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SYNOPSIS

Finite element models of Modified Rayleigh-Ritz, Galerkin, Least Square, Hybrid
(Pian's) and Collocation methods are presented for natural vibration problems, A compara-
tive assessment i8 made of these methods with Rayleigh-Ritz finite element models. This
study brings out that the Galerkin model is relatively superior. A method of improving the
accuracy in the estimation of eigenvalues is also included,

1. INTRODUCTION

The classical finite element formulation can be considered to be an analogue of the
Rayleigh-Ritz procedure in continuum mechanics. Since its introduction, several other
formulations have appeared in the literature. In general, it is possible to develop finite
element analogues for most of the continuum methods [1-11]. For atatic analysis of struc-
tures, Szabo.and Lee[.'i} have given. a finite element analogue of.the Galerkin method. It has
also been-used for nonlinear problems. Hicks Jr. [7] has used a finite element analogue of
the Collocation method for studying a stability problem. For vibration problems, Rayleigh-
Ritz type finite element models have beer used extensively so far [13-15].

L T

It is only recently, some investigators, including the authors, have started examining the
i possibility of using alternate models [2, 4-8 , 8-10] . In this paper we present five models

g k based on Modified Rayleigh-Ritz, Galerkin, Least Square, Pian's Hybrid and Collocation
™\ ' ' methods. Through a comparative discussion, the salient features of these models are high~
lighted.,

As the main objective of the paper is to study certain basic features of the models, nume-
rical examples are limited to relatively simple cases and through an examination of various

models aided by quantitative comparison of the errors in eigenvalues, the relative merits of
these models are brought out,

A serious drawback in the finite element analysis of vibration probleme-is-the:
size of the dynamical matrix to be handled. Comparatively large order dynamical matrices
are required to give a satisfactory degree of accuracy even in the first few frequencies.
Condensation techniques are of ten used to reduce the size of the matrices which in turn
introduce certain errors so that the results are unreliable beyond certain limits. In thig
Paper we present a method of using initial approximations (original as well as perturbed) basal
on relatively smaller sized dynamical matrices, to generate accurate eigenvalues,

Copyright © UNIVERSITY OF TOKYQ PRESS, 1973

':L ESL RS

-




324 A. V. KRISHNA MURTY ET AL. -

2. RAYLEIGH-RITZ METHOD

Basis

In this method one starts with an assumed displacement function, in a series form, with
a pumber of free constants, satisfying geometric boundary conditions, The strain energy
and kinetic energy expressions are obtained in- quadratic forms in these free constants, by
substituting the assumed displacement functions. Minimisation of the Lagrangian function -
yields requisite equations from which eigenvalues and eigenvectors can be computed.

Finite Element Analogue

For the sake of completeness, we shall briefly describe here the conventional finite
element displacement formulation for natural vibration problems, which is, in fact, a finite
element analogue of the Rayleigh-Ritz method. In this method the stationarity property of
the Lagrangian, i.e., )

S(U-T) = ¢ )

is used. The expressio.ns for the strain energy U and the kinetic energy T are

U=%{P}T[K]{P} | - @
=1

and relu? ()T [M]{e) o

In writin'g‘ Eq. (3) the oscillations have been assumed to be sinusoidal. The global elastic
stiffness matrix [K ] and the mass matrix [M7] are 'assembled' from clemcnt matrices[k]
and [m} respectively as

[K]= [o]Tr_[k]_iJ [o]l’ ' ' (4

[M]=[63Tr[m to] - ST

]_iJ

where [a] is the displacement transformation matrix, and is a Bdolean if a coordinate trans-

formation is not involved. The elements of the stiffness and the mass matrices, kij and
m ij are obtained using the relationships :
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‘kij = ___._a—- (3]
. apei Pe]
2
2 9 Te 7
YN TN
P OP,.

The expressions for - Ug and Tg are

et [V e

e

TR
2 |
/
7
= ,3
1
4 E

R

A

Ko




NATURAL VIBRATION PROBLEMS 325

Te = %2_([ {#} tu1{a} v 2

with {é}: [I'] {W} . 10)
where {W } is the displacement field assumed in the element in terms of the nodal displace-

ment vector %}{:} =[4,]{cx} =[4/] [A]-1{pe} SEH

v

The relationship between {%} and the constants {a}is given by

(re} =[] {}

Substituting Egs. (2), (3) in Eq.(l) one obtains the governing equation as,

[K]{r} ~2n] {#} -0
from which eigenvalues and eigenvectors are computed.

3. MODIFIED RAYLEIGH-RITZ METHOD

Basis

In the modified Rayleigh~-Ritz method, to start with, a deformed shape is assumed, as in
the Rayleigh-Ritz method, in the form of a series with a number of free constants, with each
component of the series satisfying the geometric boundary conditions, Assuming sinusoidal
oscillations, in the case of beams, the inertia loading on the structure is taken as the product
of the square of the natural frequency, the locul displacement and the mass per unit length,
Minimisation of a function, defined as the difference between the strain energy corresponding
to the inertia loading and the kinetic energy corresponding to the assumed displacement dis-
tributions, provides the basis for a procedure for evaluating natural frequencies.

Finite Element Analogue

The structure is divided into elements and in each element a suitable displacement dis-
tribution is chosen in terms of the nodal values. The expression for kinetic energy is wri-
tten as in the case of the Rayleigh-Ritz method as

re g2 o (] {7}

The inertia loading {ll in the structure corresponding to the assumed displacements is
of 7
(e ], 1] 14}
iy
and the corresponding strain energy U4 is

o=+ ][] {0

where [ {] is the element flexibjlity matrix based on appropriately chosen (also see Ref,[4])
element stress distributions {S} , and [b] is the load transformation matrix defined by

{s} - [#] {n}
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Defining matrix [ B] relating { S} and

{
(s} -v2[s] {r
(8] = [o] "[x], [o] o

' Using [ B] , the expression U1 may now be written as

o =t o [F] o)
F-BI"), [e] e

2

8(Uy - T) = 0 | ' ' 22

(18)

it can be shown that

where
Using the condition

the governing equations are obtained as

o> [F]{r}-[m]{r} -0

We may note that w< appears, in this method, with the strain energy term, in contrast to
its affiliation with kinetic energy term in the Rayleigh-Ritz method. The method of writing
the expression for Uy involves the use of the concepts of the matrix force method [2]
Hence although the method may give better results than the 1{ayle1gh -Ritz method, the scope
of its application can be restrictive.

4. GALERKIN METHOD

Basis -

For the Galerkin method, the dependent variable in the governing differential equation is
assumed in the form of a series, with each of the component functions satisfying all the
boundary conditions, Substitution of this in the governing differential equation yields an
expression for error.” Integrals of the products of the error in the differential equation and
the component functions of the assumed series are set equal to zero, to obtain the necessary
set of algebraic equations, from which eigenvalues and eigenvectors can be computed,

Finite Element Analogue

The differential equation governing the free vibration problems may be written as
Li(W)- ALo(W) =0 24

where L; and L2 are differential operators and A is the eigenvalue. Considering one
dimensional problems, the displacement distributions in the i-th element may be taken

A (o] {a}, = [v]; [a]" {2}

Substituting Wi in the governing differential equation, the expression for the error in the

differential equation in the i-th element, Ei becomes

‘lz(LH")‘LZi)[‘P]i_[A]iﬂ{Pe}i =
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Following the Galerkin procedure the governing equation can be obtained as

[Ek] {P} —A [Em]{p} =0 . en

T (k) 0] (o) |
e = [o]" e, [o]
o fenle LT “‘[emJ_u (o]

o], = (2] S ] g [ ] 0ed (o R

and [em] i |

()T [ v, ) ]

The eigenvalues and eigenvectors can be computed from Eq. (27).

5. LEAST SQUARE METHOD

! Basis

In this method also, the dependent variable in the governing differential equation is
assumed as a series. The error function is obtained as described in section 4, Minimisa-
tion of the infegral of the square of the error function provides the necessary set of algebraic -
equations from which eigenvalues and eigenvectors can be computed.

Finite Element Analogue

As in the case of the Galerkin method (section 4 ), the error function for the i~th domain
is given by

€ = Lyj= ALl2;) [\UL [A]i-1 {Pe}i (33)

The vector of errors in all elements is

"

Using the minimisation condition that -

S RCHECI T o
[ ]{ } [Q]{P}+>\2[R]{P}=O (36)
[ ] [ ] [A]i—1T(f(L1i[‘P]i)T( LH[W]i)dE)[A_]Ji_‘[O] (37)

We get

where

€

SRR i Sai g ST

RPN SR

g

{Zi} =l‘(_L1i —XLZi)[\z;]i[A]i—:J[O] {p}- : (34).
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[q] - [Q]T [‘_[A]:IT(éf (Ly; [v]. y (in[w]i-)'df

fua v e €] )

7] - (o] T T Sl im0 (8], ]

It is to be noted that, in contrast to other methods described in this paper, this method
yields a quadratic eigenvalue equation giving risé to complex eigenvalues and hence involves
more computational effort than the three earlier methods.

and

6. COLLOCATION METHOD

Basis

In the collocation method considered here, we start with deflection assumed in terms of
some admissible functions containing undetermined constants.

Deflections of the structure, subjected to the inertia loading corresponding to the assum-
ed deflections, are evaluated and are equated to the assumed deflections at a certain number
of points. This provides the necessary algebraic equations from which eigenvalues and
eigenvectors can be computed.

Finite Element Analogue

~

In section 3 , we have given the expression for the strain energy in the structure subjec-
ted to the inertia loading {H} as

o3 () 1] T, [o) ()

where { H } corrééponds to assumed displacement fields and is given by

{H}=w2 [#] [0] ‘an
—d ; .
Using Castigliano's theorem ( Part I ) , the deflections {P‘ } due to { H} can be obtained

RO HOAONOI

To use the method of collocation, {P1 } is equated to {p} . Hence

{e}=p]" " [r], [0] {#)

Substituting Eq.(41) in the above, one obtains the final governing equation as

RO
g
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4 7. HYBRID METHOD (PIAN'S TYPE)
Basis

Pian has given an effective hybrid concept for static analysis wherein, stress fields satis-
fying equilibrium equations are assumed in the interior of the element, compatible displace-
ments are assumed at the inter-element boundaries and the complementary energy principle

' is used for formulating the problem. Analogous to this, it is possible to develop a formula~
: tion for natural vibration problems. But this will have certain disadvantages which will be
discussed later. ’

Finite Element Analogue

To bring out the possibility of a formulation based on this hybrid concept as well as to
unfold certain difficulties involved, we shall develop the method in detail with the aid of a
simple example of torsional oscillations of a uniform shaft. The governing differential
equation is

8"+&26=0 : (46)
We use the solution of this equation to assume equilibrating stress fields in the element.

For the i-th element, the expression for 8 satisfying equilibrium which we shall denote
as Bg , can be obtained as

be; = [‘I1 cos w§, - &5 sin ‘;’f]i :[\U] [A]i—l {pe}i @

where

[4/] = [cos wg  —sin wg] {48)

R LAY e

The corresponding mternal torque satlsfymg equilibrium can be taken as’
. -1
- 650 [sinwt,cosue] [2]; {2}

~eu[4][a]; (e},

’4! . where [4,] = [sin wé, COS wf] (50 a)

The complementary strain energy U l',“ in the element becomes

2 y
U’;:_é'_ggl;jf GJw 2{P } [f (w)]i {Pe}i s

" [rw)] = [a) S [T e] 060 [a]
The inertia loading in the elemente : |
1’Sizahlpmz Be=01p[ ] [ ] {P} ' (53)

To facilitate evaluation of complementary work done, a suitable displacement distribution is
chosen ‘independent of f¢ and will be denoted as §4 . For example 84 can be taken as

1t

T

i}
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L 4
%= [0 1-e] {re} = (). {a)
The complemeﬁtary work W* can be written as

W?=%— ,/;?s 64 d€ =w2‘71p{pe}gT [m (w)]i{pe}i

[m o, =4 (][0T ()

Applying the condition

where

S(U*— W*) =0

we obtain the final equation

[l {2}~ ] {7} -

(
(

- Ji o]
()] [o] " [mto] o]

Here [a is the displacement transformation matrix as defined in carlier sections.

[Fe] o] " [ree)],

M (w) are functions of the frequency w. Hence the computer programming becomes
ore complicated. In view of this conspicuous disadvantage, in this paper, this method
has not been investigated further. However it is worth mentioning that this shows a possi-

bility of applying the complementary energy principle to eigenvalue problems, As the
complementary energy principle gives lower bounds to stiffness parameters, this mixed
method may, with certain modifications, provide a method of generating lower bounds to
eigenvalues,

L As different from other methods diecussed in this paper, elements of [ F (w) :l and

8. COMPARATIVE STUDY OF VARIOUS FORMULATIONS

Table I shows a qualitative comparison of six methods discussed in this paper. . Salient
remarks about each of these methods are also included. Modified Rayleigh-Ritz, Galerkin
and Collocatioh methods, result in governing equations similar to conventional formula-
tions. The scope or application of the Modified Rayleigh-Ritz method is restricted because
of the classical limitations of the force method, which is to be used in this formulation. The
collocation method suffers from the disadvantage of vagueness in the method of matching and
its effective usage is dependent on the ingenuity of the user. Therefore the Galerkin method
can be considered to be a promising alternative for the Rayleigh-Ritz method.

In view of the conspicuous complications, Pian's Hybrid model cannot be considered
useful for vibration problems unless it is made to yield lower bounds. The Least Square
Method, gives a quadratic equation in eigenvalues. In general, it is expected this will
give complex eigenvalues. The imaginary quantity must vanish when the exact solution is
numerically approached, because from physical considerations, the eigenvalues for a
natural vibration problem are real quantities, Therefore, at any stage of approximation,
the imaginary part may give an indication of error. The possibility of this feature makes
the study of this method interesting.




Table I.Some Finite Element Schemes for Natural Vibration Problems

Qualitative Comparison

o Rayleigh-Ritz Modified Least-Square Pian's type Collocation
Basis Method Rayleigh-Ritz Galerkin Method Method Hybrid Method Method

Method
Form of : i | v
the final [K}{P} - A[MI{#} [FI{P} - 5 [MI{PY (B {p}- X [Enl{P} |[P}{0}- X [@]{e} (Flw){p} (01{r} - y{/’}
Matrix
Equation =0 =0 =0 + N (R]{p}= 0 - —)L- [M(w)){r}=0 =0

o

Upper or upper bound upper bound cannot be predicted cannot be predic’ted cannot be predicted cannot be predicted
lower '
bound for
eigenvalue

Requires use
of concepts
of matrix
force method

More suited
for one -
dimensional
problems

Element degrees of
freedom are more

Programming is
simple as for
RR method

Can consider non-
linear problems for
which energy prin-
ciple may not exist
Can be extended to
initial value
problems

1 Results in
quadratic eigen-
value equations

2 Eigenvalues are
complex in
general

3 Programming more

complicated and
requires more

computational time

Rresults in
transcendental
matrix equation

Conventional
computer
programmes
cannot be used
directly

In general it is
not & convenient
formulation

1 Requires
concepts of the
matrix force
method

2 More suited for
one-dimensional
problems
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9. NUMERICAL STUDIES

Using various methods discussed in earlier sections, eigenvalues have been computed
and these are presented in Tables 1II to V . Table 11 shows a comparison of the
percentage error in eigenvalue parameter in the case of torsional oscillations of a shaft,

‘This comparison clearly brings out that the Modified Rayleigh-Ritz method gives better

results than the Rayleigh~Ritz method and, the Galerkin method gives better results than
these two. Collocation has given poor results. This trend can also be noticed in the cases
of beam flexural vibration, the results for which are reported in Tables IO to V.
Thus, these numerical comparisons confirm our expectation that the Galerkin method can
give higher degree of accuracy for the eigenvalues for the same degrees of freedom of the
structure.

10. IMPROVEMENT OF EIGENVALUES

We notice from earlier sections that most of the methods yield the governing equation
for natural vibration problems in the form :

[K]{P}—X[M]{p}zo , 61

Normally, one is required to consider large number of degrees of freedom, i.e. large
order matrices [K] and [M] in order to achieve a satisfactory degree of accuracy in
the eigenvalue, :

In Refs. [16 & 17] we have developed a method of improving the eigenvalues as well as
generating bounds with reference to the Rayleigh-Ritz Finite Element Mcthod. In another
paper [18] at this seminar, we are presenting this work in some detail. Here we intend
to show that it can be used with any method leading to a governing equation of the type given
by Egq. (61). .

From the orthogonality of pr.irpcibal modes it follows that
ey mi{r}

In a finite element scheme, [ K] and [M] are normally obtained as
(K1 = [a1TF (k1 [a]

(63)

]

M] = [a]T F[m]h[a]

(6 4)
Let us define a modified matrix [r_ﬂ] . as

_ qPr 7. . |
[5] - [ w0 []
where R (N) is a modification function, containing a scalar parameter A , and satisfying
the conditions : ’ .

R(N) 21 , R(N+1) SR(N), R(N)—=1,28 N—=+>o (66

One may choose R (N ) as function of {p}say ,

' 2
R(N)=[1 *%(Pi— Pi—1)2 ] . ' (67

R

-
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Table II.Accuracies in Eigenvalues of Cantilever Shafts

Order of % Error in Eigenvalue Parameters
Mode Dynamical Collocation Rayleigh-Ritz Modified Galerkin
Matrix Rayleigh-Ritz
2 47.0148 5.2387 0.0600 0.0261 ;
First 4 16,9632 1. 2916 0.0034 0.0006 Ty
10 5.6401 0. 2058 0.0001 0. 0000 %
- 2 280. 8549 42,7010 8.8067 6.1068 -
Second 4 46.1413 12,0032 0.3508 0. 1855
- 10 9. 2844 1.8639 0.0072 0.0018
20 3.5152 0.4635 0.0004 . 0.0000
4 128,5178 33.0513 3.8423 2.2089
Third 10 16.9889 5.2387 0.0600 0.0261
20 5.2599 1. 2916 0.0034 0. 0006
40 1.9195 0.3217 0.0002 0. 0000
4 302,7720 41. 9556 13.1430 13. 3356
Fourth 10 29,6672 10. 4187 0.2578 0.1341
20 7.9376 2.5434 0.0135 0.0041
40 ] 2.5553 0.6313 0. 0008 _ 0. 0001
Table III.Accuracies in Eigenvalues of Cantilever Beams
Order of % Error in Eigenvaluc Parameters K
Mode Dynamical Collocation Rayleigh-Ritz Modified Galerkin *
Matrix. [14] Rayleigh-Ritz
First 4 i 30,9159 0.0977 0.0152 0. 0000
10 10. 8746 0.0000 0.0003 -
4 59.5831 1.71 0.5465 0.0082
Second 8 - 0.23 0.0268 0. 0000
20 6.0616 0.0051 0.0005 0. 0000
4 128. 6834 48. 4 4,1697 0. 2280
Third 8 - 1.55 0. 2156 0.0007
20 7.7238 . 0.051 0.0042 0.0000
4 205. 8996 226.0 4, 4203 27.0543
Fourth 8 - 12,92 0.8921 0. 0604
0.0165 0. 0000

20 10,3583 0.190
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Table IV. Accuracies in Eigenvalues of Simply Supported Beams

Order of : % . Error in Eigenvalue Parameters

Mode Dynamical Rayleigh-Ritz Modified Galerkin
Matrix [14] Rayleigh-Ritz- '

4 0.1791 0.0610 0. 00005

First 8 . 0.0517 - 0.0034 0. 00000
: 20 . - 0. 0001 0. 00000

4 23.1 - 1,4521 0.00601

Second 8 0.791 0.0610 0. 00005
20 ' - 0.0014 0. 00000

- 4 53. 74 12.0609 5.67573
Third 8 ‘ 3. 68 0.3668 0.00396"
20 - 0.0072 0. 00000

4 61.70 - 12, 90444

Fourth 8 23.20 1,4521 0.00603
20 - 0.0238. 0. 00001

'~ Table V. Accuracies in Eigenvalues of Encastered Beams
Order of _ " % Error in Eigenvalue Parameters’
Mode Dynamical Rayleigh-Ritz Modified Galerkin
Matrix [14] Rayleigh-Ritz

4 0.821 0.7927 0. 00415

First 8 - 0.0376 0, 00000
20 - 0. 0007 0. 00000

4 4.033 4,7585 ~ 0.06633

Second 8 - - . 0,277 0.00054
20 - 0.0051 0.00000

4 46. 400 12.4834 11. 44143
Third 8 - : ©1,0756° 0.03174.
20 - . 0.0195 0.00000

4 112.0 ' - 23.20796

Fourth 8 - 3.028 0.05751
20 - . 0. 0537 0. 00001

s

{4
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in which case, it varies from element to element. If the original method gives an upper-
bound ( lower bound ) p is to be taken as unity with positive ( negative) sign.

Instead of [m] , we use the modified matrix [m] in the formulation, in Eq. (61).
We shall call this a modified formulation, and the solution for various values of A exhibits
very interesting characteristics. As N -+ , R(N)-+1 and so [Mm] < [m] and
the solution of the modified formulation tends to the solution of the original problem. For
any finite value of N, Ry > 1 and so the term [a]T [m] [a] is consistently over-
estimated ( underestimated ) for positive ( negative ) values of p . Hence the rate of
convergence of the eigenvalue changes leading to improved values for A , if the scalar
parameter is properly chosen. By similar arguments it can be shown that by a suitable
choice of A, it is possible to generate accurate bounds on both sides. In Refs. [16], [17]
and [18] » details regarding the choice of A have been given and the procedure is confir-
med by numerical experiments and by evaluation of discretisation errors in some cases,

11. CONCLUSIONS

In this paper, five finite element models for vibration problems, based on, Modified
Rayleigh-Ritz, Galerkin, Least Square, Pian's Hybrid and Collocation methods have been
presented. A comparative study of these methods with the classical Rayleigh-Ritz type
finite element model indicates that the Galerkin method is relatively superior. Further
investigation is needed to usefully exploit the potential capabil ity of its extension to non-
linear vibration problems,
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APPENDIX A : NOTATIONS

(a] : displacement transformation matrix
A : scalar parameter in Eq, (67)
[A] : matrix defined in Eq. (12)
(bl : load transformation matrix, Eq: (17)
[B] : ] oad transformation matrix, Eq. (19)
[D] : dynamical matrix

{ {e} : vector of element strains

.’A} . E, {E] : Young's modulus and elasticity matrix respectively

(Ex] [Em): matrices defined by Egs. 29,30) respectively
kl, 1 y kg
[ek] .[em] : matrices as defined by Egs. (51, 32) respectively
Ip  : moment of inertia and polar moment of inertia ‘respectively

(f] : element flexibility matrix
(f (w)] : a flexibility matrix whose elements depend on w as defined in Eq. (52)
(F] : flexibility matrix of the structure
[F(w)] : flexibility matrix in the hybrid method as defined in Eg. (39)
GJ : torsional rigidity
{H} : vector of inertia loads
[k],[K] : stiffness matrices of element and structure respectively
L , | :total length and element length respectively
L, , Ly: differential operators
[m] , [M] : mass matrices of element and structure respectively
[(m : modified mass matrix
[m(w) ] : mass matrix in the hybrid method defined by Eq. (56)
N : number of elements into which the structure/domain is divided
[P],[Q],[R]: matrices as defined by Egs. (37-39) respectively
R(N) : perturbation function defined by Eq. (65)
{S} : supervector of element stresses as defined by Eq. (17)
4! ' tg : inertia loading on the shaft, cs defined in Eq. (53)
T : kinetic-energy of the structure

Ti : torque in the i-th element and also used for kinetic energy of the i-th element

, U , Uy : potential energies of the structure corresponding to displacements {rla {p'}
* W : displacement (or state variable) distribution function
w : complementary work
X : coordinate .
{(‘I} : vector of arbitrary constants’
) : operator denoting variation
€ : error function obtained by substituting the assumed displacement in governing
differential equation
9, 93, ed : rotational displacements as in Egs. (46, 47, 54) respectively
A : non~-dimensional eigenvalue defined by A\ = w®/w@
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reference eigenvalue defined by >‘O = wg , where w§ = EI/mL for

- flexure and wz = GJ/ 1p L? for torsion

element mass property matrlx as in Eq. (41)
a matrix of element mass distribution functions

: non-dimensional local coordinate

density

: displacement (state varlable) vectors

supervector of element nodal displacement vectors {P }
displacement vector as defined in Eq. (42) .
matrix relating strain vector to the dlsplacement field as in Eq. (10)

: circular frequency, it's exact value and reference value respectively
: non-dimensional frequency, givenby @ = w /wqg
' matrices of displacement and stress distribution functions in local co-

ordinates
diagonal matrix

integral over the element and over the entire domain respectively.

Jin




