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Abstract

Self-adaptation is an essential feature of natural evautiHowever, in the context of function
optimization, self-adaptation features of evolutionaggreh algorithms have been explored only with
evolution strategy (ES) and evolutionary programming (BER)Xhis paper, we demonstrate the self-
adaptive feature of real-parameter genetic algorithmsg)asing simulated binary crossover (SBX)
operator and without any mutation operator. The connedigiween the working of self-adaptive ESs
and real-parameter GAs with SBX operator is also discusEeereafter, the self-adaptive behavior of
real-parameter GAs is demonstrated on a number of testgmmebtommonly-used in the ES literature.
The remarkable similarity in the working principle of readrameter GAs and self-adaptive ESs shown
in this study suggests the need of emphasizing furtheresuzh self-adaptive GAs.

Introduction

Self-adaptation is a phenomenon which makes evolutiorigorithms flexible and closer to natural evo-
lution. Among the evolutionary methods, self-adaptatiooperties have been explored with evolution
strategies (ESs) (Back, 1997; Beyer, 1996; Hansen andr@iste 1996; Rechenberg, 1973; Saravanan,
Fogel, and Nelson, 1995; Schwefel, 1977, 1987) and evealatioprogramming (EP) (Fogel, Angeline,
and Fogel 1995), although there exist some studies of dejptation in genetic algorithms (GAs) with
mutation operator (Back, 1992). Despite such studiesetbeists no formal definition of self-adaptation
or description of properties an algorithm should have ireoffdr it to qualify to be a self-adaptive algo-
rithm. In this paper, we do not try to answer this questiothearecognize the importance of such a study
in the near future. When applied to function optimizatidrere are a number of reasons why evolutionary
algorithmists should pay attention to self-adaptation:

1. Knowledge of lower and upper bounds for the optimal soluthay not be known a priori,
2. It may be desired to know the optimal solution with arbitrarecision,

3. The objective function and the optimal solution may cteawigh time.



In many problems, the lower and upper bounds for the optimlait®n may not be known a priori. Some
evolutionary search algorithms such as binary-coded geakgforithms (GAs) require information about
lower and upper bounds on each problem variable, so thaearlimapping of the decoded values of a
binary string-coding can be used. This forces the searcbroentrate only within the chosen lower and
upper bounds. If the true optimal solution does not lie witthiis range, fixed coding scheme of binary-
coded GAs will not be able to find the true optimal solution this respect, ES and EP are alternatives
where precise knowledge of such range is not required. Pa@meter GAs, where problem variables are
not coded in any string-structure, rather are used direcdly eliminate the rigidity of fixed coding used in
binary-coded GAs.

Some search and optimization problems require the optiotatien to be found with arbitrary preci-
sion. In such cases, the fixed-length coding scheme hasarhsadvantage. Since a fixed-length coding
is used, the algorithm offers a lower bound on the precidhan tan be achieved in a GA. For example,
if ¢; bits are used to code a problem variable in the raager!] in a binary-coded GA, the maximum
attainable precision igr¥ — z!) /(2% — 1). Although the precision in the optimal solution can be irased
by increasing the string length, it has been shown elsewhere (Goldberg, Deb, and Clark,)188Peven
for simple problems the required population size is of thaeonf the string length. One other approach to
achieve more precision is to use a variable-length codirsgamarse-to-fine grained coding, both of which
makes the algorithm more complex and subjective to the waigsibas are made in switching from coarse
to fine grained coding (Schaefer, 1987, Schraudolph andnB&/@90). Once again, real-parameter GAs
with direct use of problem variables can practically achiaay precision in the problem variables, simply
because the real numbers are used directly.

One of the challenging optimization problems and more comigound problems in real-world
search and optimization is a problem with an objective fiamctvhich changes with time. In such prob-
lems, function landscapes and consequently the optimafisnlchange with time. When such problems
are to be solved for optimality, the search procedure neelts flexible enough to adapt to the new func-
tion landscape as quickly as it changes. A difficulty of theydation-based optimizers is that once the
search has narrowed near the previous optimal solutiomivieesity in the population may not be enough
for the search to get out of there and proceed towards the p&mwal solution. Often, in these cases,
diversity preserving mechanisms (large mutation ratdusion of a niching operator, and others) must be
used. However, the maintenance of diversity does not coaee &rportion of the total function evaluations
is always spent in areas of non-interest in current iteras an investment for diversity needed at a later
iteration when the function landscape changes. ES or EPuigelf-adaptation cannot tackle such prob-
lems and are not flexible enough to respond to change lanescifmwever, the invent of self-adaptation
with both ES and EP allowed such problems to be solved withdalitian of extra strategy parameters
which control the degree of search power in their major miotabased search operators. Although not
obvious, such self-adaptive behavior is also possibleteae with real-parameter GAs with specialized
crossover operators.

In this paper, we show the self-adaptive behavior of readup@ter GAs with one such crossover oper-
ator on a number of different fitness landscapes commonly imsself-adaptive ES studies. The simulated
binary crossover operator (SBX) operator (Deb and Agrat@®5) uses a probability distribution around
two parents to create two children solutions. Unlike otteal4parameter crossover operators, SBX uses
a probability distribution which is similar in principle tihe probability of creating children solution in
crossover operators used in binary-coded GAs. There areaspects which give real-parameter GAs
with SBX their self-adaptive power: (i) children solutiocisser to parent solutions are more likely to be
created, and (ii) the span of children solutions is projpoidi to the span of parent solutions.

In the remainder of the paper, we briefly discuss the workimgpiple of the simulated binary crossover
(SBX) operator. Thereafter, we mention different varianitself-adaptive ESs and show that there is a
similarity in working of real-parameter GAs with SBX and att one variant of self-adaptive ESs. The
self-adaptive behavior of real-parameter GAs with SBX aparis then demonstrated by applying them
on a number of test problems. Finally, based on the curremtyst number of plausible extensions are



suggested.

2 Genetic Algorithmswith Simulated Binary Crossover (SBX)

There exists a number of real-parameter GA implementatishgre crossover and mutation operators
are applied directly on real parameter values. One of thiy @aplementations was by Wright (1990),

where a linear crossover operator created three solutiofld) + =**), (1.52"" — 0.52(*"), and

(=0.52"" + 1.52(*") from two parent solutions™" andz*") at generationt and choose the best
two solutions as children solutions. Goldberg introdudegldoncept of virtual alphabets in the context of
real-coded GAs (Goldberg, 1991). Eshelman and Schaffé@@3f1Bave introduced the notion ofterval
schemata for real-coded genetic algorithms and suggeditzhd crossover (BLXx) operator. For two

parent solutions ") andz{*" (assuming:!" < +*"), the BLX-o randomly picks a solution in the

range (" — a(2®) — 200y 2D 4 6 (23D = 259)] Thus, ifu is a random number between 0 and

K3 K3

1, the following is a child solution:

e = (1= y)alt) 472, 1)
wherey = (14 2a)u— a. If ais zero, this crossover creates a random solution in theer&rjbt), xEQ’t)).
In a number of test problems, they have reported that BLX{with « = 0.5) performs better than BLX
operators with any other value. However, it is important to note that the factds uniformly distributed
for a fixed value ofo. However, BLX+« has an interesting property: the location of the child dohut
depends on the difference in parent solutions. This willlearcif we rewrite equation 1 as follows:
($£1,t+1) _ xgu)) — (wglt) _ xgu)) ‘
If the difference in the parent solution is small, the diéiece between the child and parent solutions is
also small and vice versa. We believe that this is an ess@mntiperty for any search algorithm to exhibit
self-adaptation. This is because the spread of currentlptpu dictates the spread of solutions in the
resulting population. In problems where self-adaptatibowd cause the population to either converge
or diverge for better regions in the search space, assignofiehildren population proportional to parent
population may help achieve the task. However, as we shalbser, there is more than such proportional
assignment which is needed for the self-adaptation to work.

Ono and Kobayashi (1997) suggested a unimodal normallyilalistd crossover (UNDX) operator,
where three parent solutions are used to create two or maldrex solutions. Children solutions are
created from an ellipsoidal probability distribution witme axis is formed along the line joining two
of the three parent solutions and the extent of the orthdgdinection is decided by the perpendicular
distance of the third parent from the axis. Unlike the BLX @ter, this operator assigns more probability
for creating solutions near the center of the first two parehan near the parents. Recently, a multi-
parental UNDX operator with more than three parents is alggested (Kita, Ono, and Kobayashi, 1998).
Like the BLX operator, this operator also assigns childrelutsons proportional to the spread of parent
solutions, thereby making a GA with this operator poteribaxhibit self-adaptation.

Inthe year 1995, the first author and his students have deeéliine simulated binary crossover (SBX),
which works from two parent solutions to create two childsetutions (Deb and Agrawal, 1995; Deb and
Kumar, 1995). As the name suggests, the SBX operator sigsuthe working principle of the single-
point crossover operator on binary strings. In those ssjdiathors showed that this crossover operator
respectgheintervalschemata processing, in the sense that common intervahsthéetween parents are

preserved in children. The procedure of computing the ctildolutions: "™ andz ") from parent
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solutionngl’t) andxgz’t) is described as follows. A spread factdrs defined as the ratio of the absolute



difference in children values to that of the parent values:

2,441 _ L+l
1 1
2.1 11

L, — €

g = (2)

First, a random number between 0 and 1 is created. Thereafter, from a specified pildalistribution
function, the ordinatg, is found so that the area under the probability curve from g,ts equal to the
chosen random number The probability distribution used to create a child salatis derived to have a
similar search poweas that in a single-point crossover in binary-coded GAs argivien as follows (Deb
and Agrawal, 1995):
0.5(n+1)p"7, ifg <1,
P(8) = { 0.5(n+ 1)#7 otherwise. (3)

Figure 1 shows the above probability distribution witk= 2 and 5 for creating children solutions from two
parent solutions@“) =2.0 andxgz’t) = 5.0) in the real space. In the above expressions, the distoibuti
index n is any nonnegative real number. A large valuejajives a higher probability for creating near
parent solutions and a small valuerpéllows distant solutions to be selected as children satstitJsing
equation 3, we calculate, by equating the area under the probability curve equal @s follows:

—_

2u77-1F_1, if u<0.5;
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Figure 1: Probability distribution for creating childreolations of continuous variables. Parents are
marked with an '0’.

After obtaining 3, from the above probability distribution, the children sidms are calculated as
follows:

d =05 (14 B)elt 4+ (1= ) Y] (5)
w2 = 05 (1= Bt + (14 8,)2 Y] (6)
Thus, the following step-by-step procedure is followed teate two children solutionSUkl’tH) and

2,4+1 2,

xf )) from two parent solution&él’t) andxg ’ )):
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Step 1: Choose a random numbere [0, 1).
Step 2: Calculate?, using equation 4.
Step 3: Compute children solutions using equations 5 and 6.

Note that two children solutions are symmetric about thepesolutions. This is deliberately used to
avoid any bias towards any particular parent solution imglsi crossover operation. Another interesting
aspect of this crossover operator is that for a fixetthe children solutions has a spread which is propor-
tional to that of the parent solutions. With simple algebmaianipulations, it can be shown that 99% of
crossovers lie withim, € [(0.0I)ﬁ, 1/(0.01)ﬁ]. Forn = 2, thisrange ig#, € [0.215, 4.64]. However,
for a fixed3,, the difference in children solutions is proportional tatlf parent solutions:

($£2,t+1) _ $£1,t+1)) — 3, (x£2,t) _ wgu)) ‘ 7)
This has an important implication. Let us consider two sdesa (i) Two parents are far away from each
other, and (ii) two parents are closer to each other. Fostitation, both these cases (with parent solutions
xg“") =20 andx?’t) = 5.0 in the first case and with parent solutionlg’t) =20 andx?’t) = 2.5in
the second case) and the corresponding probability digtoibs withy = 2 are shown in Figures 2 and 3,
respectively. For an identical random numbgr, as calculated by using equation 4, are the same for both
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Figure 2: Probability distribution of children so-  Figure 3: Probability distribution of children so-
lutions with distant parents. lutions with closely spaced parents.

cases. From equation 7, itis clear that in the first case tihdreh are likely to be more widely spread than
in the second case. Figures2 and 3 also show the corresgpefuiidren solutions (marked with a box)
foru =0.80r3, = 2.51/3, Figures clearly show that if the parent values are far frawheother (the first
case), solutions away from parents are possible to be cre@tmmpare the child solutim{l’t“) = 1.464
with parentrgl’t) = 2.0. But if the parent values are close by (the second caseymdishildren solutions
are not likely. Compare the child solutiert"**") = 1.911 with parentz{") = 2.0 creating using the
same random number as in the first case. In initial populatisere the solutions are randomly placed
(like the first case), this allows almost any values to betexkas a child solution. But when the solutions
tend to converge due to the action of genetic operators flikesecond case), distant solutions are not
allowed, thereby focusing the search to a narrow region.

It is interesting to note that both equations 5 and 6 can b#esrin the form of equation 1 with
following relationshipsxy = 0.5(1 F 3,). However, it is important that, unlike in BLX- operator, the
equivalenty term in SBX operator is not uniformly distributed (refer tquation 4). The SBX operator
biases solutions near each parent more favorably thanisoetuaway from parents. Essentially, SBX
operator has two properties:



1. The extent of children solutions is in proportion to thequa solutions, and

2. Near parent solutions are monotonically more likely tebesen as children solutions than solutions
distant from parents.

BLX-« operator has the first property, but it does not have the skpaoperty in its true sense. Although
in BLX operator, any solution within a certain distance frahe parents are favored, there is no bias
assigned to any of the solutions. We argue that assigningd firobablity to all solutions near parents is
a too generic property for a GA to show adequate self-adiaptatater, we show that when a crossover
operator has both the above properties, the resulting GAsveimilar to that of self-adaptive ESs. But
before we discuss that similarity, let us describe briefly¢kisting self-adaptive ESs.

3 Self-Adaptive Evolution Strategies

A simple adaptive evolution strategy was suggested forthé&)-ES by Rechenberg (1973). Depending on
the success or failure of mutations in past few generatibeanutation strength is increased or decreased
by a simple rule. There are three different ways self-adaptas used in ES—(i) a hierarchically orga-
nized population-based meta-ES (Herdy, 1992), (ii) adaptaf covariance matrix (CMA) determining
the probability distribution for mutation (Hansen and Qsteier, 1995), and (iii) explicit use of self-
adaptive control parameters (Rechenberg, 1973; Schvié€fé). The meta-ES method of self-adaptation
uses two levels of ESs—the top level optimizes the strateggrpeters (such as mutation strengths), a
solution of which is used to optimize the true objective fime in the lower level ES. Although the idea is
simple, it involves a number of additional strategy parareeto be fixed and the needed number of over-
all function evaluations may not make it suitable for rea@rld applications. The third method (CMA)
records the population history for some number of iteratibafore executing expensive humerical com-
putation of finding covariance and variance information amobject variables. Although application to
a number of test problems shows promising results, the @hgoris difficult to implement and clearly
there is lack of any motivation of whether such complicatechputations resembles any event of natural
evolution. Nevertheless, the CMA approach seems intexgsind readers may refer to the literature for
more details (Hansen and Ostermeier, 1996; 1997). We nosushsthe third type of self-adaptive ES
where the strategy parameters are explicitly coded andtedda each generation. Although there exists
other ways to update (Rechenberg, 1994), we discuss helegih@rmal update rules. A recent study by
the second author reveals that there is a relationship leetée lognormal update rule with other learning
rules (Beyer, 1996). There are basically three differeigl@mentations which are in use.

3.1 Isotropic self-adaptation

In this self-adaptive ES, a single mutation strengtts used for all variables. In addition &y object
variables, the strategy parameteis also used in a population member. Here are the update rules

P Z o0 exp(roN (0, 1)), ©
2D Z o0 4 ol (0, 1), ©)

K3

where N (0, 1) and V;(0, 1) are realizations of a one-dimensional normally distribdut@ndom variable
with mean zero and standard deviation one. The paramgtarthe learning parameter which ig
N~1/2 whereN is the dimension of the variable vector (Schwefel, 1974)yeB¢1996) has shown that,
for the sphere model, the optimal learning parameter foX)(ES isy = cm/\/ﬁ, wherec; , is the
progress coefficient. We use , or ¢,/ \ as constant of proportionality in corresponding ES, altfou
they may not be optimal. The above update rulesfoequires an initial value. In all simulations here, we
choose ar(®) = (2 — 2!)/4/12 which assumes a uniform distribution of solutions withire tpecified
range ofz; values.



3.2 Non-isotropic self-adaptation

A different mutation strengtla; is used for each variable. This is capable of learning to-ae#pt to
problems where variables are unequally scaled in the abgsitinction. In addition taV object variables,
there areN other strategy parameters. The update rules are as follows:

Dexp (F/N(0,1) + 7N;(0,1)), (10)
) U(H_I)Ni(ov 1)7 (11)

( ot
( 2
wherer’ o (2n)~'/2 andr o (2n'/2)=1/2. Due to lack of any theoretical results on this self-adapES,
we use the progress coefficient of the A)-ES or(u/ 1, A)-ESs as the constant of proportionality of both
7 andr. Similar initial values forafo) as discussed for isotropic self-adaptive ESs are used here.

3.3 Correlated self-adaptation

Here, different mutation strengths and rotation angleuaesl to represent the covariances for pair-wise
interactions among variables. Thus, in additionNoobject variables there are a total &f mutation
strengths andV (N — 1)/2 rotation angles used explicitly in each population membére update rules
are as follows:

gZ(H'l) = Z(t) exp (T/N(O 1) + 7N,(0, 1)) , (12)
ol =l a0, 1), (13)
D) #0 4 (0 C(5t+Y —*(t-l—l)))7 (14)

whereN (0 (&Y, (t“))) is a realization of correlated mutation vector with a zer@ameector and

covariance matrix'. The parametes is fixed as 0.0873 (05°) (Schwefel, 1974). The parametersand
T are used the same as before. We initialize the rotation angtéin zero and 180 degrees at random.

4 Connection Between GAswith SBX and Self-Adaptive ESs

Without loss of generality, we try to argue the similaritytire working of GAs with SBX and self-adaptive
ESs by considering only isotropic self-adaptive ESs. Ulistdropic self-adaptive ES, the difference (say

A) between the childwét“)) and its parenta(gt)) can be written from equations 8 and 9:
A = (oW exp(roN (0, 1)) N(0,1). (15)

Thus, an instantiation ok is a normal distribution with zero mean and a variance whigpethds o (*),
70, and the instantiation of the lognormal distribution. Far @argument, there are two aspects of this
procedure:

1. For a particular realization of lognormal distributighe differenceA is normally distributed with
zero mean. That is, children solutions closer to parentsnameotonically more likely to be created
than children solutions away from parents.

2. The standard deviation af is proportional to the mutation streng#ti’), which signifies, in some
sense, the population diversity.

Under the SBX operator, we write the tertnusing equations 5 and 6 as follows:
527
A= ?(ﬁq B 1)7 (16)

7



whered, is the absolute difference in two parent solutions. Thegessnilarity between equations 15 and
16. The above equation suggests that an instantiatidn @épends on the distribution ¢8, — 1) for a
particular pair of parents. The distribution 8f has its mode a, = 1, thus, the distribution of3, — 1)

will have its mode at zero. Although, we have not used a nodisatibution for (3, — 1) here, Figure 2 or

3 suggests that a small has a higher probability to be created than a lakgand that this distribution is
montonic to the distance from a parent. The variance of tisisidution depends o#,, which signifies the
population diversity. Thus, there is a remarkable simiyain the way children solutions are assigned in
both isotropic self-adaptive ES and in GAs with SBX. In badises, the children solutions closer to parent
solutions are assigned more probability to be created tblanigns away from parents and the variance of
this probability distribution depends on the current pepioin diversity.

In a self-adaptive ES, the mutation strength gets contislyarpdated depending on the fitness land-
scape. For example, if the fithess landscape is such thabjnédaiion needs to concentrate in a narrow
region in the search space for improvement in the fitness|faadaptive ES usually evolves mutation
strengths to become smaller and smaller, so that searcletates near the parents rather than away
from parents. This is precisely how a self-adaptive ES warksphere model to achieve continuously
improving performance. The outcome of continuously redgainutation strength is that most popula-
tion members come closer and closer. When population mesrdmme closer in a real-parameter GA,
the effective variance of probability distribution undeBX operator also reduces. This, in turn, creates
children solutions which are also not far away from each iotFkis helps to produce continuously closer
population members, thereby producing the effect of irsedarecision like that in the self-adaptive ES.
A similar phenomenon occurs when a fitness function demamelpopulation to diverge to get to the
optimal region or demands other kind of variations in thecearocess.

5 Simulation Results

In this section. we present simulation results of real-pater GAs with SBX operator on a number of dif-
ferent test problems borrowed from the ES literature. Faordtiag multi-variable problems, SBX is used
variable-by-variable with a variable-wise probability@b. This means that, on an average, 50% of vari-
ables get crossed using the SBX operator and rest of theblesiget passed on to the children solutions
unchanged. This is in agreement with single-point, twaapar uniform crossovers used in binary-coded
GAs, where, on an average, 50% bits get changed in one cersgperation. However, we would like
to mention here that since variable-wise crossover is uSéd, with the current implementation of SBX
may face difficulty in problems where variable interacti@ns important. This so calldéhkage issuds

an important matter in search and optimization problemsteagibeen recognized by many researchers
(Goldberg, Korb, and Deb, 1989; Harik, 1997; Kargupta, 1@hwefel, 1977). However, more research
must be carried out to find linkages among variables addptisng evolutionary algorithms. Wherever
recombinative ES is used, the dominant crossover is usebjentosariables and intermediate recombina-
tion is used on strategy parameters, as suggested by Sdt{iu@Td). In all methods, no special effort is
spent to find the best parameter settings, instead a reds@#itof parameter values are used. In all test
problems, we us&/ = 30 variables.

5.1 Sphere model

This is the most commonly-used test function chosen fonshgdboth experimentally and theoretically)
self-adaptation properties of ES. We consider severahmgsiof this function in the following subsections.



5.1.1 Function F1-1: Quadratic function
First, we consider the sphere model, where the objectivensnimize the followingV-variable function:

N
F1-1: Minimize » (z; — 2})?, (17)

=1

wherez; is the optimal value of thé-th variable. In the simulations presented first, we haveseho
xf = 0.0. Populations are initialized im; € [-1.0,1.0]. Real-parameter GAs with SBX are used to
find the optimal solution for this function. Tournament size- 2 and distribution indexy = 1 for SBX
operator are used. A population size of 100 is used. To ilgestthe effect of SBX operator alone, we

have not used any mutation operator. The Euclidean dist&nee />"¥ | z? of the best solution in a
population from the minimum is plotted with generation niemim Figure 4. The ordinate axis is drawn in

1 .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, NOSA'(]-*]'QO)'ES

BLX-0.5

x : SBX
8 1e10 “ (1,100)-ES 1

(10/10,100)-ES'
1e-20 * — *
0 200 400 600 800 1000

Generation Number

Figure 4: Population-best distanBgrom the minimum obtained with several evolutionary altfoms on
test function F1-1.

logarithmic scale and the figure shows that real-paramefer éth SBX (solid line) are able to maintain
increased precision with generation number. Here, it istivorentioning that the straight lines refer to
linear convergence, that is, an exponential decrease akslidual distance to the optimum. The figure
also shows the performance of several other evolutionggrahms. ES with no self-adaptation (marked
as ‘No SA) and withi = 1 and A = 100 are shown next. We have used a fixed mutation strength of 0.01
here. The children population size= 100 is used to keep the number of function evaluation same as that
in the real-parameter GAs. The figure re-confirms an alreatbdished (Beyer, 1996) fact that a comma
ES without self-adaptation cannot find continuously insieg precision. From a theoretical analysis on
the sphere model it was found that a non-self-adaptive ESgjatk at a distanck.,, given by (Beyer,
1996):

2¢, 0

For (1,100)-ES¢; 100 = 2.51 and the above equation yield&s,, = 0.0598. An average of population-best
R values from generation 800 till 1000 generations is catealdrom the simulation data and it is found
to be0.0585, which is in good agreement (within 2%) with the theory.



Next, we apply isotropic self-adaptive ESs ((1,100)-ES @rd10,100)-ES). In all self-adaptive ES
runs, we have used = cw/\/ﬁ to update the mutation strength. For example;oo = 2.51 and
ci0/10,100 = 1.94 are used (Beyer, 1995). The figure also shows an alreadyliesid fact that with
proper learning parameter update, self-adaptive ESs cawadimtinuously improving precision. The theory
suggests that for the sphere model with))-ES, the relative distancé?] change is , /(2IV), or 0.1048
with N = 30 (Beyer, 1996). When the slope of the (1,100)-ES plot is dated from the above figure,
it is found to be 0.1011, which is about 3% from the theorétestimate. Both these calculations and
experimental results give us confidence in our self-ade®8 implementations.

There are two aspects to notice in Figure 4. First, the intetion of crossover enhances the perfor-
mance of self-adaptive ES in this problem (Beyer, 1995).08dcthe performance of the self-adaptive
ES is much better than that of real-parameter GAs with SBXraipe This test function is unimodal
and isotropic ES uses this problem knowledge by using ondéyroatation strength parameter for all vari-
ables. On the other hand, real-parameter GAs with SBX doesis@any such information and hence
the progress rate comparison between the two algorithmetipnoper. Moreover, there is a mismatch
of effective selection pressure in both algorithms, withrenselection pressure for the self-adaptive ESs.
But, in the elliptic test function, independent mutatioresgths are needed to achieve self-adaptation and
both algorithms may then be compared. However, what is itapbhere to note that real-parameter GAs
with SBX operator is able to maintain increased precisioimgeneration number.

Before we leave this test problem, we would like to mentioat twhen real-parameter GAs with
BLX-0.5 is used on this problem, adequate self-adaptiveabien is not observed. GAs get stuck at
solutions away (at a distande = 1.276(107°)) from the optimum. Although it has some capabilities
of self-adaptation compared to (1,100)-ES without seHgsdtion, clearly the self-adaptive power is not
adequate.

5.1.2 Function F1-2: Biased population

It has been shown elsewhere (Fogel and Beyer, 1996) thatital jpopulation symmetrically placed
around the true optimum may induce a bias for better perfon@af a recombinative self-adaptive ES.
We take the clue from that study and use the same sphere nsifieltaised in the previous subsection, but
here we initialize the population far away from the optimumadan a narrow range; € [10 — ¢, 10 4 €],
wheree is a small positive number. However the minimum solutiortis’a= 0.0. The average distance
from initial population from the minimum solution is thug, = 10v/N (or, 54.772 withN = 30). We
choose three different values of= 10=°, 10!°, and10~'>. Figures 5 and 6 show the population-best
distance from optimumg) and the population standard deviation the variable vectors (averaged over
all N = 30 variables). ldentical GA parameter settings as before aegl Unere. With real-parameter
GAs with SBX operator, the initial population begins with @redard deviation of the order efand
grows to a large value. Thereafter, the population standexdation reduces as in test function F1-1
and GAs converge to the true optimum. Notice, how GAs regaiger number of generations to bring
the population standard deviation to a reasonable limith wrhallere values. This behavior of GAs is
very similar to that observed with self-adaptive ESs (B&t®97). Once the population has the correct
population variance and it is near the optimum, the rate ozemence to the optimum with increasing
precision is independent of how the population was ini&di. These results show that although 100
members in the initial population was confined to a tiny regi@As with SBX operator can come out of
there mainly with function value information and convergetie correct optimum.

1This quantity is calculated by first finding the meanf all population members. Thereafter, the standard dievias com-

puted as\/zzlzl () — 7)T (2 — 7)/(n — 1), wheren is the population size and”’ is thex-vector of thej-th population
member.

10



1l
o 1p psilon = 10(-15) silon = 104(-15)
= c —
b= o — 100/ Hon = 10M(- k] L epsilon = 10(-10)
g epsilon = 107(-5) epsilon = 107(-10) = epsilon = 10°(-5} WM\*‘Q“‘V/
€ z N
S 3 ;
3 E
= o |
©
& 8 1e10 |
° le-10 2
3 S
8 8
c =3
o Q
kK &
=3
Q.
o
o

le-20 L L L le-20 L L L

0 500 1000 1500 2000 0 500 1000 1500 2000

Generation number Generation number

Figure 5: Population-best distance from optimum Figure 6: Population standard deviation with gen-
(R) for populations initialized at different ranges eration number for populations initialized at dif-
[10 — €, 10 + €] for the function F1-2. ferent range$10 — ¢, 10+ ¢] for the function F1-2.

5.1.3 Function F1-3: Time-varying function

In order to investigate the performance of real-parametés @ith SBX on time-varying functions, we
now choose the same function as F1-1,4uhow varies with generation number in the rarigé .0, 1.0]

at random. The optimum is changed after every 1,000 geonesago that at the time of a change in
the optimum the population diversity has reduced subsitiyti The best function value and average
population standard deviation (as defined earlier) in ailaides are plotted versus generation number in
Figure 7. GA parameter settings same as thatin F1-1 are wsedThe figure shows that even though all

le+10 \ \ T

Best function value —
Standard deviation in variables
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Population statistics

le-20
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Figure 7: Population-best function value and average oladjn standard deviation in variables are
shown with generation number, as test function F1-3 chaitgeptimum after every 1,000 generations.
population members are all within a small range (in the oadei0~1°) at the end of 999 generations, the

population with SBX operator can diverge and can get adapt@dchanged optimum. This happens not
only once, but as many times as there is a change in the functio

11



The sudden jump in the best objective function value at getioer 1,000 suggests that the new function
value at the old optimum (at 999-th generation) is not goote population standard deviation in all
variables at generation is of the orderl®f ¥, suggesting that the population has lost diversity witpees
to the new function. Even then, GAs with SBX operator can kiyilcrease its population diversity and
converge to the new optimum. First, the population gets rdorerse to come near the current optimum
and then decrease diversity to converge closer and closketocurrent optimum. This is exactly the self-
adaptive behavior which self-adaptive ESs are expectegibi¢ (Back, 1997), and we find here similar
self-adaptive behavior of real-parameter GAs with the SBXrator.

5.1.4 Function F1-4: Multi-modal function

We now choose one test problem which is not quadratic in tlaeckespace. Moreover, in the range
[—1.0, 1.0], where the population is initialized, the function is unutad, but just outside this range the
function has other local attractors. We simply add a noadirterm to the sphere model:

N
F1-4: Minimize Z (xf +10(1 - COS(ﬂ'wi)) . (18)
=1
The interesting aspect is that the function has a globahapti (all z; = 0) in the range where the
population is initialized. But beyond this range, thereseai number of local optima—the nearest one for
each variable is at; = —2 andz; = 2. Figure 8 shows an one-dimensional version of this functidre
range, where the population is initialized, is shown by drgawo vertical dashed lines. Figure 9 shows
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Figure 8: An one-dimensional version of F1-4.  Figure 9: Population-best distané&from opti-
mum for F1-4.

the performance of real-parameter GAs with SBX wijth= 1. The figure also shows the performance of
isotropic self-adaptive (1,100)-ES and (10/10,100)-Etf vdentical parameter settings as used in Function
F1-1. Now, self-adaptive ES seems not able to converge tgltiel attractor (alk:; = 0 having function
value equal to zero), although the initial population wascptl in the global basin. In self-adaptive ESs, the
mutation strength for each parameter needs an adaptatientithin which update of mutation strengths
and corresponding fitness landscape should make a suitgideraent. If either due to improper use
of learning rate or other ES parameters or due to a complegsfithandscape this agreement does not
happen, the mutation strength does not get adapted prof&irige in this function, the landscape just
outside[—1, 1] has a non-agreeing landscape compared to that inside tioa fegl , 1] for each variable,
self-adaptive ES gets confused whether to increase oragemutation strengths for variables.

However, as suggested in Beyer (1996, page 335), if loweuapér bounds on variables are known
with confidence, self-adaptive ES may be used with a smalhlnnutation strengtlr (). It is intuitive
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that when a small initial mutation streng#t) is used, the mutated solutions are not likely to be outside
[—1, 1], and thus self-adaptive ES will be confined in the globalmag/hen an initial mutation strength
o) one-tenth of what used in the above runs is used, the ES gms/& the correct optimum. However,
a small initial mutation strength may not have the desiregperties in other functions where divergence
from the initial population is necessary to get to the truéropm (such as test function F1-2, F1-3, or
ridge functions). Nevertheless, the study of this multidalatest function suggests the importance of the
initial mutation strength in successful working of selfaptive ES, particularly in non-linear problems, a
matter which is not adequately addressed in the ES litexatur

In real-parameter GAs with SBX, there is an equal probablityreating solutionsinside or outside the
region bounded by two parent solutions. Thus, many childadations will be created outsidie 1, 1]. But
since the generation of children solutions are mainly goeeiby the distance between parent solutions and
above function has an overall quadratic structure withftiietor at the global optimum, real-parameter
GAs do not face much difficulty in converging to the true optimn Notice how similar the performance
of GAs with SBX in this figure is with respect to that in Figurewhere the simple sphere model was
considered.

5.2 Elliptic model

In this function, every variable has an unequal contributmthe objective function. We consider a few
variants of the elliptic function.

5.2.1 Function F2-1: Elliptic function

It is similar to the sphere model, but not every variable fqasaécontribution to the objective function:

N
F2-1: Minimize Y 1.5 "2 (19)

=1

Since each variable has unequal contribution to the obgdtinction, self-adaptive ESs with isotropic
mutation strength is not adequate to solve this problenst,Rire use real-parameter GAs with SBX and
then show that its self-adaptive behavior is similar to tinad non-isotropic self-adaptive ES, where a
separate mutation strength is used for each variable.

Figure 10 shows the objective function value of the besttawitin the population. The population is
initialized inz; € [—1.0, 1.0]. Once again, we use the same GA parameters as before, bounsarhent
size 3 to compare the performance with self-adaptive ES pEn@rmance of non-isotropic (10/10, 100)-
ES with lognormal update of learning parameter is also shone performance of BLX-0.5 on this
function shows that BLX-0.5 does not have adequate seltadapower.

Figure 11 plots the population standard deviatiomiinz,5 andxs, variables in the population for the
real-parameter GAs with SBX operator. Since they are scaded), 1.5 ~ 292, and1.5%° ~ 127,834,
respectively, the 30-th variable is likely to have smallari@nce than the 1st variable. The figure shows this
fact clearly. Since, ideal mutation strengths for theséatédes are also likely to be inversely proportionate
as1.5'"!, we find similar ordering with non-isotropic self-adapt&s as well (Figure 12). Thus, there is
a remarkable similarity by which the both real-parametersG#ith SBX and self-adaptive ES work. In
the former case, the population diversity gets adaptedbas¢he need of the fithess landscape, which in
turn helps the SBX operator to createvalues of children solutions proportionately. In the lattase, the
population diversity gets controlled by independent matastrengths, which get adapted based on the
fithess landscape.
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Figure 10: The best objective function value in the populais shown for three evolutionary algorithms—
real-parameter GAs with SBX, self-adaptive (10/10,108)-&nd real-parameter GAs with BLX-0.5 op-
erator on function F2-1.

5.2.2 Function F2-2: Timevarying elliptic function

Like in the sphere model, we construct a test problem whezeetliptic function changes its optimum
solution occasionally with generation. We use the follayvimnction:

N
F2-2: Minimize Z ri(x; — af)? (20)

=1

wherer; is an randomly shuffled array of integers betwéea V. After every 1,000 generations, this array
is changed to another permutation of integers from A'tdn addition, the optimum:(* values) of function

is also changed to a random value in the rapge0, 1.0]. The parameter setting of tournament size of 3
for real-parameter GAs and = p = 10 for self-adaptive ES (which are used in the previous expemiin
make the corresponding algorithm too sluggish to adapteattanges made at every 1,000 generations.
Thus, in this experiments, we use tournament size of 2 for @M = p = 15 with 5,5 100 = 1.558 for
ESs. Figure 13 shows the population-best objective funatédue and the population standard deviation
in the 25 variable. It is clear that although the population deviasi@re quite small at the end of 999
generations, the population can adapt to the change in tietidun landscape. A similar performance
plots are observed with (15/15, 100)-ES with non-isotreg@tf-adaptation in Figure 14. In this figure,
the population-best objective function value and the niotiastrength forz, 5 variable are shown. The
remarkable similarity in both figures suggests that for émosarameter settings both real-parameter GAs
with SBX operator and self-adaptive ES have very similarkiray principles.

5.2.3 Functions F2-3 and F2-4: Multi-modal function

Like before, we choose a multi-modal elliptic test functtorinvestigate the performance of self-adaptive
ESs and GAs with SBX operator. Before we discuss the functianfirst show simulation results of
non-isotropic self-adaptive ES and real-parameter GAR X on the following elliptic function:

N
F2-3: Minimize Y _ia?. (21)

=1
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Figure 11: Population standard deviation in vari- Figure 12: Mutation strengths for variables
ables z, 75, and z3y are shown with real- x1, 215, and zzg are shown with self-adaptive
parameter GAs with the SBX operator for the (10/10,100)-ES for the function F2-1.

function F2-1.

Figure 15 shows that the (10/10,100)-ES with self-adaptas able to converge near the optimum. The
same is true with real-parameter GAs with SBX, but the ratearfvergence is smaller compared to that
of the self-adaptive ES.

We now construct a multi-modal test function by adding amweserm as follows:

N
F2-4: Minimize Zz (xf +10(1 — COS(ﬂ'wi)) . (22)

i=1
Figure 16 shows the performance of real-parameter GAs afiddaptive ESs with identical parameter
setting as on the elliptic function F2-3. Now, self-adapti¥S seemsot able to converge to the global
attractor (allz; = 0 having function value equal to zero), for the same reasomaisdescribed in sec-
tion 5.1.4—the initial mutation strength being too largekaep the population within the global basin.
When all initial mutation strengths reduced to one-tentthefr original values, non-isotropic ESs had no
trouble in finding the true optimum with increased precisitive observe no such difficulty in GAs with
SBX operator and a performance similar to that in Functiofr8F2 observed here.

5.3 Corrdated function

Next, we consider a function where pair-wise interactiohsasiables exist. The following Schwefel’s
function is chosen:

N [ 2
F3-1: Minimize (Z x]«) . (23)
i=1 \j=1
The population is initialized at; € [—1.0, 1.0]. Figure 17 shows the performance of real-parameter GAs
with SBX (n = 1) and tournament size 3, non-isotropic (4,100)-ES, andetated (4,100)-ES. Although
all methods have been able to find increased precision inreatasolutions, the rate of progress for the
real-parameter GAs with SBX is slower compared to that ofatweelated self-adaptive ESs. However,
GAs with SBX makes a steady progress towards the optimum arfdrms better than the non-isotropic
(4,100)-ES. The reason for the slow progress of real-pami@As is as follows. In the SBX operator,
variable-by-variable crossover is used with a probabdit®.5. Correlations (or linkage) among the vari-
ables are not explicitly considered in this version of SBXthaugh some such information comes via
the population diversity in variables, it is not enough togress faster towards the optimum in this prob-
lem compared to the correlated ES, where pairwise intemastimong variables are explicitly considered.
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Figure 15: Population-best objective function
value for real-parameter GAs and self-adaptive
ESs are shown for the elliptic function F2-3.

Clearly, a better crossover operator handling the linkagee but with the concept of probability distri-
bution to create children solutions is in order to solve spafblems faster. One such implementation is
suggested in Section 6.

Besides the linkage issue discussed above, there is amotdraatch between the GAs with SBX and
the correlated self-adaptive ESs used above. In GAs, atgiguessure of 3 (best solutionin a population
gets a maximum of three copies after the tournament sefeoperation), whereas in the correlated self-
adaptive (4,100)-ESs, only 4 best solutions are picked @ children solutions. In order to alleviate
this mismatch in selection pressures, we use a differemtritign (we call ES-SBX) where §:, A)-ES
is used, but\ children solutions are created frommparent solutions only by the action of SBX operator
alone. Each parent:('Y) mates with other parents in exactly;. crossovers, everytime creating one
child solution using equation 5. Like the SBX operator usedsiAs, every variable is crossed with a
probability 0.5. If a variable is not to be crossed, its vdmﬁ, t)) in the first parent is directly passed
on to the child. No explicit mutation operator is used. Th&t & the algorithm is exactly the same as
that in a(u, A)-ES. As shown in Figure 17, this new algorithm with (4,10(9-EBX is able to achieve
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Figure 17: The best objective function value in the populais shown for four evolutionary algorithms—
real-parameter GAs with SBX, non-isotropic (4,100)-ESd aorrelated self-adaptive (4,100)-ES, and
(4,100)-ES-SBX—on function F3-1.

much better performance than GAs with SBX operator, altihaugexplicit pair-wise correlations among
variables are used in any operator. However, we recognislle linkage issue may still be a problem in
general, but this simple change in the algorithm seems taeli in a problem where finding pair-wise

linkage information is important.

54 Ridgemodd

Above problems have tested the ability of algorithms to epge near the true optimum with increasing
precision. We now test algorithms for an opposing charétter We consider the following function,
which is largely known as the ridge functions in ES literatur
Maximize vl —d (H(UTJU)U — xH)a , (24)
wherez is the N-dimensional variable vector ands the ridge axis (or the direction vector specifying the
ridge axis). Thus, the first term is the projectionzofiector along the ridge axis. The term insidd is
the orthogonal component specifying the distance to thgerakis. Since the objective is to maximize the
overall function, the subgoals are to maximize the distahaeg the ridge axis and minimize the distance
to the ridge axis. The parametet@and« govern the shape of ridge functions. Higher valued afakes
the second term more prominent compared to the first termlzer@dfiore makes an algorithm difficult to
progress along the ridge axis. In all simulations here, veeausomparatively largé = 1. The parameter
« has a direct effect on the fithess landscape. Usually, tmoegabfe are commonly used-a-= 2 is
known as the parabolic ridge function and= 1 is known as the sharp ridge function. Here, we shall
consider the parabolic ridge function only.

The ridge functions have their theoretical maximum solut infinity along the ridge axis in the
search space. Since the maximum solution lies on the ridgethis function tests two aspects: converging
ability on the axis, and diverging ability in the directiohtbe ridge axis. We test the performance of real-
parameter GAs with SBX and the non-isotropic self-adatige
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5.4.1 Function F4-1: Parabolicridge

Here we consider the ridge function with= 2. At first, we choose;; = 1 and all others; = 0 for

¢ = 2,...,N. This makes the first coordinate axis as the ridge axis. Isialllations, we usé&/ = 30
and the population is initialized in; € [—2, 2]. Real-parameter GAs with SBX; (= 1) and with binary
tournament selection are used. A population of size 100esl.uEigure 18 plots the distance along the
ridge axis (the termy” 2) with generation number. The figure shows that real-paran®As are able to
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Figure 18: Performance of real-parameter GAs Figure 19: Population standard deviationan
with SBX and BLX-0.5, non-isotropic self- andz, for GAs with SBX and population aver-
adaptive (10/10,100)-ESs, and (10,100)-ES-SBX age mutation strengths in andzx, are shown for
are shown on the ridge function F4-1. the ridge function F4-1.

progress towards infinity along the ridge axis exponentiaith generation number (the ordinate axis is
plotted in logarithmic scale). A run with non-isotropictataptive (10/10,100)-ES with one independent
mutation strength parameter for each variable shows aaifdhavior, but with much better progress rate.
Since the optimum is at infinity along the ridge axis, an alfon with faster divergence characteristics
is desired. Since BLX-0.5 allows creation of more diversidecan solutions than parents, we tried using
real-paramater GAs with BLX-0.5 operator. The figure showsrself-adaptive power of the BLX-0.5
operator.

Figure 19 shows the population standard deviatiom irand x5 for real-parameter GAs with SBX
operator. The figure also shows the population average mnotatrengths inz; andz, as they evolve
for the parabolic ridge function. It is clear that in both @lghms the population diversity or mutation
strength forz; grows much faster than thatin. This is what we have expected, because for the parabolic
ridge function there are two subgoals. By increasing theufain diversity or mutation strength at
faster rate will allow the corresponding algorithm to mow&der along the ridge axis. On the other
hand, since the secondary goal is to come closer to the rixigean ideal situation would be reduce the
population diversity or mutation strengths of other valésh@, to 2) as small as possible. However,
both algorithms resorted to increase these quantitiesgétteration, but at a rate much smaller than the
growth inz; variable.

Next, we apply (10,100)-ES-SBX (where SBX is used as the seérch operator in an ES, which is
described in the previous subsection). SBX operator with 1 is used. Figure 18 shows that a better
progress compared to all other algorithms is obtained wgHIBX algorithm.

5.4.2 Function F4-2: Parabolicridge with rotated ridge axis

In this case, we use a randamso that the ridge axis is now not along a coordinate diractRarameters
as that used in F4-1 for real-parameter GAs with SBX andagdfptive ES are chosen here and an iden-
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tical ¢’ is used for all algorithms. Figure 20 shows the progress tdsvine ridge axis with real-parameter
GAs, with non-isotropic self-adaptive ESs, and with ES-SBgorithm. The self-adaptive ES has a faster
progress rate. However, it is worth mentioning that a naonebinative self-adaptive (10,100)-ES per-
forms poorly in this function. However, notice that due te larameter interactions, the progress along the
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Figure 20: Performance of real-parameter GAs Figure 21: Population standard deviationan
with SBX and BLX-0.5, non-siotropic self- andz, for GAs with SBX and population aver-
adaptive (10/10,100)-ESs, and (10,100)-ES-SBX age mutation strengths in andzx, are shown for
are shown on the rotated ridge function F4-2. the rotated ridge function F4-2.

ridge axis is now not exponential to the generation numiagher the progress is linear. Since to improve
along the ridge, allV variables need to be changed in a particular way, the pregtes/s down. However,
both algorithms have been able to maintain a steady pragResd-parameter GAs with BLX-0.5 also has
progress towards optimum, but the progress is slow. ThaQI);ES-SBX algorithm (withy = 1) is able

to find better performance than GAs with the SBX operator.

Figure 21 shows the population average standard deviatiop andz, for real-parameter GAs with
SBX operator and the population average mutation stremgth iandz,. In contrary to their evolution
in the parabolic ridge F4-1 (Figure 19), here, these quastih both algorithms reduce and fluctuate in
a certain range. More importantly, these quantities forakldesz, andz; now varies in the same range.
This can also be explained as follows. In the rotated ridgetion, the ridge axig'is a random direction,
other than any coordinate direction. For the same reasgnpehogonal direction to the ridge axis is
also a non-coordinate direction. In order to simultanepgatisfy both subgoals of maximizing progress
towards the ridge axis and minimizing the distance to thgeidxis, the best an algorithm can do is to
have a compromise in the rate of growth in each variable tioec In this case, both algorithms make
careful changes to variables by keeping the populatiornrsityeor the mutation strength small so that a
compromise in both subgoals is achieved. Naturally, thdsices the overall progress rate along the ridge
axis. However, it may be mentioned here that such a lineaabehof rotated ridge functions is inevitable
for any self-adaptive strategies which work with adaptagian variable directions independently. For a
strategy which has the capability to independently adagatrans in arbitrary directions (not necessarily
the coordinate directions), an exponential progress tdsvaptimum with generation number may be
possible (Hansen and Ostermeier, 1998).

6 Future Studies

This study suggests a number of extensions, which are edtlinthe following:

1. Real-parameter GAs with SBX operator can be comparedatitér self-adaptive ES implementa-
tions.
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2. Other probability distributions, such as lognormal @bitity distribution, can also be investigated
for self-adaptive behavior in real-parameter GAs.

3. Other existing real-parameter crossover operators eanvestigated for their self-adaptive behav-
ior.

4. Properties for an efficient crossover operator can beldped for real-parameter GAs.

5. A generic real-parameter crossover operator with moaa tivo parents can be investigated for a
faster progress rate.

6. A real-parameter crossover efficient for problems haviogelated interactions among object vari-
ables can be investigated.

7. Real-parameter GAs can be compared with self-adaptieeii$eal-world complex search and
optimization problems.

8. Properties for an algorithm to exhibit self-adaptationl dest suites can be developed for testing
self-adaptive feature of an algorithm.

9. Discrete programming with real-parameter GAs with a rfiediSBX operator can be investigated
for self-adaptation.

We discuss the above extensions in somewhat more details.

In this study, we have shown that the real-parameter GAs 8K operator has the self-adaptive
behavior, similar to that in a self-adaptive ES with lognalmpdate of self-adaptive parameters. Other
self-adaptive ES implementations also exist and it willieriesting to compare the performance of real-
parameter GAs with SBX operator with them. Of them, the ESi@mgntations by Hansen and Ostermier
(1995) can be investigated.

Itis intuitive that there is nothing special about the palgmal probability distribution used in the SBX
operator. However, it is important that the properties & 8BX operator described in section 2 must be
preserved in a probability distribution for crossover. hather more standard probability distributions
usedin ES, such as lognormal distribution can be used. $megard, the following probability distribution
as a function ofi can be investigated, instead of equation 3:

11 1 (In )2
P(ﬁ)—mTBexp(—§ - ) B> 0. (25)

This probability distribution has its mode (maximum)t= exp(—72%), mean at3 = exp(r%/2), and
exactly 50% probability of finding & < § < 1 and the rest 50% probability of finding > 1. The above
distribution has a variance; = exp(r?)(exp(7?) — 1). Since all statistical properties for this distribution
are known, it may be easier to compare the performance of@osisover operators with self-adaptive ES
which also uses lognormal update rule.

Besides the SBX operator, there exist other real-paransetssover operators such as BloX(Eshel-
man and Schaffer, 1992) and UNDX operators (Ono and KobayH387) which can be investigated for
self-adaptive behavior. We have investigated BLX-0.5 afm#rin some test problems in this study and
our findings are not positive. However, BLX-with other« values can be tried for their self-adaptive
behavior. The UNDX operator creates children solutiongpprtional to the parent solutions, but gives
preference to solutions that are near the mean of the paoéritans. This property is contrary to what
SBX operator does, and it will be an interesting study to stigate whether real-parameter GAs with the
UNDX operator has the adequate self-adaptive behavior.

Studies of self-adaptation with various real-parametessover operators will reveal and allow us to
find properties which are needed in an efficient real-paramgbssover operator. Such properties will
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help us to create problem specific crossover operatorsgidle@ The evidence of self-adaptive behavior
of real-parameter GAs with SBX operator in this study sugg#sat, besides the properties mentioned in
Section 2, the following are also important properties thaelf-adaptive real-parameter GA should have
in their search operator:

e The crossover operator must produce children populatioichwvhas the same mean as that in the
parent population.

e The variance of the resulting children population may bgdathan that of the parent population.

The first property distinguishes the crossover operatonftioe selection operator. The primary task of a
crossover operator is to search the region representedebgatent solutions. There is no reason why a
crossover operator should have any bias towards any planticgion in the search space. It is precisely
the task of the selection operator to guide the search t@mMaetter regions in the search space. The
second property helps to maintain a balance between thagpfeolutions under selection and crossover
operators. Since selection emphasizes good solutionsroinating bad solutions in a population, it may,
in general, reduce the variance of the population. If thesower operator also has a tendency to reduce
the variance of the population, the overall search algorithay not have adequate power to adapt to any
function landscape. Thus, it may be desirable to have a@vessperator which, in general, increases the
variance of the parent population.

In self-adaptive ES studies, it has been observed that owiftiyparent crossovers provides better local
convergence properties. In this study, we have only confimeslsovers having two parents. However, a
suitable extension to the SBX operator with more than twepiarmay lead to an algorithm with a faster
progress rate. In the following, we outline one such possiltgorithm. It has been discussed earlier that
in the SBX operator the variance of children distributiopeieds on the distance between the two parents.
It is also important to use a distribution which assigns npabability for creating near-parent solutions
than solutions away from the parents. It may not be of sigaificmportance what distribution is actually
used—whether the polynomial distribution used in this gtod any other distribution with the above
property. In order to be closer with mutation operators usd€lS studies, a normal distribution with zero-
mean and a standard deviation proportional to the distagtveden two parents can be used, instead of the
polynomial distribution. In such a scheme, a parent is fitfshiified. A second parent is randomly chosen
to compute the distance (either variable-by-variable atamewise) between both parents. Thereatfter,
a child is created with a normal distribution having its mesrthe first parent and standard deviation
proportional to the distance. In principle, such a crossoyerator (it will still be a crossover operator,
because more than one parents will be used to create a chilibs) should also have the self-adaptive
power. Once such a principle is established, a multi-pageare than two parents) crossover can be
designed. The distance measure used to define the stand@atatefor the normal distribution can be
computed as a weighted sum of the distances multiple panemesfrom the parent being mutated.

In solving the correlated functions and generalized ridgeefions, it is observed that progress towards
the optimum is linear, instead of exponential, to the geti@mmaanumber. One way to speed up the progress
would be to use a correlated SBX operator which exploits #ieise interactions among variables. One
such procedure would be to first use variable-by-variabl¥ SB®ssover. Thereafter, the resulting children
solutions can be modified further by performing a line SBXraper on pairs of variables. In a line SBX
operator, children solutions are found along the line jognihe two parents. Such a pair-wise crossover
for variables can allow progress of solutions in directiargere correlated interactions exist.

The primary reason for emphasizing the research in rearpeater optimizations using evolutionary
optimization techniques is their use in real-world seancti aptimization problems of science and engi-
neering. With the indication of self-adaptive behavior edlrparameter GAs in this study, such GAs can
be tried to solve real-world search and optimization protdewhere self-adaptation is an essential feature
needed in an algorithm to solve a problem.

In this connection, it is important to note that there exigistudy identifying properties that a search
and optimization algorithm should have in order for it to hmlified as a self-adaptive algorithm. Research
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efforts in this direction is needed so as to develop betgrithms. Such a study may also help develop
a suite of test problems for identifying self-adaptationga@rties in an algorithm. So far, self-adaptive

evolutionary methods are applied only to a few simple funtdi We have observed in this study that ex-
isting self-adaptive ES algorithms are vulnerable to clesrig these test problems. A recent study (Grinz
and Beyer, in press) has shown that the theoretically opiu@emeter settings for a non-recombinative
self-adaptive ES does not work well for recombinative ESBug] there is a need of studies developing
problems which will test various aspects of self-adaptati@onvergence with arbitrary precision, adap-

tation to non-stationary functions, finding true optimumfumctions with inadequate knowledge of the

location of optimum, and others.

Since a discrete version of the SBX operator can be usedve d@crete programming problems (Deb
and Goyal, 1997, 1998) efficiently, GAs can be investigatedtieir self-adaptiveness in discrete search
space problems. The extension of SBX to discrete searchespaimple and straightforward. Instead
of using a continuous probability density function, a déterprobability distribution (allowing non-zero
probabilities only to acceptable solutions, and keepirgstiape of the distribution similar to that in SBX
operator used in continuous search space) can be used te chélaren solutions. Rudolph (1994) used
a self-adaptive ES on discrete search space problems. GAsliscrete-version of the SBX operator can
be tried to check if GAs can also exhibit self-adaptatiorhiose problems.

7 Conclusions

In this paper, we have demonstrated that real-parametetigaaigorithms (GAs) with simulated binary
crossover (SBX) exhibit self-adaptive behavior on a nundi¢est problems. In this respect, a connection
between the self-adaptive evolution strategies (ESs) wighormal update methods and real-parameter
GAs with SBX operator has been discussed. A non-rigoroulysisehas shown that both methods use
similar probability distributions in creating childrenlations, although a self-adaptive ES uses a single
parent and a GA with SBX uses two parents. Applications oflméthods in a number of test problems
borrowed from the ES literature, including sphere modeld @dge models, reveal the remarkable sim-
ilarity in their performances. Based on this study, a nundfezxtensions to this study have also been
suggested.
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