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Abstract. Genetic algorithms (GAs) are search and optimization tools, which
work differently compared to classical search and optimization methods. Because
of their broad applicability, ease of use, and global perspective, GAs have been
increasingly applied to various search and optimization problems in the recent
past. In this paper, a brief description of a simple GA is presented. Thereafter,
GAs to handle constrained optimization problems are described. Because of their
population approach, they have also been extended to solve other search and
optimization problems efficiently, including multimodal, multiobjective and
scheduling problems, as well as fuzzy-GA and neuro-GA implementations. The
purpose of this paper is to familiarize readers to the concept of GAs and their
scope of application.
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1. Introduction

Over the last decade, genetic algorithms (GAs) have been extensively used as search and
optimization tools in various problem domains, including sciences, commerce, and
engineering. The primary reasons for their success are their broad applicability, ease of use,
and global perspective (Goldberg 1989).

The concept of a genetic algorithm was first introduced by John Holland of the
University of Michigan, Ann Arbor. Thereafter, he and his students have contributed
much to the development of the field. Most of the initial research works can be found
in several conference proceedings. However, now there exist several text books on GAs
(Holland 1975; Goldberg 1989; Michalewicz 1992; Mitchell 1996; Gen & Cheng 1997).
A more comprehensive description of GAs along with other evolutionary algorithms can
be found in the recently compiled Handbook on evolutionary computation published by
Oxford University Press (Bick et al 1997). Two journals entitled Evolutionary Computa-
tion (published by MIT Press) and IEEE Transactions on Evolutionary Computation are
now dedicated to publishing salient research and application activities in the area. Besides,
most GA applications can also be found in domain-specific journals. .

In this paper, we describe the working principle of GAs. A number of extensions to the
simple GA to solve various other search and optimization problems are also described.
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Particularly, real-coded GAs, GAs to solve multimodal, multiobjective, and scheduling
problems, and fuzzy-neuro-GA implementations are described.

2. Classical search and optimization methods A

Traditional optimization methods can be classified into two distinct groups: direct and !
gradient-based methods (Deb 1995). In direct search methods, only objective function
(f(x)) and constraint values (g;(x), h(x)) are used to guide the search strategy, whereas
gradient-based methods use the first and/or second-order derivatives of the objective
function and/or constraints to guide the search process. Since derivative information is not
used, the direct search methods are usually slow, requiring many function evaluations for
convergence. For the same reason, they can also be applied to many problems without a
major change of the algorithm. On the other hand, gradient-based methods quickly
converge to an optimal solution but are not efficient in non-differentiable or discontinuous
problems. In addition, there are some common difficulties with most of the traditional
direct and gradient-based techniques.

e The convergence to an optimal solution depends on the chosen initial solution.

e Most algorithms tend to get stuck to a suboptimal solution.

e An algorithm efficient in solving one optimization problem may not be efficient in
solving a different optimization problem.

e Algorithms are not efficient in handling problems having discrete variables.

e Algorithms cannot be efficiently used on a parallel machine.

TN

Since nonlinearities and complex interactions among problem variables often exist in
engineering design problems, the search space may have more than one optimal solution,
of which most are undesired locally optimal solutions having inferior objective function
values. When solving these problems, there is no escape if traditional methods get attracted
to any of these locally optimal solutions.

Every traditional optimization algorithm is designed to solve a spec1f1c type of problem.
For example, the geometric programming method is designed to solve only polynomial- g
type objective functions and constraints. Geometric programming is efficient in solving
such problems but cannot be applied suitably to solve other types of functions. Conjugate
direction or conjugate gradient methods have convergence proofs for solving quadratic
objective functions having one optimal solution, but are not expected to work well in
problems having multiple optimal solutions. The successive linear programming method
(Reklaitis et al 1983) works efficiently on linear-like functions and constraints, but for
solving nonlinear problems its performance largely depends on the chosen initial condi-
tions. Thus, one algorithm may be best suited for one problem while it may not even be
applicable to a different problem. This requires designers to know a number of opt1m12at1on
algorithms to solve different design problems.

In most engineering designs, some problem variables are restricted to take discrete ~
values only. This requirement often arises to meet market conditions. For example, if the
diameter of a mechanical component is a design variable and the component is likely to be
procured off-the-shelf, the optimization algorithm cannot use any arbitrary diameter. The
usual practice to tackle such problems is to assume that all variables are continuous during
the optimization process. Thereafter, an available size closer to the obtained solution is
recommended. But there are major difficulties with this approach. First, since infeasible
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values of a design variable are allowed in the optimization process, the optimization
algorithm spends enormous time in computing infeasible solutions (in some cases, it may
not be possible to compute an infeasible solution). This makes the search effort inefficient.
Second, as post-optimization calculations, the nearest lower and upper available sizes have
to be checked for each infeasible discrete variable. For N such discrete variables, a total of
2V additional solutions need to be evaluated. Third, two options checked for each variable
may not guarantee the forming of the optimal combination with respect to other variables.
All these difficulties can be eliminated if only feasible values of the variables are allowed
during the optimization process.

Many optimization problems require the use of a simulation software involving the finite
element method, computational fluid mechanics approach, nonlinear equation solving, or
other computationally extensive methods to compute the objective function and constraints.
Because of the affordability and availability of parallel computing machines, it is now
convenient to use parallel machines in solving complex engineering design optimization
problems. However, since most traditional methods use a point-by-point approach, where
one solution gets updated to a new solution in one iteration, the advantage of parallel
machines cannot be exploited.

The above discussion suggests that traditional methods are not good candidates as
efficient optimization algorithms for engineering design. In the following section, we
describe a GA technique which can alleviate some of the above difficulties and may
constitute an efficient optimization tool.

3. Genetic algorithms

As the name suggests, genetic algorithms (GAs) borrow their working principle from
natural genetics. In this section, we describe the principle of the GA’s operation. To
illustrate the working of GAs better, we also show a hand-simulation of one iteration of
GAs. Theoretical underpinnings describing why GAs qualify as robust search and
optimization methods are discussed next.

3.1 Working principles

GAs are search and optimization procedures that are motivated by the principles of natural
genetics and natural selection. Some fundamental ideas of genetics are borrowed and used
artificially to construct search algorithms that are robust and require minimal problem
information.

The working principle of GAs is very different from that of most of classical
optimization techniques. We describe the working of a GA by illustrating a simple can
design problem. A cylindrical can is considered to have only two' design parameters —
diameter d and height 4. Let us consider that the can needs to have a volume of at ]east
300 ml and the objective of the design is to minimize the cost of can material. With these

constraints and objective, we first write the corresponding nonlinear programming problem
(NLP):

L1t is important to note that many other parameters such as thickness of can, material properties, shape can also
be considered, but it will suffice to have two parameters to illustrate the working of a GA.
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Minimize f(d, k) = c((nd*/2) + ndh),
Subject to  g1(d, h) = (md*h/4) > 300, )
Variable bounds dmin < d < dmax,
hin < A < Biax.

The parameter c is the cost of can material per square cm, and diameter d and height h are
allowed to vary in [diin, dmax] and [2min, hyax] cm, respectively.

3.1a Representing a solution: In order to use GAs to find the optimal parameter values
of d and h which satisfy the constraint g; and minimize f, we first need to represent the
parameter values in binary strings. Let us assume that we shall use five bits to code each of
the two design parameters d and h, thereby making the overall string length equal to 10.
The following string represents a can of diameter 8 cm and height 10cm,

01000 01010 .
d h

This string and the corresponding phenotype are shown in figure 1. In the above
representation, the lower and upper bounds of both parameters are considered to be zero
and 31, respectively. With five bits to represent a parameter, there are exactly 2% or 32
different solutions possible. Choosing the lower and upper bounds as above allows GAs
to consider only integer values in the range [0,31]. However, GAs are not restricted to
using only integer values in the above range. In fact GAs can be assigned to use any other
integer or non-integer values just by changing the string length and lower and upper
bounds: NS

"_max min
x .

“5r—1 PV, - (2)
where [; is the string length used to code the ith parameter and DV (s;) is the decoded value
of the string s;. In the above example, /; =35, x{"" =0 and x* = 31 for both variables,

such that x; = DV(s;). The above mapping function allows the following properties to be
achieved:

min
X=X +

(1) Any arbitrary (albeit finite) precision can be achieved in the parameter values by using
a long enough string.

(2) Different parameters can have different precisions by simply using strings of different
lengths.

(3) Parameters are allowed to take positive and negative values.

—h (d, h) = (8, 10) cm
(Chromosome)=01000 01010

Figure 1. A typical can and its chromosomal representation are shown. The cost of the
can is marked as 23 units.
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Coding the parameters in a binary string is primarily used in order to have a pseudo-
chromosomal representation of a design solution. For example, the 10-bit string illustrated
above can be considered to show a biological representation of a can having 8 cm diameter
and 10 cm height. Natural chromosomes are made of many genes, each of which can take
one of many different allelic values (such as, the gene responsible for the eye colour in my
chromosome is expressed as black, whereas it could have been blue or some other colour).
When you see me, you see my phenotypic representation, but each of my features is
precisely written in my chromosome — the genotypic representation of me. In the can
design problem, the can itself is the phenotypic representation of an artificial chromosome
of 10 genes. To see how these 10 genes control the phenotype (the shape) of the can, let us
investigate the leftmost bit (gene) of the diameter (<) parameter. A value of 0 at this bit (the
most significant bit) allows the can to have diameter values in the range [0, 15] cm, whereas
the other value 1 allows the can to have diameter values in the range [16,31] cm. Clearly,
this bit (or gene) is responsible for dictating the slimness of the can. If the allele value 0 is
expressed, the can is slim and if the value 1 is expressed the can is fat. Each bit position or
combination of two or more bit positions can also be explained to have some feature of the
can, but some are interesting and important and some are not that important. Now that we
have achieved a string representation of design solution, we are ready to apply some
genetic operations to such strings to hopefully find better and better solutions. But before
we do that, we shall describe another important step of assigning a ‘goodness’ measure to
each solution represented by a string.

3.1b Assigning fitness to a solution: It is important to reiterate that GAs work with
strings representing design parameters, instead of the parameters themselves. Once a string
(or a solution) is created by genetic operators, it is necessary to evaluate the solution,
particularly in the context of the underlying objective and constraint functions. In the
absence of constraints, the fitness of a string is assigned a value which is a function of the
solution’s objective function value. In most cases, however, the fitness is made equal to
the objective function value. For example, the fitness of the above can represented by the
10-bit string is

F(s) = 0.0654(w(8)% /2 + =(8)(10)),
=23,

assuming ¢ = 0.0654. Since the objective of the optimization is to minimize the objective
function, it is to be noted that a solution with a smaller fitness value is better compared to
another solution.

We are now in a position to describe the genetic operators that are the main part of the
working of a GA. But before we do that let us look at the steps involved in a genetic
algorithm. Figure 2 shows a flowchart of the working of a GA. Unlike classical search and
optimization methods, a GA begins its search with a random set of solutions, instead of just
one solution. Once a population of solutions (in the above example, a random set of binary
strings) is created at random, each solution is evaluated in the context of the underlying
NLP problem, as discussed above. A termination criterion is then checked. If the termina-
tion criterion is not satisfied, the population of solutions is modified by three main operators
and a new (and hopefully better) population is created. The generation counter is incre-
mented to indicate that one generation (or, iteration in the parlance of classical search
methods) of GA is completed. The flowchart shows that the working of a GA is simple
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begin
Initialize population
t=20
*/cond?
Reproduction
t=t+1
* Crossover
Mutation
]

Figure 2. A flowchart of the working principle of a GA.

and straightforward. We now discuss the genetic operators, in the light of the can design
problem.

Figure 3 shows phenotypes of a random population of six cans. The fitness (penalized
cost) of each can is marked on the can. It is interesting to note that two solutions do not
have 300 ml volume inside and thus have been penalized by adding an extra artificial
cost, a matter which is discussed a little later. Currently, it suffices to note that the extra
penalty cost is large enough to make all infeasible solutions have worse fitness values
than that of any feasible solution. We are now ready to apply three genetic operators, as
follows.

3.1¢ Reproduction operator. The primary objective of the reproduction operator is to
emphasize good solutions and eliminate bad solutions in a population, while keeping the
population size constant. This is achieved by performing the following tasks:

Figure 3. A random population of six cans is created.
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(1) Identifying good (usually above-average) solutions in a population.

(2) Making multiple copies of good solutions.

(3) Eliminating bad solutions from the population so that multiple copies of good solutions
can be placed in the population.

. There exist a number of ways to achieve the above tasks. Some common methods are
tournament selection, proportionate selection, ranking selection, and others (Goldberg &
Deb 1991). In the following, we illustrate the binary tournament selection.

As the name suggests, tournaments are played between two solutions and the better
solution is chosen and placed in a population slot. Two other solutions are picked again
and another population slot is filled up with the better solution. If done systematically,
each solution can be made to participate in exactly two tournaments. The best solution in a
population will win both times, thereby making two copies of it in the new population.
Similarly, the worst solution will lose in both tournaments and will be eliminated from
the population. This way, any solution in a population will have zero, one, or two copies in
the new population. It has been shown elsewhere (Goldberg & Deb 1991) that the
tournament selection has better convergence and computational time complexity properties
compared to any other reproduction operator that exists in the literature, when used in
isolation.

Figure 4 shows the six different tournaments played between the old population
members (each gets exactly two turns) shown in figure 3. When cans with a cost of 23 units
and 30 units are chosen at random for tournament, the can costing 23 units is chosen and
placed in the new population. Both cans are replaced in the old population and two cans are
chosen for other tournaments in the next round. This is how the mating pool is formed and
the new population shown in figure 5 is created. It is 'interesting to note how better
solutions (having lesser costs) have made themselves have more than one copy in the new
population and worse solutions have been eliminated from the population. This is precisely
the purpose of a reproduction operator.

Mating Pool

A

i

A

Figure 4. Tournaments played between six population members are shown. Solutions
within the dashed box form the mating pool.
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Figure 5. The population after reproduction operation. Good solutions are retained
with multiple copies and bad solutions are eliminated.

3.1d Crossover operator. The crossover operator is applied next to the strings of the
mating pool. A little thought will indicate that the reproduction operator cannot create any
new solutions in the population. It only makes more copies of good solutions at the expense
of not-so-good solutions. Creation of new solutions is performed in crossover and mutation
operators. Like the reproduction operator, there exist a number of crossover operators in the
GA literature (Spears & De Jong 1991), but in aimost all crossover operators, two strings
are picked from the mating pool at random and some portions of the strings are exchanged
between the strings. In a single-point crossover operator, this is performed by randomly
choosing a crossing site along the string and by exchanging all bits on the right side of the
crossing site.

Let us illustrate the crossover operator by picking two solutions (called parent solutions)
from the new population created after a reproduction operator. The cans and their genotype
(strings) are shown in figure 6. The third site along the string length is chosen at random
and contents of the right side of this cross site are swapped between the two strings. The
process creates two new strings (called children solutions). Their phenotypes (the cans) are
also shown in the figure. Since a single cross site is chosen here, this crossover operator is
called the single-point crossover operator.

It is important to note that in the above crossover operation we have been lucky and have
created a solution (22 units) which is better in cost than both parent solutions. One may
wonder whether if another cross site were chosen or two other strings were chosen for
crossover, we would have a better child solution every time. A good point to ponder. It is
true that every crossover between any two solutions from the new population is not likely
to find children solutions better than parent solutions, but it will be clear in a while that the
chance of creating better solutions is far better than random. This is true because parent
strings being crossed are not any two arbitrary random solutions, they have survived
tournaments played with other solutions during the reproduction phase. Thus, they are
expected to have some good bit combinations in their string representations. Since a single-
point crossover on a pair of parent strings can only create [ different string pairs with bit

: . ' ——_—
31 (810) 01000 01010 01010 00110 (10,6)

: ) = 1
73146 01110 00110 01100 01010 (12,10)

Figure 6.  An illustration of the single-point crossover operator. Two parent solutions
chosen from mating pool to create two new children solutions.

|




An introduction to genetic algorithms 301

(10,6) 01010 00110 - 01000 00110 (8,6)

Figure 7. An illustration of the mutation operation. The fourth bit is mutated to create
a new string.

combinations from either string, the created children solutions are also likely to be good
strings. Moreover, every crossover may not create better solutions, but we do not worry
about it too much. If bad solutions are created, they get eliminated in the next reproduction
operator and hence have a short life. But let us think about the other possibility — when a
good solution is created (and which has a better chance of happening). Since it is better, it
is likely to get more copies in the next reproduction operator and it is likely to get more
chances to perform crossovers with other good solutions. Thus, more solutions are likely to
have similar chromosomes like it. This is exactly how biologists and evolutionists explain
the formation of complex life forms from simple ones (Dawkins 1976, 1986; Eldredge
1989).

In order to preserve some good strings selected during the reproduction operator, not all
strings in the population are used in crossover. If a crossover probability of p. is used then
100p. % strings in the population are used in the crossover operation and 100(1 — p.)% of
the population are simply copied to the new population?.

3.1e Mutation operator: The crossover operator is mainly responsible for the search

aspect of genetic algorithms, even though the mutation operator is also used for this .

purpose sparingly. The mutation operator changes a 1 to a 0 and vice versa with a small
mutation probability, p,,. The need for mutation is to keep diversity in the population.
Figure 7 shows how a string obtained after reproduction and crossover operators has been
mutated to another string, representing a slightly different can. Once again, the solution
obtained is better than the original solution. Although, it may not happen all the times,
mutating a string with a small probability is not a random operation since the process has a
bias for creating a few solutions in the neighbourhood of the original solution.

These three operators are simple and straightforward. The reproduction operator selects
good strings and the crossover operator recombines good substrings from two good strings
together to form a hopefully better substring while the mutation operator alters a string
locally to create a better string. Even though none of these claims are guaranteed and/or
tested during a GA generation, it is expected that if bad strings are created they will be
eliminated by the reproduction operator in the next generation and if good strings are
created, they will be emphasized. Later, we shall see some intuitive reasoning as to why
GAs with these simple operators may constitute potential search algorithms.

3.2 Fundamental differences

As seen from the above description of a GA’s working principles, GAs are very different
from most of the traditional optimization methods. The fundamental differences are
described in the following paragraphs.

GAs work with a coding of variables instead of the variables themselves. Binary GAs
work with a discrete search space, even though the function may be continuous. On the

2 Bven though top (1 — p,)100% of the current population can be copied deterministically to the new population,
this is usvally performed at random.
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other hand, since function values at various discrete solutions are required, a discrete or
discontinuous function may be tackled using GAs. This allows GAs to be applied to a wide
variety of problem domains. The other advantage is that GA operators exploit the
similarities in string-structures to make an effective search. We shall discuss more about this
matter a little later. One of the drawbacks of using a coding is that a suitable coding must
be chosen for proper working of a GA. Although it is difficult to know beforehand what
coding is suitable for a problem, a plethora of experimental studies (Back et al 1997)
suggest that a coding which respects the underlying building block processing must be used.

The more striking difference between GAs and most of the traditional optimization
methods is that GAs work with a population of solutions instead of a single solution. Since
there is more than one string that is processed simultaneously and used to update any one
string in the population, it is very likely that the expected GA solution may be a global
solution. Even though some traditional algorithms are population-based, like Box’s
algorithm (Box 1965), these methods do not use the obtained information efficiently.
Moreover, since a population is what is updated at every generation, a set of solutions (in
the case of multimodal optimization, multiobjective Pareto optimization, and others) can be
obtained simultaneously, a matter we discuss in §5.

In discussing GA operators or their working principles as above, nothing has been
mentioned about the gradient or any other auxiliary problem information. In fact, GAs do
not require any auxiliary information except the objective function values, although
problem information can be used to speed up the GA’s search process. Direct search
methods used in traditional optimization also do not require gradient information explicitly,
but in some of the methods search directions are found using objective function values that
are similar in concept to the gradient of the function. Moreover, some classical direct
search methods work under the assumption that the function to be optimized is unimodal.
GAs do not impose any such restrictions.

The other difference is that GAs use probabilistic rules to guide their search. On the face
of it, this may look ad hoc, but careful thinking may provide some interesting properties of
this type of search. The basic problem with most of the traditional methods is that there are
fixed transition rules to move from one solution to another. That is why these methods, in
general, can only be applied to a special class of problems, where any solution in the search
space leads to the desired optimum. Thus, these methods are not robust and simply cannot
be applied to a wide variety of problems. In trying to solve any other problem, if a mistake
is made early on, since fixed rules are used, it is very hard to recover from that mistake.
GAs, on the other hand, use probabilistic rules and an initial random population. Thus,
early on, the search may proceed in any direction and no major decision is made in the
beginning. Later on, when population has converged in some locations the search direction
narrows and a near-optimal solution is found. This nature of narrowing the search space as
generation progresses is adaptive and is a unique characteristic of GAs. This characteristic
of GAs also permits them to be applied to a wide class of problems giving them the
robustness that is very useful in solving a variety of optimization problems.

Another difference with most of the traditional methods is that GAs can be easily and
conveniently used in parallel machines. By using tournament selection, where two strings
are picked at random and the better string is copied in the mating pool, only two processors
are involved at a time. Since any crossover operator requires interaction between only two
strings, and since mutation requires alteration in only one string at a time, GAs are suitable
for parallel machines. There is another advantage. Since in real-world design optimization
problems, most computational time is spent in evaluating a solution, with multiple
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processors all solutions in a population can be evaluated in a distributed manner. This will
reduce the overall computational time substantially.

Every good optimization method needs to balance the extent of exploration of the
information obtained up to the current time with the extent of exploitation of the search
space required to obtain new and better solution(s). If the solutions obtained are exploited
too much, premature convergence is expected. On the other hand, if too much stress is
given on search, the information obtained thus far may not have been used properly.
Therefore, the solution time may be enormous and the search is similar to a random search
method. Most traditional methods have fixed transition rules and hence have fixed amounts
of exploration and exploitational considerations. For example, pattern search algorithms
have a local exploratory search (the extent of which is fixed beforehand) followed by a
pattern search. The exploitation aspect comes only in the determination of search directions.
Box’s method (Box 1965) has almost no exploration consideration and hence is not very
effective. In contrast, the exploitation and exploration aspects of GAs can be controlled
almost independently. This provides a lot of flexibility in designing a GA.

3.3 Theory of GAs

The working principle described above is simple and GA operators involve string copying
and substring exchange and occasional alterations of bits. It is surprising that with any such
simple operators and mechanisms, a potential search is possible. We try to give an intuitive
answer to this doubt and remind the reader that a number of studies are currently underway to
find a rigorous mathematical convergence proof for GAs (Vose 1990; Whitley 1992; Rudolph
1994). Even though the operations are simple, GAs are highly nonlinear, massively multi-
faceted, stochastic, and complex. There have been some studies using Markov chain analysis
that involve deriving transition probabilities from one state to another and manipulating them
to find the convergence time and solution. Since the number of possible states for a reasonable
string length and population size become unmanageable even with the high-speed computers
available today, other analytical techniques may be used to predict the convergence of GAs.
This is not to say that no such proof is possible for GAs nor to discourage the reader from
pursuing studies relating to convergence of GAs; rather this is all the more mentioned here to
highlight that more emphasis needs to be put in to the study of GA convergence proofs.

In order to investigate why GAs may work, let us reconsider the one-cycle GA application
to a numerical maximization problem.

Maximize sin(x)
Variable bound 0 <x <.

(3)

We use five-bit strings to represent the variable x in the range [0, 7], so that the string
(00000) represents x = 0 solution and the string (11111) represents x = 7 solution. Other
30 strings are mapped in the range [0, 7). Let us also assume that we shall use a population

of size four, proportionate selection®, single-point crossover with probability one, and

3 A string is given a copy in the mating pool proportionate to its fitness value (Goldberg 1989). One way to
implement this operator is to mark a roulette-wheel’s circumference for each solution in the population in
proportion to the solution’s fitness. Then, the wheel is spun N times (where N is the population size), each time
picking the solution marked by the roulette-wheel pointer. This process makes the expected number of copies of
a string having a fitness f; picked for the mating pool equal to f; /. where f is the average fitness of all strings in
the population.
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Table 1. One generation of a GA simulation on function sin(x).

Initial population New population

String  DV¢  x fx) fi/ff AC’® Mating CS* String DV  x fx)

pool
01001 9 0912 0791 1.39 1 01001 3 01000 8 0.811 0.725
10100 20 2.027 0898 1.58 2 10100 3 10101 21 2128 0.849
00001 1 0101 0.101 0.18 0 10100 2 11100 28 2.838 0.299
11010 26 2.635 0485 0.85 1 11010 2 10010 18  1.824 0.968

Average, f  0.569 Average, f 0.711

“DV decoded value of the string; *AC actual count of strings in the population; ¢ CS stands for cross site

bit-wise mutation with a probability 0.01. To start the GA simulation, we create a random
initial population, evaluate each string, and use three GA operators as shown in table 1. The
first string has a decoded value equal to 9 and this string corresponds to a solution
x = 0.912, which has a function value equal to sin(0.912) = 0.791. Similarly, the other
three strings are also evaluated. Since the proportionate reproduction scheme assigns the
number of copies according to a string’s fitness, the expected number of copies for each
string is calculated in column 5. When a proportionate selection scheme is actually
implemented, the number of copies allocated to the strings are shown in column 6.
Column 7 shows the mating pool. It is noteworthy that the third string in the initial
population had a fitness very small compared to the average fitness of the population and
thus was eliminated by the selection operator. On the other hand, the second string being a
good string made two copies in the mating pool. Crossover sites are chosen at random and
the four new strings created after crossover are shown in column 9. Since a small mutation
probability is considered, none of the bits is altered. Thus, column 9 represents the new
population. Thereafter, each of these stings is decoded, mapped, and evaluated. This
completes one generation of GA simulation. The average fitness of the new population is
found to be 0.711, an improvement from the initial population. It is interesting to note that
even though all operators use random numbers, there is a directed search and the average
performance of the population usually increases from one generation to another.

The string copying and substring exchange are all very interesting and seem to improve
the average performance of a population, but let us now ask the question: What has been
processed in one cycle of GA operators? If we investigate carefully we observe that among
the strings of the two populations there are some similarities in string positions among the
strings. By the application of three GA operators, the number of strings with similarities at
certain string positions have been increased from the initial population to the new
population. These similarities are called schema (schemata, in plural) in the GA literature.
More specifically, a schema represents a set of strings with a certain similarity at certain
string positions. To represent a schema for binary codings, a triplet (1, 0, and *) is used. A *
represents both 1 and 0.

Thus a schema H; = (10 * * x) represents eight strings with a 1 in the first position and
a 0 in the second position. From table 1, we observe that there is only one string contained
in this schema H, in the initial population, while there are two strings contained in this
schema in the new population. On the other hand, even though there was one representative
string of the schema Hy =(00 % * %) in the initial population, there is none in the new
population. There are a number of other schemata that we may investigate and conclude
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whether the number of strings they represent is increased from the initial population to the
new population or not. But what do these schemata mean anyway?

Since a schema tepresents certain similar strings, it can be thought of representing a
certain region in the search space. For the above function the schema H, represents strings
with x values varying from 1.621 to 2.331 with function values varying from 0.999 to
0.725. On the other hand, the schema H, represents strings with x values varying from 0.0
to 0.709 with function values varying from 0.0 to 0.651. Since our objective is to maximize
the function, we would like to have more copies of strings representing schema H| than Hj.
This is what we have accomplished in table 1 without having to count all these schema
competitions and without the knowledge of the complete search space, but by manipulating
only a few instances of the search space. The schema H, for the above example has only
two defined positions (the first two bits) and both defined bits are tightly spaced (very close
to each other) and contain the possible near-optimal solution (the string (1 0000) is the
optimal string in this problem). The schemata that are short and above-average are known
as building blocks. While GA operators are applied to a population of strings, a number of
such building blocks in various parts along the string get emphasized, like H, in the above
example. Finally, these little building blocks get grouped together due to the combined
action of GA operators to form bigger and better building blocks. This process causes the
GAs to finally converge to the optimal solution. In the absence of any rigorous convergence
proofs, this is what is hypothesized to be the reason for GA’s success. This hypothesis is
largely known as building block hypothesis.

4. Constrained optimization using GAs

The above discussion of the can design problem avoids detailed consideration of cons-
traints, instead a simple penalty term is used to penalize infeasible solutions. Let us discuss
the difficulties of such a simple method and present an efficient way of handling constraints.

Typically, an optimal design problem having N variables is written as a nonlinear
programming (NLP) problem, as follows:

Minimize f(x)
Subject to  gj(x) >0, j=12,...,J, @
he(x) =0, k=1,2,...,K,
A <x <™ i=12,...,N.
In the above problem, there are J inequality and K equélity constraints. The can design
problem has two (N= 2) variables, one (J = 1) inequality constraint and no (K=0)

equality constraint. The simple penalty function method converts the above constrained
NLP problem to an unconstrained minimization problem by penalizing infeasible solutions:

J K
P(x,R,r) =f(x) + > Rilgi(x)* + S~ relhe()) (5)
J=1 k=1

The parameters R; and r; are the penalty parameters for inequality and equality constraints
respectively. The success of this simple approach lies in the proper choice of these
penalty parameters. One thumb rule of choosing the penalty parameters is that they must
be so set that all penalty terms are of comparable values within themselves and with
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the objective function values. This is intuitive because if the penalty corresponding to
a particular constraint is very large compared to that of other constraints, the search
algorithm emphasizes solutions that do not violate the former constraint. This way other
constraints get neglected and the search process gets restricted in a particular way. In
most cases, search methods prematurely converge to a suboptimal feasible or infeasible
solution.

Since a proper choice of penalty parameters is the key aspect of the working of such a
scheme, most researchers experiment with different values of penalty parameter values and
find a set of reasonable values. In order to reduce the number of parameters, an obvious
strategy often used is to normalize the constraints so that only one penalty parameter value
can be used (Deb 1995). Consider the constraint g (d,h) in the can design problem. After
normalizing, this constraint can be written as follows:

wd*h
4

50 that the constraint violation is between [—1,0]. If there was another constraint in the can
design problem which was also normalized like g1, then both constraints would have been
emphasized equally. In such cases, a search and optimization method works much better if
an appropriate penalty parameter value (Deb & Goyal 1999) is used.

Since GAs work with a population of solutions, instead of a single solution, a better
penalty approach can be used. The penalty function approach also exploits the ability to
have pair-wise comparisons of tournament selection operators as discussed earlier. During
tournament selection, the following criteria are always enforced.

gi1(x) = /300 -1 >0, (6)

(1) Any feasible solution will have a better fitness than any infeasible solution,
(2) Two feasible solutions are compared based only on their objective function values.
(3) Two infeasible solutions are compared based on the amount of constraint violations.

Figure 8 shows a unconstrained single-variable function f (x) which has a minimum
solution in the infeasible region. The fitness F(x) of any infeasible or feasible solution is
defined as follows:

Fx), if gj(x) =0, Vjé],
Flx) = { Sinax + E}=1(gj(x)), otherwise. ™)

The parameter fy.x is the maximum function value of all feasible solutions in the
population. The objective function f (x), constraint violation (g(x)), and the fitness function
F(x) are shown in the figure. It is important to note that F(x) = f(x) in the feasible region.
When a tournament selection operator is applied to a such a fitness function F(x), all three
criteria mentioned above will be satisfied and there will be selective pressure towards the
feasible region. The figure also shows how the fitness value of six arbitrary solutions will
be calculated. Thus, under this constraint handling scheme, the fitness value of an infeasible
solution may change from one generation to another, but the fitness value of a feasible
solution will always be the same. Since the above constraint handling method establishes a
hierarchy among infeasible solutions and tournament selection does not depend on the
exact fitness values, their relative difference is important and any arbitrary penalty
parameter will also work. In fact, there is no need for any explicit penalty parameter. This
is a major advantage of this constraint handling method. It is important to note that such a
constraint handling scheme without the need for a penalty parameter is possible because

|
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Figure 8. An efficient constraint handling scheme is illustrated. Six solid circles are
solutions in a GA population.

GAs use a population of solutions and pair-wise comparison of solutions is possible using
the tournament selection. For the same reason, such schemes cannot be used with classical
point-by-point search and optimization methods.
To show the efficacy of this constraint handling method, we apply GAs with this method
to solve a two-variable, two-constraint NLP problem:
Minimize fi(x1,%) = (6 +% — 1) + (%) + x5 — 7%,
Subject to  g1(x) = 4.84 — 23 — (12— 2.5)" 20,
02(%) = (1 — 0.05) + (12 —2.5)° — 484> 0,
0<x <6,0<x <6

(8)

The unconstrained objective function fi(x1,x) has a minimum solution at (3,2) with a
function value equal to zero. However, due to the presence of constraints, this solution is no
more feasible and the constrained optimum solution is x* = (2.246826,2.381865) with a
function value equal to f; = 13.59085. The feasible region is a narrow crescent-shaped
region (approximately 0.7% of the total search space) with the optimum solution lying on
the second constraint, as shown in figure 9. GAs with a population of size 50 is run for 50
generations. No mutation is used here. Figure 9 shows how a typical GA run distributes
solutions around the crescent-shaped feasible region and finally converges to a feasible
solution very close to the true optimum solution.

5. Advanced GAs

The simple GAs described above has been extended to solve different search and optimiza-
tion problems. Some of them are listed and discussed in brief in the following:
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Figure 9. Population history at initial genération (marked with open circles), at
generation 10 (marked with ‘x’) and at generation 50 (marked with open boxes) using
the proposed scheme. The population converges to a solution very close to the true
constrained optimum solution on a constraint boundary.

5.1 Real-coded GAs

In §3 we have discussed binary GAs where variables are represented by a binary string.
However, this is not always necessary and variables taking real values can be used directly.
Although the same reproduction operator described here can be used, the trick lies in using
efficient crossover and mutation operators (Eshelman & Schaffer 1993; Deb & Agrawal
1995; Deb & Kumar 1995). The real-coded GAs eliminate the difficulties of achieving
arbitrary precision in decision variables and the Hamming Cliff problem (Goldberg 1989)
associated with binary string representation of real numbers.

The crossover is performed variable by variable. For crossing the ith variable between
two parent solution vectors (having x! and x? values), the following procedure is used to
create two new values (y! and y?) using a probability distribution (P(8)) described as
follows (Deb & Agrawal 1995):

PB) = o.5(n+1)@1¢5,

if <1,
)

otherwise,

where the parameter 3 is the ratio of the difference in the children and parent solutions:

1 2
Yi — Y
1 p)
X; — X

B= : (10)

The procedure for calculating children solutions are as follows:

(1) Create a random number u between 0 and 1.
(2) Find a f for which [ P(6)dS = u.

F’
!
|
|
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(3) The children are calculated as

) = 05((x) +2) - B — 2l
7 = 0.5[(x] ) + Bt = a1

The probability distribution is chosen to produce near-parent solutions with a larger
probability than solutions far away from parent solutions. The parameter 7 determines how
close children solutions can become with respect to parent solutions. A small value of 7
makes children solutions to be away from parents and a large value allows children solutions
to be close to parents. It has been observed that a value of n = 2 works well in most cases
(Deb & Agrawal 1995).

Since the probability term is defined with a non-dimensionalized parameter S, this
crossover operator is adaptive in nature. Initially, when the population is randomly created,
parents are likely to be far away from each other and this crossover operator has an almost
uniform probability to create any solution in the search space. On the other hand, after
sufficient number of generations when the population is converging to a narrow region,
parents are closer to each other. This crossover will then not allow distant solutions to be
created and instead will find solutions closer to parents, thereby allowing GAs to have
arbitrary precision in solutions. The above distributions can also be extended for bounded
variables. A discrete version of this probability distribution is also designed to tackle
discrete search space problems (Deb & Goyal 1999). Along this line, a real-coded mutation
operator is also developed to find a perturbed child solution from a parent solution using a
probability distribution (Deb & Goyal 1999).

5.2  Multimodal optimization

Many real-world problems contain multiple solutions that are optimal or near-optimal. The
knowledge of multiple optimal solutions in a problem provides flexibility in choosing
alternate yet equally good solutions as and when required. In trying to find more than one
optimal solutions using traditional point-by-point methods, repeated application of the
optimization algorithm with different initial points is required. This requires some
knowledge of the basin of attraction of desired optima in the problem, otherwise many
restarts may converge to the same optimum. Since GAs work with population points, a
number of optimal solutions may be made to coexist in the population, thereby allowing us
to find multiple optimal solutions simultaneously.

The idea of a number of optimal solutions coexisting in a population requires some
change in the simple genetic algorithms described in the previous section. Borrowing the
analogy of coexisting multiple niches in nature, we recognize that multiple niches (human
and animals, for example) exist by sharing available resources (land and food, for example).
A similar sharing concept is introduced artificially in a GA population by sharing functions
(Goldberg & Richardson 1987; Deb 1989; Deb & Goldberg 1989), which calculate the
extent of sharing that needs to be done between two strings. If the distance (could be some
norm of the difference in decoded parameter values) between ith and jth strings is djj,
usually a linear sharing function is used: '

L\ [1=(dy/e), ifdy<o; | 1
Shidy) = {0, otherwise. (1)




310 Kalyanmoy Deb

The parameter o is the maximum distance between two strings for them to be shared and is
fixed beforehand (Deb 1989). The sharing enhancement to the simple GAs is as follows.
For every string in the population, the sharing function value is calculated for other strings
taken either from a sample of the population or from the whole population. These sharing
function values are added together to calculate the niche count, m; = > Sh(dy;). Finally,
the shared fitness of the ith string is calculated as f; = f;/m; and this shared fitness is used
in the reproduction operator instead of the objective function value f;. Other operators are
used as before. This allows coexistence of multiple optimal solutions (both local and
global) in the population for the following reason. If in a generation, there exist fewer
strings from one optimal solution in the population, the niche count for these strings will be
smaller compared to strings from other optima and the shared fitness of these strings will
be higher. Since the reproduction operator will now emphasize these strings from the
extinct optima, there will suddenly be more strings from this optima in the population. This
is how sharing would maintain instances of multiple optima in the population. GAs with
this sharing strategy has solved a number of multimodal optimization problems, including a
massively multimodal problem having more than five million local optima, of which only
32 are global optima (Goldberg et al 1992).

5.3 Multi-objective optimization

In a multiobjective optimization problem, there are more than one objective functions,
which are to be optimized simultaneously. Traditionally, the practice is to convert multiple
objectives into one objective function (usually a weighted average of the objectives is used)
and to then treat the problem as a single objective optimization problem. Unfortunately,
this technique is subjective to the user, with the optimal solution being dependent on the
chosen weight vector. In fact, the solutions of the multiobjective optimization problem can
be thought as a collection of optimal solutions obtained by solving different single objective
functions formed using different weight vectors. These solutions are known as Pareto-
optimal solutions.

In order to find a number of Pareto-optimal solutions, different extensions of GAs
have been tried in the recent past (Fonseca & Fleming 1993; Homn & Nafpliotis 1993;
Srinivas & Deb 1995). Because of their population approach, GAs are ideal candidates to
solve these kinds of problems. In one implementation of GAs, the concept of nondominated
sorting of population members'is used. We briefly describe this method in the following.

GA:s require only one fitness value for an individual solution in the population. Thus, an
artificial fitness value must be assigned to each solution in the population depending on the
comparative values of each objective function. In order to assign a fitness measure to each
solution, Srinivas & Deb (1995) have borrowed Goldberg’s (1989) idea of nondomination
among population members. In a population, the nondominated solutions are defined as
those solutions which are better in at least one objective than any other solution in the

population. In order to implement nondominated sorting concept, the following procedure
is adopted:

e The population is sorted to find the nondominated set of solutions. All individuals in this
subpopulation are assigned a large artificial fitness value.

e Since the objective is to find a number of Pareto-optimal solutions, sharing procedure
described earlier is performed among these nondominated solutions and a new shared
fitness is calculated for each of these solutions.

S
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e These solutions are temporarily counted out of the population and the next
nondominated set is found. These solutions are assigned an artificial fitness value
marginally smaller than the least shared fitness value in the previous nondominated set.
This is done to impose a higher preference for solutions in the previous (and better) set
than for the current set.

e Sharing is performed again among the new nondominated set and this process continues
till all population members are ranked in descending order of the nondominated sets.

o Thereafter, the reproduction operation is performed with these artificial fitness values.

e Crossover and mutation operators are applied as usual.

This extension of GAs has been applied to solve a number of test problems (Srinivas &
Deb 1995) and a number of engineering design optimization problems (Srinivas 1994; Deb
& Kumar 1995).

5.4 GAs in fuzzy logic controller design

Fuzzy logic techniques are primarily applied in optimal control problems where quick
control strategy is needed and imprecise and qualitative definition of action plans are
available. There are primarily two activities in designing an optimal fuzzy controller:

(1) Find optimal membership functions for control and action variables, and
(2) find an optimal set of rules between control and action variables.

In both these cases, GAs have been suitably used. Figure 10 shows typical membership
functions for a variable (control or action) having three choices — low, medium, and
high. Since the maximum membership function value of these choices is always one,
the abscissas marked x; is usually chosen by the user. GAs can treat these abscissas as
variables and an optimization problem can be posed to find these variables for minimizing
or maximizing a control strategy (such as time of overall operation, product quality, and
others). A number of such applications exist in the literature (Karr 1991; Herrera & Verdegay
1996).

The second proposition of finding an optimal rule base using GAs is unique and also
more interesting. Let us take an example to illustrate how GAs can be uniquely applied to
this problem. Let us assume that there are two control variables (temperature and humidity)
and there are three options for each — low, medium, and high. There is one action variable
(water jet flow rate) which also takes one of three choices — low, medium, and high. With

Low Medium High

0 - e
T1 T2 3 Parameter

Figure 10. Fuzzy membership functions and typical variables used for optimal design.
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Table 2. Action variable for a string representing a fuzzy rule base shown
in slanted fonts.

Temperature
Humidity Low Medium High Don’t care
Low High Medium Medium
Medium Low Medium Medium
High Medium High
Don’t care High

these options, there are a total of 3 x 3 or 9 combinations of control variables possible. In
fact, considering the individual effect of control variable separately, there are a total of
(4 x 4 — 1) or 15 total combinations of control variables possible. Thus, finding an optimal
rule base is equivalent to finding one of the four options (fourth option is no action) of the
action variable for each combination of the control variables. A GA with a string length of
15 and with a ternary-coding can be used to represent the rule base for this problem. The
following is a typical string:

312424344243224.

Each position in the string signifies a combination of action variables. In the above coding,
a 1 represents low, a 2 represents medium, a 3 represents high value of the action variable,
and a 4 means no action, thereby signifying the absence of the corresponding combination
of action variables in the rule base. Thus, the above string represents a rule base having 9
rules (with non-4 values). The rule base does not contain 6 combinations of action variables
(namely, 4th, 6th, 8th, 9th, 11th, and 15th combinations). Table 2 shows the corresponding
rule base. Although this rule base may not be the optimal one, GAs can process a
population of such rule bases and finally find the optimal rule base. Once the rules present
in the rule base are determined from the string, user-defined fixed membership functions
can be used to simulate the underlying process. Thereafter, the objective function value can
be computed and the reproduction operator can be used. The usual single-point crossover
and a mutation operator (one allele mutating to one of three other alleles) can be used with
this coding. Notice that this representation allows GAs to find the optimal number of rules
and the optimal rules needed to solve the problem simultaneously. In the above problem,
binary strings, instead of ternary strings, can also be used. Each of four options in the action
variable can now be represented by two bits and a total of 30 bits is necessary to represent a
rule base. Since GAs deal with discrete variables and with a string representation of a
solution, the above scheme of finding an optimal rule base with optimal number of rules is
unique in GAs. One such technique has been used to design a fuzzy logic controller for
mobile robot navigation among dynamic obstacles (Deb et al 1998).

It is interesting to note that both optimal membership function determination and optimal
rule base identification tasks can be achieved simultaneously by using a concatenation of
two codings mentioned above. A part of the overall string will represent the abscissas of the
control variables and the rest of the string will represent the rules present in the rule base.

The overall fitness of the string is then calculated using both the membership function as
well as the rule base obtained from the string.
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5.5 GAs with neural networks

Neural networks have been primarily used in problems where a non-mathematical
relationship between a given set of input and output variables is desired. GAs can be used
nicely in two major activities in neural network applications.

(1) GAs can be used as a learning algorithm (instead of the popular backpropagation
method McClelland & Rumelhart 1988) for a user-defined neural network and,

(2) GAs can be used to find the optimal connectivity among input, output, and hidden
layers (with identification of number of neurons in the hidden layers).

Once the network connectivity is fixed, each connection weight in the network including
the biases can be used as a variable in the GA string. Instead of using backpropagation or
other learning rules, GAs can be cranked to find the optimal combination of weights which
would minimize the mean-squared error between the desired and obtained outputs. Since the
backpropagation algorithm updates the weights based on steepest gradient descent approach,
the algorithm has a tendency to get stuck at locally optimal solutions. GA’s population
approach and inherent parallel processing may allow them not to get stuck at locally optimal
solutions and may help proceed near the true optimal solutions. The other advantage of using
GAs is that they can be used with a minor change to find an optimal connection weight for a
different objective (say, minimizing variance of the difference between desired and obtained
output values, and others). To incorporate any such change in the objective of neural network
technique using the standard practice will require development of a very different learning

‘rule, which may not be tractable for some objectives.

The optimal connectivity of a neural network can also be found using GAs. This problem
is similar to finding optimal truss structure optimization problems (Sandgren & Jensen
1990; Chaturvedi et al 1995) or finding optimal networking problems. The standard search
techniques used in those problems can also be used in optimal neural network design
problems. A bit in a string can represent the existence 1 or absence 0 of a connection
between two neurons. Thus, in a network having I input neurons, O output neurons, and
one hidden layer having H neurons, the overall string length is I X H+H x O +1 x O.
Biases in each neuron can also be considered. Each string, thus, represents one neural
network configuration and a fitness can be assigned based on how close an output it finds
compared to the desired output with a fixed number of epochs. Evolution of neural
networks in this fashion has resulted in networks which were more efficient than what
human designers could think of (Miller et al 1991) and it is important to realize that both
problems of finding an optimal network and finding optimal connection weights in the
neural network can also be coded simultaneously in a GA. The optimal solution thus found
will be the true optimal solution of the overall problem which is likely to be better than that
obtained in any of the individual optimization problems. GAs offer an efficient way to
solve both the problems simultaneously (Winter et al 1996).

5.6 Searching for optimal schedules

Job-shop scheduling, time tabling and travelling salesman problems are solved using GAs.
A solution in these problems is a permutation of N objects (name of machines or cities).
Although reproduction operator similar to one described here can be used, the crossover
and mutation operators must be different. These operators are designed in order to produce
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offsprings which are valid and yet have certain properties of both parents (Goldberg 1989;
Davis 1991, Starkweather et al 1991).

5.7 Non-stationary function optimization

The concept of diploidy and dominance can be implemented in a GA to solve non-
stationary optimization problems. Information about earlier good solutions can be stored in
recessive alleles and when needed can be expressed by suitable genetic operators (Goldberg
& Smith 1987).

This paper was written while the author was visiting the University of Dortmund, Germany
on an Alexander von Humboldt fellowship. The author greatly acknowledges the support
from the Alexander von Humboldt Foundation and the Department of Science and
Technology, Govt. of India.
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