the mean effective front with n for the two problems. Recall that for the test
problem 1, the limiting A was 1.532. Substituting A = (n — 1)3207262/3 and using § = 0.01, we
obtain n < 15.55 or n < 15. This suggests that up to a 15-variable version of the test problem 1 all
original Pareto-optimal solutions remain robust. For 16 variables or more, not all such solutions
will remain as robust with § = 0.01. Since we have performed simulations for n = 3, 4, and 5, in
all cases the complete original Pareto-optimal solutions are found to be robust by NSGA-II.
Similarly, in the case of test problem 2 with § = 0.007, the condition A < 0.1036 yields
n < 3.008 or n < 3. It is clear from Figure 16 that for n = 3, the obtained robust front
corresponds to the original Pareto-optimal solutions. But when n = 4 or more is used, a part of
the original Pareto-optimal solutions (up to z; < 0.397 for n = 4) are robust. The boundary of
the robust front for different problem sizes is shown in Figure 16 as well. It is intuitive that the
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effect of robustness can be more dramatic in a higher dimensional problem, as depicted by both
simulation results.

35 25 l‘ll T
|~ Bound f
3 ol { ef ?incﬁgt Of rontier i
25 \
2 N
NI a_l
= 15
1
05
0 0 | 1 | 1 | 1 | 1 | N
0O 01 02 03 04 05 06 07 08 09 1
f 1
Figure 15: Effect of n (theoretical and NSGA- Figure 16: Effect of n (theoretical and NSGA-
IT) on test problem 1 (§ = 0.01 and H = 50). IT) on test problem 2 (§ = 0.007 and H = 50).

4.2 Test Problems 3 and 4

For problems 3 and 4, we show the effect of local and global fronts of the original problem in
deciding on the true robust front. Here, we choose §; = do = § and §; = 26 for all 2 > 2, to
have an identical precision in all variables. For both problems, we use § = 0.03, H = 100, and
n = 5. Figure 17 shows the theoretical results obtained using Equations 12 to 13. The original
local and global efficient fronts are shown in dashed lines. The mean effective local and global
fronts are also shown in the figure with solid lines. It is clear that the mean effective local front
is the robust frontier of this problem, meaning that the original local Pareto-optimal solutions
are robust solutions and original global Pareto-optimal solutions are too sensitive to the variable
perturbation to qualify as robust solutions. For a larger choice of d2 (or ¢), the gap between these
two fronts would be larger, as depicted in Figure 7.
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Figure 18 shows NSGA-II solutions applied to mean objective values obtained by averaging
H function values in the d-neighborhood of a solution. The NSGA-II front corresponds to the
theoretical local mean effective front, as also can be seen by comparing both figures.
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Figure 18: NSGA-II robust front for test prob-
lem 3 (6 = 0.03).

Figure 17: Theoretical robust front for test
problem 3 (§ = 0.03).

To show the difference between the original efficient front and the robust front, we show all
100 obtained NSGA-II solutions for the two cases in Figures 19 and 20, respectively. It is clear
that for all solutions of the original front, x5 is close to 0.85. Variables z3 to =5 are all settled to
a value zero and the variation of solutions on the front appears due to the variation in z; alone.
Figure 20 shows the robust solutions. Here, all solutions take a value close to z3 = 0.35.

1
0.85

Figure 19: NSGA-II solutions of the original

Figure 20: NSGA-II robust solutions for test
test problem 3.

problem 3.

Next, we consider the test problem 4. Theoretical fronts for the original problem are shown
in Figure 21 in dashed lines and corresponding mean effective fronts are shown in solid lines. In
both cases, the local efficient frontier takes different functional form for f; < 0.5 and for f; > 0.5,
as discussed earlier. It is clear from the figure that a part of the robust frontier is constituted with
some local Pareto-optimal solutions and another part with some global Pareto-optimal solutions.
An intermediate portion (f; € [0.5,0.63]) corresponds to zo = —0.15. Figure 22 shows the
robust solutions obtained using NSGA-II. The deviation in the global part of the robust frontier
from theory is due to the choice of a finite H (50 here). The original function landscape at the
global frontier is quite sensitive to parameter changes, and it becomes difficult for an optimization
algorithm to converge to the exact global frontier. When we rerun the problem with H = 500,
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Figure 21: Theoretical robust front for test Figure 22: NSGA-II robust front for test prob-
problem 4. lem 4.

the obtained solutions are closer to the theoretical frontier.

Figures 23 and 24 show dramatically the relationship between z; and z2 in the solutions
obtained for the original problem and that obtained for the mean effective objectives, respectively.
It is clear that for solutions fi; < 0.5 the relationship more or less follows 1 + 2 = 0.35 and
for f1 > 0.63 the relationship is z1 + o = 0.85. The latter condition corresponds to the original
global efficient front, as shown in Figure 23. For 0.5 < f1 < 0.63, x5 gets fixed to its lower bound
(—0.15).
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Figure 23: NSGA-II solutions of the original Figure 24: NSGA-II robust solutions for test
test problem 4. problem 4.

4.3 Three-Objective Test Problem 1

Figure 25 shows the theoretical efficient fronts obtained for three-objective test problem 1. Here,
we use §; = 02 = 0 (= 0.01) and 6; = 2§ for all i > 2. Also, we choose H = 50 and n = 5. The
theoretical efficient front is obtained using Equations 16 to 18. Solutions corresponding to the
non-dominated part of this theoretical effective frontier are robust solutions of type I. The robust
frontier and its projection on fi-fo plane are also shown as a shaded region.

Figure 26 shows the robust solutions obtained using NSGA-II. It is amply clear from the figure
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that the obtained robust solutions lie on the theoretical efficient frontier shown in Figure 25.

Figure 27 shows the effect of § on the three-objective test problem 1. As expected, with an
increase in §, the robust frontier moves further away from the original efficient frontier. It is
also evident that in this problem the non-dominated region of the robust frontier shrinks with an
increase in .

4.4 Three-Objective Test Problem 2

The three-objective test problem 2 has a local and a global efficient frontier, similar to that
observed in the two-objective test problem 3. Here, we use § = 0.03, n = 5, and H = 50.
Figure 28 shows the theoretical efficient fronts (local and global) for this problem. The mean
effective local and global fronts are obtained using Equations 20 to 22. It is clear from Figure 28
that the global Pareto-optimal solutions are more sensitive to variable perturbation than those
corresponding to the local efficient frontier. The difference between the original global efficient
front and the mean global efficient front is much more than that for the local efficient front.
Thus, it is expected that the robust frontier of type I will correspond to the local Pareto-optimal
solutions in this problem.

Figure 29 shows the simulation results obtained using NSGA-II. The mean effective local front
is also shown. It is apparent that the obtained NSGA-II solutions lie on the theoretical mean
effective local front.

To show the difference between the original global efficient front and the robust front of type I,
we show obtained solutions for both cases in the variable space. In both cases, a variation in the
Pareto-optimal solutions occurs due to a variation in 1 and zo values. Figure 30 represents the
solutions obtained for the original optimization problem. All solutions have z3 values almost
equal to 0.85, while Figure 31 shows the robust solutions of type I, where all solutions have z3
values close to 0.35. Thus, the consideration of robustness of type I in this problem causes a
completely different (less locally sensitive) set of solutions to emerge, compared to the original
global Pareto-optimal solutions.
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Figure 30: Pareto-optimal solutions of the Figure 31: Robust solutions of type I for the
original three-objective test problem 2. three-objective test problem 2.
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4.5 Critical Comments on Robustness of Type I

The above discussion and simulation results amply demonstrate that by optimizing the mean
effective objectives (instead of the original objective functions) computed by averaging a few
neighboring solutions, the robust frontier of type I can be found by using an EMO procedure.
In a problem, the computation of the robust front instead of the original efficient front is more
useful and provides a user with the information about robust solutions directly. It has been also
found that the neighborhood size and the number of neighboring points used to compute the
mean objective values are important parameters in obtaining the true robust frontier.

However, the definition of type I robustness is somewhat less practical and yields in a robust
frontier which gets fixed for a particular choice of d-neighborhood. For a given problem, the
above definition constitutes a particular front as a robust front, mainly from the consideration of
mean objective values. However, a user may like a preferred limiting change in function values
for defining robustness and would be interested in knowing the corresponding robust frontier. For
this purpose, we have defined robust solutions of type II earlier and discuss it in the next section.

5 Multi-objective Robust Solutions of Type II

The robust solution of type II for multi-objective optimization can be defined by following Defi-
nition 2:

Definition 4 (Multi-objective Robust Solution of Type II): A solution x* is called a
multi-objective robust solution of type II if it is the global feasible Pareto-optimal solution to the
following multi-objective minimization problem:

Minimize f£(x) = (f1(x), fo(x),..., fm(x)),
1P ) -fx)ll

subject to T <, (25)
x€S.
Here, we use f]‘?ﬁr for ff and the Euclidean norm for || - || operator, but any other suitable func-

tional and norm can also be used. The limiting parameter 7 is considered constant in a simulation
run and is a user-defined parameter. We simply employ NSGA-IT to solve the corresponding con-
strained optimization problem by using the constrained-domination principle, described elsewhere

[1].

5.1 Test Problem 1

Figure 32 shows the NSGA-II solutions obtained for different pre-defined n values on test prob-
lem 1. We use n = 5, H = 100, and 6 = 0.007. Here, the theoretical mean effective objective
functions (Equations 9 and 10) are optimized with the additional 7 constraint by using NSGA-
II. The figure demonstrates that the sensitive region of the original efficient front is once again
vulnerable to the chosen value of 7. For a more tight (smaller) limiting 7, the corresponding
front is further away from the original front. As 7 is increased, the robust frontier gets closer to
the original front in this sensitive region. However, on the less sensitive portion of the original
frontier, the solutions are independent of 7.

For a comparison, the robust front obtained with type I robustness is also shown for identical §
and H parameter values in Figures 32 and 33. To show how the decision variables are distributed
across the robust frontier, we plot g() function for different values of 7 in Figure 33. Recall that in
the case of type I robustness, the robust solutions correspond to z; = 0 for 7 > 1 (thereby making
the g(x*) = 0). However, with type II robustness, different solutions appear in the sensitive
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Figure 32: Robust fronts for different values of
n obtained by minimizing exact ff for prob-
lem 1.

Figure 33: Function g() of the robust solutions
shown in Figure 17 for problem 1.

portion of the robust frontier and g(x*) need not be zero. To demonstrate this aspect, we plot
g(x*) values for two cases: type I robust frontier (theoretical) and type II robust frontier with
various 7. Although solutions shown in Figure 33 with g(x*) # 0 were not the Pareto-optimal
solutions of the original problem, the definition of robustness of type II causes them to be robust
with respect to a particular 7.

Finally, Figure 34 shows the corresponding NSGA-II results obtained by minimizing mean
objective functions computed using H neighboring points. The obtained solutions are close to
those obtained using the theoretical mean objective functions (shown in Figure 32).
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Figure 34: Robust fronts for different values of 7 obtained by minimizing an average of H neigh-
boring points for test problem 1.

5.2 Test Problem 2

Figure 35 shows the NSGA-II solutions obtained for n = 5, H = 100 neighboring points, and
6 = 0.006. We also use two values of : 7 = 0.4 and n = 0.6. As discussed earlier, the complete
efficient front was not robust of type I in this problem. For both 5 values, the robust frontiers of
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type II also do not cover the entire range of the original efficient front. However, as 7 is increased
the robust frontier comes closer to the original front.
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Figure 35: Robust fronts for different values Figure 36: Function g() of the robust solutions
of n for problem 2. shown in Figure 17 for problem 2.

Figure 36 compares the g(x*) values for all robust solutions of type I (theoretical) and type II
(n = 0.4 and n = 0.6). The theoretical type I robust solutions span for f; < 0.403 and the
corresponding g() value for all solutions is zero. However, for the robust solutions of type II, we
observe that the g() values are nonzero in the most sensitive region. The NSGA-II procedure finds
solutions which were non-optimal before but are robust with respect to the chosen 7 parameter.
But, in the relatively insensitive region, the original Pareto-optimal solutions are still robust.

5.3 Test Problems 3 and 4

Figure 37 shows the type-II robust frontiers obtained for the test problem 3 with H =50, n =5
and § = 0.03. For a large value of > 0.7, the type-II robust solutions are identical to the original
global Pareto-optimal solutions. However, for n = 0.3 or 0.2, the original global Pareto-optimal
solutions are more sensitive than allowed and a completely different set of robust solutions emerge.
Figure 38 shows the g() function value corresponding to each obtained robust solution for different
1 values. It is clear from the figure that for n = 0.7, robust solutions are identical to that of the
global Pareto-optimal solutions. On the other hand, for n = 0.3 or 0.2, they are different. With a
decrease in the limiting 7 value, the deviation of robust solutions from the original global Pareto-
optimal solutions is more. We also plot the type I robust frontier (with an identical § = 0.03) of
this problem in a dashed line to compare the effect of two types of robustness considered in this
paper.

Figure 39 shows the type-II robust fronts obtained for the test problem 4. Here also, we
observe that as the value of 7y decreases, the type-II robust front moves away from the original
global efficient front for f; < 0.7. In the remaining portion, the original global efficient front
remains to be robust. It is also interesting to note from Figure 40 that for smaller values of 7, the
robust solutions are different and the nature of variation is different from that observed in the
test problem 3. All original global Pareto-optimal solutions are too sensitive with respect to a
small allowable normalized perturbation (7) to qualify as robust solutions of type II. However, all
original global Pareto-optimal solutions having fi larger than about 0.7 are still robust of type II.
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Figure 39: Robust fronts for different values
of 5 for problem 4.

5.4 Three-Objective Test Problem 1

We now show simulation results on the three-objective test problem 1. Figures 41 and 42 show
the robust solutions for n = 2 and 0.4, respectively. Here, we have used H = 50, n = 5 and
0 = 0.01. For n = 2, the limiting difference between the mean effective and the original objective
values is large enough to have the original efficient front to remain as the robust front of type II,
as apparent from Figure 41. However, for = 0.4 (shown in Figure 42), the limiting difference is
small, and the original Pareto-optimal solutions which make a large difference between the mean
effective objective values and the original efficient objective values are no more robust of type II.
Thus, only a part of the original efficient frontier is the robust front of type II. The extent of this
robust front depends on the chosen 7. For a comparison, we also mark (as a shaded region) the
Pareto-optimal solutions obtained in the case of type I robustness with § = 0.01.
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Figure 42: Type-II Robust solutions for n =
0.4 for the three-objective test problem 1. A
part of the original Pareto-optimal solutions
are robust.

6 Conclusions

This paper takes a first step towards defining robust multi-objective solutions. First, a straightfor-
ward extension of a mean effective objective approach suggested for single-objective optimization
is defined for multiple objectives. In this approach (we redefined it as a robust optimization of
type I), an EMO methodology has been applied to minimize the mean effective objectives obtained
by averaging a finite set of neighboring solutions. Second, we have suggested a robust optimization
of type II, in which the original objectives are optimized, but an additional constraint restricting
the change in objective values to remain within a pre-defined threshold. We have argued that
such a procedure is more practical, as it allows a user to find robust solutions with a user-defined
limit to the extent of change in objective values with respect to local perturbations.

Additionally, we have identified four different scenarios which can occur in a robust frontier in
real-world problems and suggested variable-wise scalable two and three-objective test problems.
Simulation results of NSGA-IT on these test problems have been illustrated and explained to
understand the differences between the two robust optimization procedures.

This paper has made an attempt to just scratch the surface of an important and pragmatic re-
search topic in applied optimization. There still exists a number of salient implementational issues
of a robust optimization procedure. In this research, we have considered H = 50 or 100 neigh-
boring solutions to compute the mean effective objectives. Thus, in principle, this method is 50
or 100 times more computationally expensive than the regular non-robust optimization methods.
This issue needs an immediate solution before such a method becomes really practical. We are
currently pursuing the use of an updatable archive to store a large number of previously-computed
solutions. To compute the mean effective objective value of a new solution, the neighboring so-
lutions from the archive can be borrowed, thereby reducing the need of new evaluations. Such
a technique has been successfully tried for single-objective robust optimization [4] and may be
useful for multi-objective robust optimization as well. However, new insertion and deletion rules
honoring the two distinct goals of multi-objective optimization — convergence and distribution —
may have to be considered.

Hopefully, this proof-of-the-principle study will motivate more detailed studies in the future
and encourage interested readers to understand and apply robust optimization procedures to
real-world multi-objective optimization problems.
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