Pramana, Vol. 15, No. 6, December 1980, pp. 545-549, © Printed in India.

On the connectivity index for lattices of nonintegral dimensionality
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Abstract. We define the connectivity index ¢ for an infinite graph by the require-
ment that to disconnect a subset of at least ¥ points from the rest of the graph requires
the deletion of a minimum of S(¥) bonds where S (V) ~ V (e-t/c for large ¥. For
a d-dimensional hypercubical lattice with  integral, ¢ = d. We construct explicit
examples of lattices with nonintegral connectivity index ¢, 1 < c < c0. It is argued
that the connectivity index is an important parameter determining the critical beha-
viour of Hamiltonians on these lattices.
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1. Introduction

In recent years, much attention has been devoted to studying the variation of critical
exponents as a function of d, where d, the dimension of space, is treated as a conti-
nuously variable parameter. Wilson and Fisher developed the technique called
e-expansion which allows one to write critical exponents, say for Ising-like models
as a power-series in e, where ¢ =44 (Fisher 1974; Wilson and Kogut 1974). These
«-expansion techniques have been pushed to quite high orders (Brezin et al 1974,
Collet and Eckmann 1978). Similar series expansions in powers of &, where the
space dimension is 2-¢, 6-¢, 5-¢, etc. have been developed to describe a wide variety of
phase transitions in different physical systems (Belavin and Yurishchev 1973; Harris
et al 1976; Obukhov 1980). In quantum field theory the space dimension 4-¢ has
been introduced to regularise the ultraviolet divergences in the perturbation theory
(Bollini and Giambiagi 1972). '

Despite much work done dealing with the computational aspects of the e-expan-
sion technique (only a small part of which was cited above), its conceptual basis has
remained quite obscure. Just what physical meaning may be assigned to these
e-expansions? We may argue that the appearance of € as a continuous variable is a
technical or mathematical artifice, and physically meaningful results correspond
only to integral values of e. This argument fails however, as the radius of converg-
ence if these expansions (if they converge at all, presumably they are only asymptotic
(Collet and Eckmann 1978) is certainly much less than 1.

In an earlier paper (Dhar 1977, hereafter referred to as I) we attempted to answer
this question by explicitly constructing a class of lattices having a nonintegral value
of the effective dimensionality. Defining a nearest-neighbour spring model on these
lattices, we argued that if the fractional number of eigenmodes having frequency less
than o varies w! for small w, then d should be identified as the (Fourier) dimension
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of the lattice. While this definition of dimensionality is the only one consistent with
the known critical exponents for the spherical model in arbitrary dimensions (Joyce
1972), it has one unsatisfactory feature. The truncated tetrahedron lattice defined by
Nelson and Fisher (1975) has the Fourier dimension of log; 5. The Ising model on
this lattice does not have an ordered phase at any temperature. This is in contra-
diction with the generally accepted result that the lower critical dimension for the
Ising modelis 1. The same result holds for the truncated n-simplex lattice (see I).

Intuitively, the reason for the nonexistence of a phase transition in the truncated
tetrahedron lattice les in its peculiar connectivity properties. On this lattice, it is
possible to disconnect an arbitrarily large set of points from the rest of the graph by
just deleting three bonds. On a d-dimensional lattice (with d integral) one needs to
break a minimum of ~ o@-1/4 bonds to disconnect a volume ¥V from the rest of
the lattice. The rate of increase of minimum surface with the enclosed volume
clearly provides useful information about the connectivity of the lattice. We use this
property to define a connectivity index ¢ for lattices, where ¢ may take nonintegral
values. For a d-dimensional hypercubical lattice with d integral, the connectivity
index ¢ is equal to its Euclidean dimension d. We use the word ‘connectivity index’
and not ‘connectivity dimension’ or ‘surface dimension’ as the concept of dimension
has no unique generalisation to nonintegral values. For a nonexhaustive list of
mutually inequivalent definitions of dimensionality, and also for earlier references,
the book on fractals by Mandelbrot (1977) may be consulted.

The rest of this paper formalizes this concept of connectivity index. In § 2 we give
its precise definition and construct examples where it takes arbitrary non-integral
values between 1 and co. (A similar definition was suggested by Mandelbrot (1977)
to characterise the complexity of computer network). In § 3, we argue that for
the Ising model, the lower critical value of the conmectivity index is 1, and hence
explain the absence of a phase transition in the Ising model on the truncated
n-simplex lattice. The relation of the connectivity index to other definitions of
nonintegral dimensions and its role in determining critical behaviour is briefly

discussed.

2. Definition of the connectivity index and examples

The connectivity index for an infinite lattice is defined as follows: The lattice is speci-
fied by its graph consisting of points, and undirected lines (called bonds) joining the
nearest neighbours, We consider only connected graphs. Let V be any finite con-
nected subset of points. The volume of V'is the number of points in ¥. The surface
of V, denoted by S(¥) is the number of bonds connecting points in ¥ to points out-
side V. Deletion of these bonds would obviously disconnect the subgraph ¥ from
the rest of the points. Let S,,(z, p) be the minimum surface S(4) for all connected
subgraphs A, having more than v points and including a particular (arbitrarily chosen)
point P. The connectivity index ¢ for the graph is defined by

Mo
c=1lm —4 04— (1
y—>C0 /n [v/Sm (U: P)] )

We shall only be interested in graphs which are Suﬁ"lciently regular, so that the above
limit exists, If the graph is such that the number of nearest neighbours of any point
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in it is bounded by a finite number #, then the connectivity index ¢ is independent
of the choice of the point P. This follows from the fact for any point P’ at a finite
distance / from the point P, any finite volume 4 containing P may be increased to
include P’ as well, with the surface area S(4) increasing by at most n/.

It is quite easy to see that the connectivity index for a d-dimensional hypercubical
lattice (d integral) is equal to its Euclidean dimension d. We now describe the con-
struction of a class of lattices for which the connectivity index takes non-integral
values.

The (m, n) recursive lattice is defined for all integers m, n>> 1. Its graph is a planar
graph which may be obtained from the graph a two-dimensional square lattice by
selectively deleting some bonds. The zero order (m, n) recursive lattice graph is shown
in figure 1. It has four points and four ‘dangling’ bonds. These dangling bonds are
used to connect the zero order graphs together to form larger graphs. Given an rth
order graph, we construct the (r-1)th order graph by taking m?n? copies of the rth
order graph and arranging them in an mnXmn array. The dangling bonds of adja-
cent edges of squares (rth order graphs) are identified in pairs, in a way such that the
resulting graph is planar. Of the remaining dangling bonds (those on the perimeter
of the (r+1)th order square), we retain every mth bond going clockwise along the
perimeter, and delete the remaining. The construction is illustrated in figure 2 and 3
for the case m=n=2, Clearly, in general, the rth order graph has 4m? n#" pomts and
4n" dangling bonds. '

It is easy to see that for this lattice the minimum surface area correspondmg toa
volume 4m?" n?" is greater than 2n". Hence using definition (1) it is easily seen that the
connectivity index for the (m, n) recursive lattice is /n (m?n?)//n (m’n). Choosing
m and » judiciously, we obtain a value of the connectivity index arbitrarily close to
any preassigned value between 1 and 2.

It is quite easy to construct graphs with higher values of the connectivity index.
Let L, and L, be two graphs with connectivity indices ¢; and c, respectively. If L
is a direct product graph of L, and L, (for the definition of the direct product of
graphs, see I), the connectivity index of L is ¢;-+¢,. Forming direct products of the

Figure 1. The graph of the zeroth order (m, 1) recursive lattice. It has four points
and four dangling bonds.
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Figure 2. The graph of the first order (2, 2) recursive lattice. The danglmg bonds
- at the surface]which have been deleted are represented by dashed llnes, .
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Figure 3. The graph of the second order (2, 2) recursive lattice. 'The shaded squares
represent first order graphs. Only the dangling bonds connecting the different first

order graphs are shown explicitly.

(m, n) recursive lattice with itself, or say with a linear chain (c=1), we get graphs
having the value of connectivity index ranging from 1 to co. '

3, Discussion

From (1) it follows that the connectivity index for the truncated n-simplex

lattice (defined in I) is 1, which is the lower critical dimension for the Ising model.
f the result that the Ising model on this lattice does not

This is in accordance wit
show any phase transitions but the susceptibility has a strong divergence near zero

temperature. Also a Peierls-like argument can be used to show the existence of a
phase transition on the (m, 1) recursive lattice (n >>2). Clearly, the connectivity index

is a useful parameter t0 characterise the critical behaviour of Hamiltonians on these

lattices.

The connectivity index of a lattice need not be equal to its Fourier or Hausdorf

dimension. For example, it may be shown that the Fourier as well as the Hausdorf
dimension of the (m, n) recursive lattice is 2, not equal to its connectivity index.
As pointed out in I, the Fourier and the Hausdorf dimensions of a lattice themselves
need not be equal. :

The distinction between these definitions is important as the formal e-expansion
can be valid for only one of these definitions. In an earlier paper (Dhar 1978) we
have shown that critical exponents may be different even for lattices of equal dimen-

sionality. This implies that critical exponents are not functions of dimensionality

alone, and series expansions like the e-expansion should involve additional variables.

A similar conclusion was reached by Y Gefen et al (1980), who have used exact
and approximate renormalisation techniques to determine the critical behaviour on
some fractal lattices, These authors used a different definition ( Hausdorf), and
hence concluded that a lower critical dimension does not exist.

Even if we adopt the view that they exhibit the dependence of critical exponents on
dimensionality ‘with all other variables held fixed’, it is important to identify these
variables explicitly. Lattices of nonintegral dimensions are necessarily somewhat
artificial objects, but if the e-expansion technique is to be physically meaningful, it
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should be able to predict critical exponents for such lattices. An interesting possibi-
lity is that the e-expansion gives correct results for nonintegral dimensional lattices
only when all these different characterisations of dimension agree. Construction
of such lattices seems to be difficult, if possible. This is an interesting problem deserv-
ing further attention.
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