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Dynamic Multiobjective Optimization Problems: Test
Cases, Approximations, and Applications

Marco Farina, Kalyanmoy Deb, and Paolo Amato

Abstract—After demonstrating adequately the usefulness of
evolutionary multiobjective optimization (EMO) algorithms in
finding multiple Pareto-optimal solutions for static multiobjective
optimization problems, there is now a growing need for solving dy-
namic multiobjective optimization problems in a similar manner.
In this paper, we focus on addressing this issue by developing a
number of test problems and by suggesting a baseline algorithm.
Since in a dynamic multiobjective optimization problem, the
resulting Pareto-optimal set is expected to change with time (or,
iteration of the optimization process), a suite of five test prob-
lems offering different patterns of such changes and different
difficulties in tracking the dynamic Pareto-optimal front by a
multiobjective optimization algorithm is presented. Moreover, a
simple example of a dynamic multiobjective optimization problem
arising from a dynamic control loop is presented. An extension to
a previously proposed direction-based search method is proposed
for solving such problems and tested on the proposed test prob-
lems. The test problems introduced in this paper should encourage
researchers interested in multiobjective optimization and dynamic
optimization problems to develop more efficient algorithms in the
near future.

Index Terms—Applications, dynamic fitness landscapes, evolu-
tionary multiobjective optimization, test cases.

I. INTRODUCTION

OVER THE past decade or so, multiobjective optimization
literature has witnessed a radically different perspec-

tive in solving the problems using evolutionary computing
methods compared with the classical methods. Since these
problems involve a multitude of optimal solutions, known as
Pareto-optimal solutions, evolutionary multiobjective optimiza-
tion (EMO) methods attempt to find a widely distributed set
of solutions as close to the true Pareto-optimal front (POF) as
possible in a single simulation run. These approaches not only
provide a good idea of the extent (ideal and nadir solutions) of
the true POF but also provide information about the shape of
the front [1] and existence of any “knee” solution [2]. They also
allow users to investigate the obtained solutions to decipher any
interesting properties of the optimal solutions [3]. Despite the
usefulness of the EMO algorithms, there has been lukewarm
interest in extending the ideas to solving dynamic multiobjec-
tive optimization problems. In this paper, we address this issue
and suggest a suite of test problems for both continuous and
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discrete dynamic multiobjective optimization problems and
also suggest a baseline algorithm for tackling such problems.

The EMO literature contains a large number of static (not
changing during the course of optimization) test problems cov-
ering different types of difficulties which may be encountered
by an EMO algorithm when converging toward the POF [4],
[5]. As mentioned, these problems require a static optimiza-
tion procedure, in which the task is to find a set of design
variables to optimize the objective functions which are static,
but several other important real-world applications require a
time-dependent (on-line) multiobjective optimization, in which
either the objective function and constraint or the associated
problem parameters or both vary with time (iteration of the
optimization process). In handling such problems, not many
EMO algorithms exist, and certainly, there is a lack of test
problems to adequately test a dynamic evolutionary multiob-
jective optimization (DEMO) algorithm.

Besides suggesting a set of test problems, in this paper we also
discuss an adaptive control problem of a time-varying system,
where the optimal controller is time-dependent because the
system’s properties are time-dependent. Moreover, we consider
multiple objectives for the controller dynamic optimization,
and we give a formulation of the resulting dynamic multiob-
jective optimization problem. Optimal design of controllers is
a classical field of application for evolutionary computation
(see [6] for a review of applications) and evolutionary multiob-
jective optimization. Once the closed-loop stability is assured,
several additional criteria for performance enhancement can
be considered such as maximum overshooting minimization,
settling time minimization, and rise time minimization, in order
to design stable and powerful controllers. Several examples of
such an optimization procedure are available in the literature
in the case of static problems, that is, when the optimization is
to be performed offline and when the model of the system (the
plant or the device) is not time dependent. Two early examples
can be found in [7], where some controllers (among which an

one) are optimized with an EMO algorithm. Another
classical application of EMO for static controller optimization
considers fuzzy rule set optimization for fuzzy controllers;
some examples can be found in [8] and [9].

When considering dynamic single-objective optimiza-
tion problems, the use of genetic algorithms (GAs) for a
time-dependent fitness landscape [10] has been considered for
single-objective problems, and several studies are available
in the literature (see as examples [11]–[13]). Major modifi-
cations in the operators are required for a prompt reaction to
time-dependent changing [13] because in the balance between
convergence and exploration, a bigger weight is to be given to
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the second feature, so that the algorithm can react promptly to
time changes [14]–[17]. Moreover, several other strategies for
dynamic optimization procedure for single-objective problems
are also proposed in the literature. A promising method for
dynamic optimization algorithm development seems to be the
exploitation of an artificial life (A-life) paradigm (see [18]
and [19] for a detailed overview) and the hybridization of it
with evolutionary computation [20], [21]. The A-life is in fact
a flexible and dynamic computational paradigm to mimic the
natural search in dynamic environments [22]. Moreover, the
hybridization between different computational paradigms [23]
such as immune systems and GAs [24] seems to be particularly
suited to the same scope. An additional example can be found
in [25], where an A-life inspired algorithm was developed.
However, when dynamic multiobjective optimization is con-
cerned, very few studies are available in the literature [26],
[27], and a complete formulation of the problem together with
a set of adequate test problems is still missing.

In this paper, we make an attempt to fill this gap and suggest
a test suite of five problems testing various aspects of tracking
the Pareto-optimal set (POS) whenever there is a change in the
problem. Hopefully, this paper will motivate researchers inter-
ested in dynamic optimization problems to develop and test
their algorithms toward creating efficient dynamic multiobjec-
tive EAs.

II. PROBLEM DEFINITION

From the most general point of view, any dynamic multi-
objective optimal control problem can be represented as the fol-
lowing parameterized multiobjective optimization problem.

Definition II.1: Let , , and be -dimensional,
-dimensional, and -dimensional continuous or discrete

vector spaces, and be two functions defining inequalities
and equalities constrains, and be a function from
to . A parameterized multicriteria minimization problem
with objectives is defined as

In the problem defined above, some variables are available for
optimization , and some others are imposed parame-
ters that are independent from the optimization variables. Both
objective functions and constrains are parameter-dependent and
can be nonlinear. A special case of the above problem is the fol-
lowing, where only one parameter—time —is considered.

Definition II.2: Let be the time variable, and be -di-
mensional and -dimensional continuous or discrete vector
spaces, and be two functions defining inequalities and
constraint equalities, and be a function from to .
A dynamic multicriteria minimization problem with ob-
jectives is defined as

For the above problem, we define two sets of solutions which
we shall mention throughout in this paper.

Definition II.3: We call the POS at time and the
POF at time the set of Pareto-optimal solutions at
time in decision variable and objective spaces, respectively.

The ideal point (frequently called utopia point [28]) is
time-dependent in these problems and is defined as follows.

Definition II.4: Time-dependent utopia point

(1)

where s.t. is the time-
dependent search space satisfying time-dependent constraint.
The utopia point corresponds in the design space to the fol-
lowing ( being the dimension of search space) matrix

, where each line is the minimum in one objective and is,
thus, defined as follows:

s.t. (2)

Note that may have equal lines (e.g. lines and ) if no
clash holds between objective and . For two-objective prob-
lems, some primary information on bounds of the time-depen-
dent POF may be easily obtained from the evaluation of
the following time-dependent payoff [28] matrix

otherwise
(3)

For the derivation of bounds from in case of more
than two objectives, refer to [28], where details are given for the
static case. The extension to the dynamic case is also straight-
forward. Moreover, once the time-dependent payoff matrix is
computed the time-dependent nadir point can be easily es-
timated through a straightforward extension of those formulas
that are used in the static case [28]. As an example, the following
approximated formula can be used:

(4)

III. TEST PROBLEMS

In this section, we suggest a number of test problems for dy-
namic multiobjective optimization for continuous and discrete
search spaces. Unlike in the single-objective dynamic optimiza-
tion problems, where the ordering criterion in decision space is
trivial, here we are dealing with two distinct yet related spaces
where an ordering criterion is to be considered: decision variable
space and objective space. Such an increased complexity holds
true for static problems and even more for dynamic problems,
where there are four possible ways a problem can demonstrate
a time-varying change.

Type I) The POS (optimal decision variables) changes,
whereas the POF (optimal objective values)
does not change.

Type II) Both and change.
Type III) does not change, whereas changes.
Type IV) Both and do not change, although the

problem can change.
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TABLE I
FOUR DIFFERENT TYPES OF A DEMO PROBLEM

These four cases are summarized in Table I. There is, of course,
a possibility that while the problem is changing, more types
of above changes can occur simultaneously in the time scale.
Moreover, in this paper, no attention is given to the decision
maker’s preferences, which may be time-dependent as well.
Furthermore, new objectives may be added with iteration or
deleted. Here, we concentrate on the first three types of changes,
although we recognize that the Type IV change may also occur
in some special cases. A Type IV change means a change in the
system which does not make any change in the POS or POF.

Another aspect worth mentioning here is the rate of change
of the problem with time. There may be a sudden change in
the problem with a comparatively long statis thereafter, or there
may be a gradual yet small change throughout the time scale.
There is certainly a possibility of having both types of changes
in a problem. Although the ability to track the POS for any of the
above changes demands an adequate algorithm, here we concen-
trate on handling problems of the former kind in which there is a
sudden change in a problem followed by a long stasis. Although
the suggested test problems can be extended quite easily to de-
velop other kinds of changes discussed above, we emphasize
here that a completely different kind of algorithms than what
is presented here would be required to track the corresponding
time-varying POSs. We belabor these extensions for a future
study.

A. Dynamic Test Problems from Static Test Problems

A straightforward extension of two-objective ZDT [29] and
scalable DTLZ [5] test problems developed earlier is made
here to construct dynamic test problems. Compared with
other suggested test problems [30], these systematic static test
problems allow researchers to investigate different hurdles,
such as nonconvexity, discontinuity, deceptiveness, presence of
local fronts, etc., which a real-world problem may have. When
solving dynamic problems, such difficulties may transform
themselves from one of the above features to another, pro-
viding an increasing difficulty to a multiobjective optimization
algorithm.

A generic two-objective dynamic test problem can be pre-
sented using the construction procedure used in forming the
static ZDT problems [4]

minimize

(5)

where , , and are subsets of design variables set
. In the above test problem, there are three functions , ,

and . A typical functional form for each of the above for the
static case is as follows:

(6)

Each of the above can be changed with time . To make a more
difficult problem, a mapping procedure in which the true de-
cision variable vector is mapped into the variable vector
should be followed before using the above equation [4]. Let us
consider the following different scenarios before we present the
test problem suite.

Scenario 1: The function is redefined as follows:

(7)
while and are kept fixed as above. Equation (7) makes

as the optimal solution for all . Here, each
variable lies in . Since changes with
time, changes with time as well. However, the resulting POF

does not change. Thus, the above change in ZDT functions
will cause a Type I test problem. In order to track the dynamic
POF, the variable subset has to converge to the new value
every time there is a change. The construction of above is such
that for any value of for which will correspond to
a dominated solution with respect to the true POF.

However, if the function is changed as follows:
for

and for , the POF also changes, and the resulting
problem becomes a Type II test problem. Although the require-
ment for an algorithm to track both the current-best and
is to make for all , a check on either or

will enable one to determine if the algorithm is able to track
the new POF.

Scenario 2: Next, the function can be changed as follows:

(8)

Here, a third set of variables (with ) is
introduced to change with time. Functions and are not
changed. The resulting now changes through a change in

only (instead, through required in scenario 1 above).
This is also a Type II test problem.

Interestingly, if and functions are not changed and is
changed as follows:

(9)

the POS does not change, but the POF changes. This
makes the corresponding problem a Type-III problem. Although
the optimal does not need to be changed for such problems to



428 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 5, OCTOBER 2004

remain on the new , there may be an effect of the distribution
of the solution on the new POF for the old solutions. Therefore,
if a well-spread set of solutions is desired every time there is
a change in function, a new decision variable vector is
required to be found. Thus, although this function is termed as a
Type III problem, there will be some changes in the distribution
of solutions in .

Scenario 3: The function can be changed as follows:

(10)

By varying , the density of solutions on the POF can
be varied. Since the objective of an multiobjective evolutionary
algorithm (MOEA) would still be to find a well distributed set
of Pareto-optimal solutions on the new front, the resulting
set (of finite size) needs to be defined in a different way from
before. Since a change in does not change the location of
the POF, or , the resulting problem is a Type I problem.

Scenario 4: A more complex problem can be formed by
changing all three functions by simply varying , , and

. This will result in a Type II test problem. Since both
and will be known in each case, it will be easier to test the
performance of an MOEA. The functions suggested above can
also be changed with more complex functions to construct a
more difficult test problem.

We now discuss how the scalable static DTLZ test problems
[5] can be used to construct scalable dynamic multiobjective
test problems in a similar manner. For completeness, we first
present a typical static -objective, -variable DTLZ function
(say DTLZ2 problem) in the following:

Min.
Min.
...

...
Min.
with

for
(11)

For a three-objective version of the above problem, the POF is
an octant of a sphere of radius one residing on the first quadrant
of the coordinate system and satisfying .
Let us now discuss different ways to convert such a problem into
a dynamic one.

Scenario 5: First, the function can be changed as
follows:

(12)
This will change both and , thereby making the modified
problem a Type II problem. For other DTLZ functions in which
a different function was used (such as in DTLZ1 and DTLZ3),
they can also be changed accordingly. With the above change in
the function on DTLZ5 and DTLZ6 problems (which degen-
erated to have a curve as the POF, as opposed to a three-dimen-
sional hypersphere), the will get changed in an interesting

way. Since the function involves variables to , the
resulting POF may not lead to a curve, instead, for ,
it will lead to a hypersurface, thereby causing a DEMO diffi-
culty in expanding from a curve to a surface for a change in the

function.
Scenario 6: The change of to (where )

for all variables would be another interesting modification. Such
a problem but with a fixed modification was used
in constructing the DTLZ4 function. This will give rise to a Type
I test problem. Since this modification will cause a change of
density of solutions over the POF and in the search space, the
task of finding a well-distributed set of Pareto-optimal solutions
every time there is a change would be a challenging task of a
DEMO. The function in DTLZ7 function can be modified, as
described in ZDT functions above.

Scenario 7: The spherical shape of the POF in DTLZ2 to
DTLZ6 can be changed to an ellipsoidal shape by changing the

term in every expression by ,
where and is defined in (12). Such a
change will lead to a Type II test problem. The POF will then
be defined by . The change of a
spherical hypersurface to ellipsoidal hypersurface will require a
different set of solutions to maintain a good diversity and will
remain a challenging task for a DEMO.

B. Test Suite for Continuous Search Space

Based on the above scenarios, we now suggest a test suite
of five test problems involving ZDT and DTLZ test problems.
However, these test problems can be used as a representative
set of test problems in a study. Interested readers may construct
other more interesting problems using the above construction
procedure.

Definition III.1—FDA1 (Fig. 1): Type I, convex POF

(13)

This test problem is an instantiation of scenario 1 above.
Here, is the generation counter, is the number of gener-

ation for which remains fixed, and is the number of distinct
steps in . We suggest the following parameter values: ,

, and .
The task of a dynamic MOEA would be to find the same POF

every time there is a change in . A horizontal line
in the top plot in Fig. 3 represents how the first two variables of
all solutions vary in a particular time instantiation of the
test problem. At the first time instant, corresponds to

for . With time , the is changed, and every variable
in must change a sinusoidal manner for a change in .
Fig. 3 shows such a change for variable with time. Fig. 3
shows that although the change from one time instant to
another, the corresponding does not change with time.
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Fig. 1. S (t) for FDA1. Variations on only the first two decision variables are
shown for 24 time steps. The corresponding F (t) is shown in Fig. 2.

Fig. 2. F (t) for FDA1; the corresponding S (t) on only the first two
decision variables are shown for 24 time steps in Fig. 1.

Definition III.2—FDA2: Type III, convex to nonconvex
POFs

(14)
This is an instantiation of scenario 2 discussed in the previous

subsection. We recommend in this test
problem. Other parameters are the same as in FDA1. Here, the
POF swings from a convex to a nonconvex shape due to the
change in the function, as shown in Fig. 4, while the cor-
responding (Fig. 3) remains unchanged. It is important to

Fig. 3. S (t) for FDA2. Variations on only the first two decision variables are
shown for 24 time steps. The corresponding F (t) is shown in Fig. 4.

Fig. 4. F (t) for FDA2; the corresponding S (t) on only the first two
decision variables are shown for 24 time steps in Fig. 3.

realize that a change in the shape of the requires a change in
the distribution of (in this case, only in variable) to obtain
a good distribution of solutions on the .

Definition III.3—FDA3 (Fig. 5): Type II, convex POFs

(15)

This is an instantiation of scenario 3 discussed earlier.
Here, we recommend and . In this test

problem, the density of solutions on the POF varies with , as
shown in Fig. 6. Here, both and change with time.
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Fig. 5. S (t) for FDA3. Variations on only the first two decision variables are
shown for 12 time steps. The corresponding F (t) is shown in Fig. 6.

Fig. 6. F (t) for FDA3; the corresponding S (t) on only the first two
decision variables are shown for 12 time steps in Fig. 5.

The task of an MOEA in FDA3 would be to find a widely dis-
tributed set of solutions every time there is a change in , as
shown in Fig. 6.

Definition III.4—FDA4 (Fig. 7): Type I, nonconvex POFs

where

,

(16)

Fig. 7. S (t) for FDA4 with (M � 2)th, (M � 1)th, and M th decision
variables for four time steps. The corresponding F (t) is shown in Fig. 8.

This is an instantiation of scenario 5 discussed earlier.
We recommend , thereby keeping .

Fig. 8 shows the variation of and for this test
problem. Since only changes with time, this is a Type
I problem. Here, the task of a dynamic MOEA would be to find
the same spherical surface (with radius one) whenever there is
a change . One aspect of such test problems is that just by ob-
serving whether the lies on the desired front, the opti-
mality of the solutions can be ascertained.

Definition III.5—FDA5: Type II, nonconvex POFs

where

for

.
(17)

This is an instantiation of scenario 6 discussed earlier.
Identical parameter values as those in FDA4 can be used here.

Here, the density of solutions on the POF changes with , as
shown in Fig. 10. The distribution achieved with a previously
found good distribution will no more be a good one. The task of
an dynamic MOEA would be to find a good distribution every
time there is a change in the density of solutions.

C. Discrete Search Space Test Problems

A discrete version of the above test problems can be chosen by
making all variables discrete. For example, in all problems,

can be assumed to take discrete values in steps of
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Fig. 8. F (t) for FDA. The corresponding S (t) plot with (M�2)th, (M�

1)th, and M th decision variables for four time steps is shown in Fig. 7.

Fig. 9. S (t) for FDA5 with (M � 2)th, (M � 1)th, and M th decision
variables for four time steps.

(= 0.1 or 0.01 can be chosen) in the range [0,1]. To handle
discrete variables, suitable genetic operators (recombination
and mutation) must be used.

Static knapsack problems have been solved successfully
using EMO techniques [31]. Dynamic knapsack problems
having knapsacks can also used as test problems

Maximize

subject to

(18)

Each decision variable takes a value zero or one. If ,
the corresponding item is included in the knapsack. Each of
the knapsacks has a certain capacity . The weight of
item in knapsack is , and the corresponding profit is

. In this problem, each of these quantities can be assumed

Fig. 10. F (t) (low) for FDA5 with (M�2)th, (M�1)th, andM th decision
variables for four time steps.

Fig. 11. Two extreme Pareto-optimal solutions.

to vary with time in a step-like manner, as discussed in the
previous section. Typical values of the parameters which can
be used in a test problem are as follows: ,

, and are integers, and ,
where is the fraction of total weight of the all items.
To start with, can be assumed and be changed
thereafter in a predefined manner. It is intuitive to realize that
a change in any or all of the quantities will make a change in
the corresponding . However, an interesting problem can
be created by just changing the quantity for each knapsack
after some time instant. An increase in will cause more
items to be included in the knapsacks, thereby making more
profits and increasing the objective values. One difficulty in
this problem is that the exact POF for each case cannot be
derived easily, unlike the FDA test problems described earlier.
However, for every new problem, a corresponding integer linear
programming (ILP) problem can be solved using a standard
and reliable software, and the obtained solutions can be used
as known Pareto-optimal solutions.

The combinatorial optimization problems such as the trav-
eling salesman problem (TSP) can also be considered as the
prototype of optimal routing problems [32]. TSP problems are
widely used for testing evolutionary algorithms and heuristic
search strategies. In real-life problems, optimal routing may
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Fig. 12. Time changing of genotype for one particular Pareto-optimal solution.
Arrows mean the changing in the next time step.

require several criteria to be considered and may be required in
a dynamic situation, where features of the search space change
during optimization. We, thus, consider an extension of the
classical TSP as a benchmark for dynamic multiobjective opti-
mization in discrete search spaces. The most general dynamic
multiobjective -city traveling salesman problem (DMTSP)
(with being a permutation of the cities) can be described as
follows:

with

(19)

Fig. 13. Search space in objective domain and POF for an 11-city
multiobjective TSP problem.

As can be seen from (19), both coefficients and coor-
dinates of the cities can be time-dependent; the first case may
express different traffic conditions on the path (also depending
on the permutation ), while the second may represent a change
in the location of the cities.

As a specific test case, we suggest a problem in which
cities are arranged equispaced on the circumference of a circle
of radius one. This example is illustrated to paint a picture to
the reader’s mind about how a dynamic multiobjective TSP
problem can be formulated with interesting yet tractable Pareto-
optimal solutions. The following weight vectors are suggested:

(20)

It is clear that the above two weight vectors will give rise to a
set of Pareto-optimal solutions on which a successive arrange-
ments of the cities and the diametric arrangement of cities are
two extreme solutions (as shown in Fig. 11).

The initial arrangement of cities may be in any order. There-
after, some cities in the first quadrant of the circle can get inter-
changed with the cities from the third quadrant. The number of
cities and the choice of cities to be exchanged can be varied dy-
namically. Fig. 12 shows an exchange of two cities in three time
steps changing the genotype of the schedule from one time in-
stant to another. Since the weight vectors do not change, clearly,
the POF also does not change. For example, the search
space of all solutions (in dots) and the Pareto-optimal solutions
(in circles) for a problem with 11 cities are shown in Fig. 13.
The schedules of 48 different Pareto-optimal solutions are also
shown in Fig. 14. Interestingly, two extreme solutions (shown in
Fig. 11) exist in the set. The transition from one solution to the
other through 46 other different solutions is quite interesting in
this problem.

The above problem is a Type I DMTSP problem. Since the
solution sequence changes with time, it would be the task of a
DEMO to track the modified sequence of cities every time there
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Fig. 14. Pareto-optimal routes for an 11-city multiobjective TSP problem: Routes are sorted using F .

is a change in arrangement of the cities. Since the POF does not
change with time, it would be easy to test the performance of
the DEMO.

D. Dynamic Multiobjective Optimal Control Problem

Finally, as a further example, closer to application, we discuss
a dynamic controller optimization problem. Static controller op-
timization problems require the system to be known and fixed
(but not time-dependent) during the entire optimal control pro-
cedure. This is quite often not true, and a simple example of this
can be the aging of systems or the intrinsic randomness of some
plants. In both cases, because the system changes with time, the
controller is required to be adaptive in order for the closed-loop
system performances to be satisfactory. As an example, consider
the control of combustion in a rubbish burner [33], where the in-
come properties (the rubbish to be burned) are typically random.
We consider here a simplified test case of such a situation, that
is, the control of a randomly varying system through a propor-
tional-integral-derivative (PID) controller. The system’s
and controller’s transfer functions are given as follows:

(21)

where and are time-dependent parameters that can
be varied in order to simulate the aforementioned aging or in-
trinsic random changes in the system. Moreover, in order to in-
troduce some nonlinearity, two additional limits and rate blocks
are inserted (see Fig. 15). The derivative coefficient in the PID
controller has been fixed to , and the other two
coefficients and are to be varied in order for the
closed-loop performances of the controlled system to be as sim-
ilar as possible to a reference response in terms of a small rising
time , a small maximum overshooting , and a small

Fig. 15. Schema of the dynamic PID controller optimization test problem:
three blocks are considered: the plant, the PID controller, and the dynamic
multiobjective optimizer.

settling time . The multiobjective optimization problem
is, thus, the following:

(22)
Fig. 15 shows the system and controller loop. The parameters

and in the system transfer function can be varied in
the following way:

(23)

where the function can be tuned for different
time-dependent simulations. A sampling of the search space
when only and are considered is shown in Fig. 16,
together with the corresponding set of Pareto-optimal solutions
for nine time steps with .

As can be seen, the shape of the POF changes quite signifi-
cantly as time goes on. In snapshot one (upper left), the problem
is even poorly multiobjective, while it becomes truly multiob-
jective in snapshot nine (lower right); moreover, the front moves
from a nonconnected shape to a connected one. The dynamic
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Fig. 16. Dynamic-POF [black (�)] and sampling [gray (�)] for the dynamic PID controller optimization problem; snapshots at iteration 1, 21, 27, 38, 77, 81,
89, 113, and 141. The maximum overlength O(K (t); K (t)) and the rising time R(K (t); K (t)) are shown on the x and y axes, respectively. The shape
of the POF changes quite significantly moving from a single-objective problem (step 1) to a disconnected multiobjective problem (steps 4–6) up to a nonconvex
multiobjective one (steps 8 and 9).

MO optimizer has, thus, to be sufficiently flexible to approxi-
mate very different MO problems as time goes on.

We point out that, although sufficiently close to application
for the scope of the paper, such a test case is still far from a
concrete application of dynamic multiobjective optimization to
dynamic control of real-life devices. The aim is mainly that of
showing general principles rather than details on concrete appli-
cation. Moreover, the use of PID control is not at all promoted
as the best solution but is just an example, but the same general
procedure may be applied to a different control strategy such as

fuzzy control or . When thinking of a practical implemen-
tation of such a strategy with PID control, several problems are
to be solved relating to the controller sensitivity and PID param-
eter tuning.

Another important issue (see Fig. 15) is the time-dependent
a posteriori choice that is to be done in order to choose among
PO solutions. This issue is similar to the static case, and the
proper decision making rules are closely related to the physics
and engineering of the device under consideration, and it is quite
hard to give some problem-independent rules.
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Fig. 17. Pseudocode of the proposed strategy. f (t): Scalar objective functions
corresponding to different directions, P (t), ~M(t), and S (t): Parameters
necessary for constructing f (t), GDA: Gradient-based single-objective
optimization algorithm. NMA: Nelder Mead simplex single-objective
optimization algorithm pst(t): population at generation t + 1.

IV. DYNAMIC EMO ALGORITHM: A
DIRECTION-BASED METHOD

When EMO algorithms are considered for finding POS of
time-dependent problems, the following two situations, or a
combination of the two may happen.

• The time dependence is slow but continuous (mode A).
• The time dependence is seldom but sudden and random

(mode B).
If the time dependence is of mode A, an extension to the mul-

tiobjective case of a single-objective evolutionary algorithm for
variable fitness landscape [34] is to be considered (see [11], [12],
and [14]–[16]), and some examples can be found in [26] and
[27]. On the other hand, in the second case (mode B), a full evo-
lution of an evolutionary algorithm is possible after the change

Fig. 18. Exact S (dots) and approximated (�) with a search direction-based
method on FDA1 (ten solutions).

Fig. 19. Exact F (dots) and approximated (�) with the proposed search
direction-based method on FDA1 (ten solutions).

Fig. 20. FDA1: Log of POS convergence measure (log(e (t)), (27)) versus
time.

has taken place and a time change monitoring strategy together
with an update of the starting population may be sufficient for
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Fig. 21. FDA1: Log of POF convergence measure (log(e (t)), (27)), versus
time.

Fig. 22. Exact S (dots) and approximated (�) with a search direction-based
method on FDA2 (ten solutions).

a proper approximation of the moving front and variable set.
The proposed strategy is an immediate extension to the static
search direction-based method described in [35]. We consider
the case of a sudden random time-dependent change after which
the system behaves as a static one for some time. A multiob-
jective search algorithm can, thus, be run in the time between
one change to another. In order for the strategy to be fully auto-
mated, a check for any change in the system is added, using the
following quantity:

(24)

where is the time-dependent nadir point, and is the
time-dependent utopia point. A total of points in search space
are chosen randomly for test problems or intentionally in case
of real devices, where some working point may be particularly
sensitive to time changes. If (a user-defined parameter)

Fig. 23. Exact F (dots) and approximated (�) with the proposed search
direction-based method on FDA2 (ten solutions).

Fig. 24. FDA2: Log of POS convergence measure (log(e (t)), (27)) versus
time.

occurs, it means that a significant time change has taken place
in the system, and a new search is to be carried out.

Such an automatic restarting procedure can be imple-
mented with 10 10 . More precise values for

can be obtained only with some problem-dependent pre-
diction on possible changes in the objective functions on a
problem-to-problem basis. Moreover, a new computation of
the utopia point and nadir point is required only when

.

A. Description of the Algorithm

A pseudocode of the whole strategy is shown in Fig. 17 (for
more details, refer to [35]). The time is started , and a ran-
domly distributed starting population is computed. After
that, the following operations are performed iteratively until the
final stopping time is reached . The quantity is
computed using (24). If occurs (meaning that a sig-
nificant change in the system has taken place), each objective
function is minimized using a hybrid evolutionary-deterministic



FARINA et al.: DYNAMIC MULTI-OBJECTIVE OPTIMIZATION PROBLEMS: TEST CASES, APPROXIMATIONS AND APPLICATIONS 437

Fig. 25. FDA2: Log of POF convergence measure (log(e (t)), (27)), versus
time.

Fig. 26. Exact S (dots) and approximated (�) with a search direction-based
method on FDA3 (ten solutions).

Fig. 27. Exact F (dots) and approximated (�) with the proposed search
direction-based method on FDA3 (ten solutions).

strategy with as a starting population. Such indepen-
dent optimizations help find the utopia point , the nadir point

Fig. 28. FDA3: Log of POS convergence measure (log(e (t)), (27)) versus
time.

Fig. 29. FDA3: Log of POF convergence measure (log(e (t)), (27)), versus
time.

Fig. 30. Exact S (wire-frame rectangle) and approximated (�) with a search
direction-based method on FDA4 (ten solutions).

, and the payoff matrix . This is very similar to the practice
usually followed in classical MCDM applications. Thereafter,

Pareto-optimal solutions are computed using different
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Fig. 31. Exact F (dots) and approximated (�) with the proposed search direction-based method on FDA4 (ten solutions).

scalar functions (for the th problem, where )
derived as follows:

(25)

where is the th objective value in the th chosen center
point, and is a weight factor for the th objective satisfying

. Here, we use . The above function is
then minimized for each of the center points independently.
The diversity in obtained solutions is obtained by choosing a
good distribution of centers , described as follows. Once the
utopia point , nadir point , and the matrix are computed,
the line (two-objective problems) or the triangle (three-objec-
tives problems) joining between the extremal point of the POF
is considered, and a uniformly distributed set of points is built
on it. For both the two- and three-objective problems, the fol-
lowing equation can be used to compute vector for the th
center point

(26)

Here, the vector is the th line of the matrix . Instead
of prefixing the location of center points, an iterative choice
of centers can also be considered (see the pseudocode
in Fig. 17). For two-objective problems, we can start from
the centroid of the two extreme points and as the
first center , and the objective solution is obtained by
maximizing the function given in (25). After that, two center
points and are computed as centroids of the following
pairs of points: and . With these two
new center points, two optimal solutions and are
obtained using (25). In the case of three-objectives problems,
a similar iterative strategy can be followed. The advantage of
the iterative scheme is that latter optimizations will not require
many iterations of the optimization process, as the center points
may be already closer to the desired Pareto-optimal solutions.
It is interesting to note that both the original scheme (26) and
the iterative scheme described above can be used in parallel,
thereby completing the task in a computationally faster manner.
Both schemes should enable a good distribution of solutions
to be obtained. Moreover, in the case of more than three
objectives and when only a small number of Pareto-optimal
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Fig. 32. FDA4: Log of POS convergence measure (log(e (t)), (27)) versus
time.

solutions are required, a design-of-experiments method may
be used in the objective space for a appropriate choice of
center points . Finally, the population for the
next iteration is formed using the set of current solutions .

In general, any state-of-the-art EMO algorithm can also be
used for solving mode B problems, and no particular modi-
fication to the operators may be necessary. Since these EMO
methods are well capable of finding a diverse set of solutions
on the current POF, the diversity present in the population may
be adequate for these algorithms to locate the new POF quickly.
However, this hypothesis needs testing, and we leave this im-
portant task for another study, but, the advantage of the pro-
posed direction-based search strategy is that it requires smaller
number of overall function evaluations . For the number of
search directions greater than two, this estimate is

, where is the number of iter-
ations used in each global search method, and
is the number of iterations used in each local search method.

Because of the most immediate application of dynamic
multiobjective optimization is dynamic control of time-varying
systems, some careful time-analysis is to be considered,
and the algorithm runtime is to be compared with the fre-
quency of time changes. Once agai,n the analysis is strongly
problem-dependent.

B. Convergence Measure

To measure the performance of a dynamic EMO, both the
convergence and diversity of obtained solutions must be con-
sidered. Here, we simply use the following two terms for mea-
suring convergence in decision and objective spaces:

(27)

(28)

where is the number of sampling points used to represent
the known and , is the number of obtained nondomi-

Fig. 33. FDA4: Log of POF convergence measure (log(e (t)), (27)), versus
time.

Fig. 34. Exact S (wire-frame rectangle) and approximated (�) with a search
direction-based method on FDA5 (ten solutions).

nated solutions, and and are computed solutions
in decision variable space and objective space, respectively. We
point out that, although, from the mathematical point of view
a design domain measure could be sufficient, from the design
point of view a design domain measure may give useful infor-
mation related to the design tolerance (it is useless to go with
the optimization beyond the design variable tolerance). The op-
erator is the Euclidean distance. Although the above two
metrics evaluate a convergence measure of the obtained solu-
tions in both and , we also emphasize using a diversity
measure that is at least in the space for evaluating the perfor-
mance of a dynamic EMO algorithm. For brevity, we do not use
a diversity measure here; instead, we show a visual presentation
of the solutions through plots in both spaces in the following
section.

V. SIMULATION RESULTS ON FDAS

We now present results of one simulation for each test
problem FDA1 to FDA5. For each of them, we show the
time-dependent solution set in both the decision variable space
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Fig. 35. Exact F (dots) and approximated (�) with the proposed search direction-based method on FDA5 (forty solutions).

and in the objective space. For a better visualization of a
changed solution-set with time, we show the obtained solu-
tion-set translated on the space where it is changed and mark
this translation by . If the solution-set (either or ) does
not change its location but only gets redistributed (as in Types I
and III problems), we mark the changes with a . For clarity,
we do not show a complete -dimensional decision variable
space, instead, we show the variations by using at most three
important variables. In both spaces, the known POF and set are
shown with dots or lines. Obtained time-dependent solutions are
shown with circles. Figs. 18 and 19 show the corresponding
and variations for FDA1. This problem is a Type I problem,
thus, we observe a time change in the alone. Note that for
better visualization purposes, and are shown
on the and axes, respectively. The method encounters some
difficulties when the gets close to the bounding box region.
To estimate the converging ability of the proposed algorithm,
we also show the time-dependent convergence measures
and in both decision variable space and objective space in
Figs. 20 and 21, respectively. The convergence measure plots
show that after each change, the proposed method is able to

reduce the convergence metric down to a small value. When
there is another time change, the convergence gets affected,
but the algorithm is able to make another good convergence to
the new optimum set. This happens as many times as there are
changes in the problem. The time step of each oscillation in the
above plots is, thus, not related to the iteration of each search
but to each sudden time changes in the problem.

Similar performance of the proposed algorithm is observed
for FDA2 as well and can be seen through Figs. 22–25. This
problem is a Type III problem, and we observe a time change in
the alone.

Figs. 26 and 27 show the changes in and for FDA3.
This is a Type II problem exhibiting variations in both spaces.
The vulnerability of the proposed algorithm to such changes is
evident from this problem. At the fourth time step, the distri-
bution of solutions is poor. Fig. 26 shows the particularly poor
convergence of solutions in the decision variable space. Figs. 28
and 29 show the corresponding convergence plots. Although
the proposed method is able to reduce the convergence measure
after each time change, and plots show that the reduc-
tion is not adequate.
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Fig. 36. FDA5: Log of POS convergence measure (log(e (t)), (27)) versus
time.

Fig. 37. FDA5: Log of POF convergence measure (log(e (t)), (27)), versus
time.

On FDA4, we obtain reasonably good convergence after each
time change, as depicted in Figs. 30–33. However, with a change
in density of solutions on the POF in FDA5 problem, we ob-
serve some difficulties in maintaining diversity by the proposed
method (Figs. 34–37).

Test results for the controller design example are not shown
because it is not a test case but an example toward more real-life
problems. Moreover, results for dynamic multiobjective TSP
have not been given because the algorithm shown in the paper is
for real-valued variables, and the inclusion of such results would
require the inclusion of an additional algorithm, which seems to
be out of the scope of the paper.

VI. CONCLUSION

In this paper, the existing static multiobjective test problems
are extended with time-dependent parameters to make them
suitable test problems for dynamic multiobjective optimiza-
tion studies. The test problems offer different complexities,
such as nonconvexity, disconnectedness, deceptiveness and

others, besides being time-dependent. Although continuous
test problems, discrete test problems, and a real-world dynamic
controller optimization problem are discussed, a test suite of
five dynamic test problems (FDA1 to FDA5) are suggested
for investigation. The task of a dynamic EMO algorithm in
solving such problems is to not only handle the known search
space difficulties but also to handle a number of such difficul-
ties one after another in a time-varying manner. A successful
dynamic EMO algorithm is therefore, required to be quick in
its converging ability and should be able to produce any kind
of diversity needed to get out from a converged set of solutions
to converge to a new set.

As in the single-objective dynamic optimization, the case of
random sudden changes and slow continuous changes are con-
sidered as extreme cases where different methods are expected
to behave differently. In this paper, we have concentrated only
on the first case of random sudden changes in a problem.
However, any other scenario can also be implemented in the
test problems through the suggested construction procedure.
To demonstrate the difficulties offered by the suggested test
problems, we have also suggested a directional search-based
method and applied it on all five test problems. The initial
results suggest the need for more efficient dynamic EMO
algorithms, probably using state-of-the-art EMO methods such
as NSGA-II, SPEA2, or PESA, etc., and an immediate need to
perform a more rigorous simulation study. The present study
has only dealt with tracking a set of dynamic Pareto-optimal
solutions as and when the problem changes, but an important
matter of choosing and tracking one compromised Pareto-op-
timal solution remains as even a harder task. This is because
such a compromised solution will certainly depend on the
shape of the POF at every time instant, and although the whole
POF may change gradually the compromised solution may
change its relative location on the front quite dramatically.
Viewing all these possibilities for further meaningful research
in dynamic evolutionary multiobjective optimization, this paper
has only scratched the surface by providing some useful test
problems and providing a baseline algorithm for the purpose.
However, the study has certainly provided a platform to launch
more detail studies. Only after more successful dynamic EMO
algorithms are developed and tested, will they be ready to be
applied to real-world problems which are multiobjective in
nature and which are filled with parameters of changing nature.
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