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Finite element models of Modified Rayleigh-Ritz, Galerkin, Least Square, Hybrid 
(Pian's) and Collocation methods are presented for natural vibration problems. A compara­
tive assessment is made of these methods with Rayleigh-Ritz finite element models. This 
study brings out that the Galerkin model is relatively superior. A method of improving the 
accuracy in the estimation of eigenvalues is also included. 

1. INTRODUCTION 

The classical finite element formulation can be considered to be an analogue of the 
Rayleigh-Ritz procedure in continuum mechanics. Since its introdUction, several other 
formulations have appeared in the literature. In general, it is possible to develop finite 
element analog~es for most of the continuum methods [1-111. For static analysis of struc­
tures, Szabo and Lee [3 } have given. a finite element analogue of. the Galerkin method. It has 
also been-use<ffor nonlinear problems. Hicks Jr. [7] has used a finite element analogue of 
the Collocation method for studying a stability problem. For vibration problems, Raylelgh­
Ritz type finite element models have been.used extenSively so far [13-15]. 

It is only recently, some investigators, including the authors, have started examining the 
possibility of using alternate models [2, 4-6 , 8-10]. In this paper we present five models 
based on Modified Rayleigh-Ritz, Galerkin, Least Square, Pian's Hybrid and Collocation 
methods. Through a comparative discussion, the salient features of these models are high­
lighted. 

As the main objective of the paper is to study certain basic features of the models, nume­
rical examples are limited ~o relatively simple cases and through an examination of various 
models aided by quantitative comparison of the errors in eigenvalues, the relative merits of 
these models are brought out. 

A serious drawback in the finite element analysis of vibration problems- is· the, 
size of the dynamical matrix to be handled. Comparatively large order dynamical matrices 
are required to give a satisfactory degree of accuracy even in the first few frequencies. 
Condensation techniques are often used to reduce the size of the matrices which in turn 
introduce certain errors so that the results are unreliable beyond certain limits. In thi~ 
paper we present a method of using initial approximations (original as well as perturbed) base:! 
on relatively smaller sized dynamical matrices, to generate accurate eigenvalues. 

Copyright 0 UNIVERSITY OF TOKYO PRESS, 1973 

~, 

: 
~ t . ,~ " 
-~ .. 

J '. :j . 
~> • 

-r" 
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2. RAYLEIGH-RITZ METHOD 

Basis 

In this method one starts with an assumed displacement function, in a series form, with 
a number of free constants, satisfying· geometric boundary conditions. The strain energy 
and kinetic energy expressions are obtained in· quadratic forms in these free constants, by 
substituting the assumed displacement functions. Minimisation of the Lagrangian function· 
yields requisite equations from which eigenvalues and eigenvectors can be computed. 

Finite Element Analogue 

For the sake of completeness, we shall briefly describe here the conventional finite 
element displacement formulation for natural vibration problems, which is, in fact, a finite 
element analogue of the Rayleigh-Ritz method. In this method the stationarity property of 
the Lagrangian, i. e. , 

8(U-T) = v 

is used. The expressions for the strain energy U and the kinetic energy Tare 

and 

U=~{pf[K]{P} 
T=~ w 2{p}T[M]{P} 

(1 ) 

(2) 

(3) 

In writing Eq. (3) the oscillations have been assumed to be sinusoidal. The global elastic 
stiffness matrix [K] and the mass matrix [M]'are I assembled' from elemcnt matrices [k] 
and [m 1 respectively as 

[K]= [o]T f[ k JiJ [a] (4) 

[M] = [a] T f"[m l 
, ~ 

[a] ( !!I) 

where [a] is, the displacement transformation matrix, and is a Boolean if a coordinate trans­
formation is not involved. The elements of the stiffness and the mass matrices, kj j and 
m ij are obtained using the relationships 

k·· = 
, I J 

w 2 m·· = 
. I J 

2 a Ue 

a Pe. ape' 
I 'J 

The expressions for U e and Teare 

(6) 

(7) 

(8) 
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Te = ~2 f {w} T [fL] { W} dv (9) 

e 
with {e-}= [ r] {w} (101 

where { Vi } is the displacement field assumed in the element in terms of the nodal displace-

ment vector {Pe} , as 1 

{ w} = [ '" ] { cr} = [ '" J [A r {p e} (1.11 

The relationship between { ~} and the constants {cr} is given by 

{Pe}=[A]{cr} (12) 

Substituting Eqs. (2), (3) in Eq. (1) one obtains the governing equation as, 

(131 

from which eigenvalues and eigenvectors are computed. 

3. MODIFIED RAYLEIGH-RITZ METHOD 

Basis 

In the modified Rayleigh-Ritz method, to start with, a deformed shape is assumed, as in 
the Rayleigh-Ritz method, in the form of a series witli a number of free constants, with each 
component of the series satisfying the geometric boundary conditions. Assuming sinusoidal 
oscillations, in the case of beams, the inertia loading on the structure is taken as the product 
of the square of the natural frequency, the local displacement and the mass per unit length. 
Minimisation of a function, defined as the difference between the strain energy corresponding 
to the inertia loading and the kinetic energy corresponding to the assumed displacement dis­
tributions, provides the baSis for a procedure for evaluating natural frequencies. 

Finite Element Analogue 

The structure is divided into elements and in each element a suitable displacement dis­
tribution is chosen in terms of the nodal values. The expression for kinetic energy is wri­
tten as in the case of the Rayleigh-Ritz method as 

T=tw2 {p }T[M] {p} 1141 

The inertia loading { II } in the structure corresponding to the assumed displacements is 

rr 
{ H } = w

2 
[ fL].1/ [a] {p} CI !II 

and the corresponding strain energy U, is 

(/61 

where [f J is the element flexibility matrix based on appropriately chosen (also see Ref. [4J) 
element stress distributions {s} . and [b] is the load transformation matrix defined by 

{ s} = [b] {H} (l7J 
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Defining matrix [ B J relating {s }. and {p} as 

{s} = w
2 [BJ {p} II B) 

it can be shown that 

[ B J = [b J r[ fL 1 [aJ 119 ) 

the expression U 1 may ?ow be written as 

. ~1 =~w4{p}T[FJ{P} (20) 

[F] < [B ]TFff 1 [B] 
wher~ 

Using the condition 

(21) 

o (22) 

the governing equations are obtained as 

w
2 

[ F J {p} - [M J {p} = 0 (23) 

We may note that w 2 appears, in this method, with the strain energy term, in contrast to 
its affiliation with kinetic energy term in the Rayleigh-Ritz method. The method of writing 
the expression for U1 involves the use of the concepts of the matrix force method [2] • 
Hence although the method may give better results than the Hayleigh-Ritz method, the scope 
of its application can be restrictive. 

4. GALERKIN METHOD 

Uasls 

For the Galerkin method, the dependent variable in the governing differential equation is 
assumed in the form of a series, with each of the component functions satisfying all the 
boundary conditions. Substitution of this in the governing differential equation yields an 
expression for error. - Integrals of the products of the error in the differential equation and 
the component functions of the assumed series are set equal to zero, to obtain the necessary 
set of algebraic equations, from which eigenvalues and eigenvectors can be computed. 

Finite Element Analogue 

The differential equation gm'erning the free vibration problems may be written as 

(24) 

where L1 and L 2 are differential operators and A is the eigenvalue. Considering one 
dimensional problems, the displacement distributions in the i-th element may be taken 
as in Eq. (11) as 

(25) 

Substituting Wi in the governing differential equation, the expression for the error in the 
differential equation in the i-th element, E i becomes 

(26) 
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Following the Galerkin procedure the governing equation can be obtained as 

[E k] {p } - A [ Em] {p } = 0 (27) 

where 

(28) 

(29) 

and 

(30) 

with 

_ (311 

and (32) 

The eigenvalues and eigenvectors can be computed from Eq. (27). 

5. LEAST SQUARE METHOD 

Basis 

In this method also, the depcndent variable in the governing differential equation is 
assumed as a series. The error function is obtained as described in section 4. Minimisa­
tion of thc in(egral of the square of the crror function provides the necessary set of algebraic 
equations from which eigenvalues and cigenvectors can be computed. 

Finite Element Analogue 

As in the<case of the Galerkin method (section 4). the error function for the i-th domain 
is given by 

The vector of errors in all elements is 

{<i} =~'i -~L2i'['" l,[Ar)oJ {p} 
U sing the minim isation condition that -

We get 

where 

(j 
(jp­

J 

[ p] {p } - ). [ Q ] {p } + ).2 [ R ] {p } = 0 

[p ] = [ a ] T ~ A r T( ~ (L,J '" ] /( L, i [ '" l;'d{) [$' [a ] 

(33) 

(34) 

(3~) 

(36) 

(37) 
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[ Q] = [ a ] T rr A ] ~ I T( J ( L 1 i [1Jt l ! (L 2 i [ '" ] i ) d, 
e . 

+ [(L2iloI-]/(Lli[oI-ll d([A£ [a] (38) 

ond [R]" [a]TF[Af T
([(L2i[oI-]/(L2i[oI-l;ldO [A£[a] (39) 

It is to be noted that, in contrast to other methods described in this paper, this method 
yields a quadratic eigenvalue equation giving rise to complex eigenvalues and hence involves 
more computational effort than the three earlier methods. 

6 .. COLLOCATION METHOD 

Basis 

In the collocation.method considered here, we start with deflection assumed in terms of 
some admissible functions containing undetermined constants. 

Deflections of the structure, subjected to the inertia loading corr~sponding to the assum­
ed deflections, are evaluated and are equated to the assumed deflections at a certain number 
of points. This provides the necessary algebraic equations from which eigenvalues and 
eigenvectors can be computed. 

Finite Element Analogue 

In section :3 , we have given the expression for t.he strain energy in the structure subjec­

ted to the inertia loading {H} as 

U, = ~ {H} T [ b ] T 1 f ] i [ b ] { H } 

{} 
. . .:2..1 

where H corresponds to assumed displacement fields and is given by 

CH}= w21fL ]Jj [a] 
Using Castigliano's theorem ( Part II ) , the deflections {p,} due to { 
as . . r.:-. 

{p,} " : {H} " [b ] T [f]i.J [b] {H} 
To use the method of collocation, {P

1
} is equated to {p}. Hence 

{p } = [b ] T f-[ f ]i~ [b] {H} 

(40) 

(41) 

H} can be obtained 

(42) 

(43) 

Substituting Eq. (41) in the above, one obtains the final governing equation as 

{ p} = w 2 [ 0 1 { P } (44) 

where 

(45) 
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7. HYBHlD METHOD (PIAN'S TYPE) 

Basis 

Pian has given an effective hybrid concept for static analysis wherein, stress fields satis­
fying equilibrium equations are assumed in the interior of the element, compatible displace­
ments are assumed at the inter-element boundaries and the complementary energy principle 
is used for formulating the problem. Analogous to this, it is possible to develop a formula­
tion for natural vibration problems. But this will have certain disadvantages which will be 
discussed later. 

Finite Element Analogue 

To bring out the possibility of a formulation based on this hybrid concept as well as to 
unfold certain difficulties involved, we shall develop the method in detail with the aid of a 
simple example of torsional oscillations of a uniform shaft. The governing differential 
equation is 

B"+w 2 B=O (46) 

We use the solution of this equation to assume equilibrating stress fields in the element. 
For the i-th element, the expression for B satisfying equilibrium which we shall denote 
as Be ,can be obtained as 

where 

[ '" J = [COS wt 1 - sin wt J 
and {;e,} , = 

e2 I 
The corresponding ihternal torque satisfy ing equilibrium can' be taken as 

Ti = - GJw [Sin wt, cos w(J [ A J~I {Pe}j 

= -GJw [ <P J [ A J~ I {p }i 

(47) 

(48) 

(49) 

(!501 

'" FI 

where [ <P J = [si n w t , cos wt J (500) ,,~, 

The complementary strain energy U itt in the element becomes J 

, (!5 1) 

(!52) 

[53) 

To facilitate evaluation of complementary work done, a suitable displacement distribution is 
chosen 'independent of Be and will be denoted as Bd For example Bd can be taken as 
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• 

The complementary work W * can be written as 

where 

w7 = ~ Ie ts ad d{ = w2 0"1 p { Pe}~ [m (w)] i {Pe}j 

[m (w )] i =. ~ [A] ~ 1 (Ie [ '" ] ~ [ '" d ] i d { ) 
Applying the condition 

8( U* - W*) o 

we obtain the final equation 

= 0 [F(w)]{P} ~ [M(w)]{P} 
o 

[F (w l] =[ a r r[ f (W l l [a] 
TI' ~ 

[ M (w ) ] [a] [ m (w ~~[ a ] 
Here [a] is the displacement transformation matrix as defined in earlier sections. 

where 

and 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

As different from other methods discussed in this paper, elements of [ F (uJ)] and 

lM (uJ) J are functions of the frequency uJ. Hence the computer progr;unming becomes 
ore complicated. In view of this conspicuous disadvantage, in this paper, this method 

has not been investigated further. However it is worth mentioning that this shows a possi­
bility of applying the complementary energy principlc to eigenvalue problems. As the 
complementary energy principle gives lower bounds to stiffness parameters, this mixed 
method may, with certain modifications, provide a method of generating lower bounds to 
eigenvalues. 

8. COMPARATIVE STUDY OF VARIOUS FORMULATIONS 

Table I shows a qualitative comparison of six methods discussed in this paper. Salient 
remarks about each of these mcthods are also included. Modified Rayleigh-Ritz, Galerkin 
and Collocation methods, result in governing equations similar to conventional formula­
tions. The scope or application of the Modified Rayleigh-Ritz method is restricted because 
of the classical limitations of the force method, which is to be used in this formulation. The 
collocation method suffers from the disadvantage of vagueness in the method of matching and 
its effective usage is dependent on the ingenuity of the user. Therefore the Galcrkin method 
can be considered to be a promising alternative for the Rayleigh-Ritz method. 

In view of the conspicuous complications, Pian's Hybrid model cannot be conSidered 
useful for Vibration problems unless it is made to yield lower bounds. The Least Square 
Method, gives a . Quadratic equation in eigenvalues. In general, it is expected this will 
give complex eigenvalues. The imaginary quantity must vanish when the exact solUtion is 
numerically approached, because from physical conSiderations, the eigenvalues for a 
natural vibration problem are real quantities. Therefore, at any stage of approximation, 
the imaginary part may give an indication of error. The possibility of this feature makes 
the study of this method interesting. 

J 

'{ . > 

1... . . ..1 

,~-- .. -.. 



, '~:Z .. 
,:iL.w,.,i·" 
J3!'~ ,,(.t.>. 

~ f~ ~ .. 

Table I. Some Finite Element Schemes for Natural Vibration Problems Qualitative Comparison 

Rayleigh-Ritz Modified Least-Square Pian's type Basil:> Method Rayleigh-Ritz Galerkin Method Method Hybrid Method 
Method 

Form of 
the final [K](P} - AfMJ{!'J [F]{p] - t [M]{pi [~]{p} - ).. [EmJ{p} [pJ{P}- ).. [QJ{p} [F(w)]{p} 
Matrix 
Equation =0 =0 = 0 +)..2 [R1{P}= 0 --t [M(W)]{P}= 0 

Upper or upper bound upper bound 
lower 

cannot be predictcd cannot be predicted cannot be predicted 

bound for 
eigenvalue 

1 Requires use 1 Element degrees of 1 Results in 1 Results in 
of concepts freedom are more quadratic eigen- transcendental 
of matrix value equations matrix equation 
force method 

2 More suited 2 Programming is 2 Eigenvalues are 2 Conventional 
for one - simple as for complex in computer 
dimensional RR method general programmes 
problems cannot be used 

directly 

3 Can consider non- 3 Programming more 3 In general it is 
linear problems for compl icated and not f.. convenient 
which energy prin- requires more formulation 
ciple may not e:,ist computational time 

4 Can be e.\.'tended to 
initial value 
problems 

,'."~t.~ ~,~~~~"j~~~~~,,,, 
:,. ';·;",ri . '!;;'''''''''',;,~~. 

I)t-v, 

Collocation 
Method 

[DHp} - ~ {p} 

= 0 

cannot be predicted 

1 Requires 
concepts of the 
matrix force 
method 

2 More suited for 
one-dimensional 
problems 
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9. NUMERICAL STUDIES 

U sing various methods discussed in earlier sectio'ns, eigenvalues have been computed 
and these are presented in Tables II to V • Table II shows a comparison of the 
percentage error in eigenvalue parameter in the case of torsional oscillations of a shaft. 
'This comparison clearly brings out that the Modified Rayleigh-Ritz method gives better 
results than the Rayleigh-Ritz method and, the Galerkin method gives better results than 
these two. Col1ocationhas given poor results. This trend can also be noticed in the cases 
of beam flexural vibration, the results for which are reported in Tables III to V. 
Thus, these numerical comparisons confirm our expectation that the Galerkin method can 
give higher degree of accuracy for the eigenvalues for the same degrees of freedom of the 
structure. 

10. IMPROVEMENT OF EIGENVALUES 

We notice from earlier sections that most of the methods yield the governing equation 
for natural vibration problems in the form 

[ K ] {p } - A [MJ {p } = 0 (6 II 

Normally, one is required to consider large number of degrees of freedom, i. e. large 
order matrices [K J and [MJ in order to achieve a satisfactory degree of accuracy in 
the eigenvalue. 

In Refs. [16 & 17] we have developed a method of improving the eigenvalues as well as 
generating bounds with reference to the Rayleigh-Ritz Finitc Elcment Method. In another 
paper [18 J at this seminar, we are presenting this work in some detail. Here we intend 
to show that it can be used with any method leading to a governing equation of the type givcn 
by Eq. (61). 

From thc orthogonality of prinCipal modcs it follows that 
:[ 

A = {P}[KJ 1!L 
{p}T[M]{P} 

In a finite element scheme, [K] and [M] are normally obtained as 

[K] = [0] T" [k ] ~ [ ~ ] 

[M] = [O]TI'[mJiJ[O] 

Let us define a modified matrix [iii ] " as 

[m] = [R(N)]P[m] 

(62) 

(63) 

(64) 

(65) 

where R ( N) is a modification function, containing a scalar parameter A. and satisfying 
the conditions 

R ( N) ~ 1 . R ( N + 1) ~ R ( N), R ( N ) _ 1 , as N _ 00 (66) 

One may choose R ( N) as function of {p } say , 

. A2 2 
R (N) = [1 +2' (Pi - Pi- 1) ] (67) 
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~' Table II.Accuracies in Eigenvalues of Cantilever Shafts 

Order of % Error in Eigenvalue Parameters 
Mode Dynamical Collocat ion Rayleigh-Ritz Modified Galerkin 

Matrix Rayleigh-Ritz 
Cc , 

j 2 47.0148 5.2387 0.0600 0.0261 \$ '. 
First 4 16.9632 1. 2916 0.0034 0.0006 1 ~ ~~ 

10 5.6401 0.2058 0.0001 0.0000 >~ 
2 280.8549 42.7010 8.8067 6.1068 

~., 

Second 4 46.1413 12.0032 0.3508 0.1855 "! 
10 9.2844 1. 8639 0.0072 0.0018 
20 3.5152 0.4635 0.0004. 0.0000 

4 128.8178 33.0513 3.8423 2. 2089 
Third 10 16.9889 5.2387 O. G600 0.0261 

20 5.2599 1. 2916 0.0034 0.0006 

~ 
40 1. 9195 0.3217 0.0002 0.0000 

4 302.7720 41. 9556 13.1430 13.3356 
Fourth 10 29.6672 10.4187 0.2578 0.1341 

20 7.9376 2.5434 0.0135 0.0041 
40 2.5553 0.6313 0.0008 0.0001 

Table III. Accuracies in Eigenvalues of Cantilever Beams 
,. 

Order of 'Yo Error in Eigenvalue Parameters ~ , 
'C:.i " Mode Dynamical Collocation Rayleigh-Ritz Modified Galerkin -(. . 'i 

Matrbc: . [14] Raylcigh-H itz 

First 
4 30.9159 0.0977 0.0152 0.0000 

10 10.8746 0.0000 0.0003 

4 59.5831 1.71 0.5465 0.0082 
Second 8 0.23 0.0268 0.0000 

~ 
20 6.0616 0.0051 0.0005 0.0000 

, 
4 128.6834 48.4 4.1697 0.2280 

Third 8 1. 55 0.2156 0.0007 
20 7.7238 0.051 0.0042 0.0000 

4 205.8996 226.0 4.4203 27.0543 
Fourth 8 . 2.92 0.8921 0.0604 

20 10.3583 0.190 0.0165 0.0000 

• c 

"': 

i\ 
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Table IV. Accuracies In Eigenvalues of Simply Supported Beams 

.1 
Order of % Error in Eigenvalue Parameters 

Mode Dynamical Rayleigh-Ritz Modified Galerkin 
Matrix [14] Rayleigh-Ritz 

4 0.791 0.0610 0.00005 
First 8 0.0517 0.0034 0.00000 

20 0.0001 0.00000 

4 23.1 1. 4521 0.00601 
SecoDd 8 0.791 0.0610 0.00005 

20 0.0014 0.00000 

4 53. 74 12.0609 5.67573 
Third 8 3.68 0.3668 0.00396' 

20 0.0072 0.00000 

4 61. 70 12.90444 
Fourth 8 23.20 1.'4521 0.00603 

20 0.0238 0.00001 

Table V. Accuracies in Eigenvalues of Encastered Beams 

Order of % Error in Eigenvalue Parameters 
Mode Dynamical Rayleigh-lUtz Modified Galerkin 

Matrix [l(J Rayleigh-Ritz 

"'''''''" 
4 0.821 0.7927 0.00415 

First 8 0.0376 0.00000 
20 0.0007 0.00000 

4 4.033 4.7585 0.06633 
Second 8 ,0.277 0.00054 

~, 20 0.0051 0.00000 

4 46.400 2.4834 11. 44143 
Third 8 ' 1.0756 0.03174 

20 0.01!;l5 0.00000 

4 112.0 23.20796 
Fourth 8 3.028 0.05751 

20 0.0537 0.00001 

irs 
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in which case, it varies from element to element. If the original method gives an upper 
bound ( lower bound) p is to b.e taken as unity with positive (negative) sign. 

Instead of [m ] ' we use the modified matrix [iii. J in the formulation, in Eq. (61). 

335 

We shall call this a modified formulation, and the solution for various values of A exhibits 
very interesting characteristics. As N"'oo , R( N ) -1 and so [iii.] .. [mJ and 
the solution of the modified formulation tends to the solution of the original problE1m. For 
any finite value of N, R N > 1 and so the te rm [a] T [m J [a J is consistently over­
estimated ( underestimated) for positive ( negative) values of p. Hence the rate of 
convergence of the eigenvalue changes leading to improved values for A , if the scalar 
parameter is properly chosen. By similar arguments it can be shown that by a suitable 
choice of A, it is possible to generate accurate bounds on both Sides. In Refs. [16 J, [17J 
and [18J , details regarding the choice of A have been given and the procedure is confir­
med by numerical experiments and by evaluation of discretisation errors in some cases. 

11. CONCLUSIONS 

In this paper, five finite element models for vibration problems, based on, Modified 
Rayleigh-Ritz, Galerkin, Least Square, Pian's Hybrid and Collocation methods have been 
presented. A comparative study of these methods with the classical Rayleigh-Ritz type 
finite element model indicates that the Galerkin method is relatively superior. Further 
investigation is needed to usefully elKploit the potential capability of its extension to non­
linear vibration problems. 
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APPENDIX A; NOTATIONS 

raj ; displacement transformation matrix 
A ; scalar parameter in Eq. (67) 

CAJ ; matrix defined in Eq. (12) 
[b J ; load transformation matrix, Eq. (17) 
[B] : J oad transformation matrix, Eq. (19) 
(D] ; dynamical matrix 
{e} : vector of element strains 
E, [E] ; Young's modulus and elasticity matrix respectively 

[Ek], [Em] ; matrices defined by Eqs. (29,30) respectively 
(ek] • [em] ; matrices as defined by Eqs. (;)1,32) respectively 
I , Ip : moment of inertia and polar moment of inertia -respectively 

[f] ; element flexibility matrix 
[f (w)] ; a flexibility matrix whose elements depend on w as defined in Eq. (52) 
[FJ ; flexibility matrix of the structure 
[F( w)] ; flexibility matrix in the hybrid method as defined in Eq. (59) 
GJ ; torsional rigidity 

{Ii J ; vector of inertia loads 
[k J • C KJ ; stiffness matrices of element and structure respectively 

L • l ; total length and element length respectively 
L, • L 2 ; differential operators 

em] • [M] : mass matrices of element and structure respectively 
em] ; modified mass matrix 
(m( w) ] ; mass matrix in the hybrid method defined by Eq. (56) 
N ; number of elements into which the structure/domain is divided 

[p] ,[Q].[R]; matrices as defined by Eqs. (37-39) respectively 
H(N) ; perturbation function defined by Eq. (65) 

{S J ; supervector of element stresses as defined by Eq. (17) 
ts ; inertia loading on the shalt. :: s defined in Eq. (53) 
T ; kinetic 'energy of the structure 
Ti : torque in the i-th element and also used for kinetic energy of the i-th element 
U • U 1 ; potential energies of the structure corresponding to displacements fp 1 & {p,} 
w ; displacement (or state variable) distribution function 
W

ft 
; complementary work 

x ; coordinate 
{cx:} 
8 

; vector of arbitrary constants' 
: operator denoting variation 
: errorlunction obtained by substituting the assumed displacement in governing 

differential equation 
; rotational displacements as in Eqs. (46.47.54) respectively 
; non-dimensional eigenvalue defined by X = w 2/wo

2 

~' .. 00;1 

.' 
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reference eigenvalue defined by X6 = w~ , where 
, flexure andwg = GJ/ IpLZ 'for to'rsion 

element mass property matrix as in Eq. (41) 
a matrix of element mass distribution functions 
non-dimensional local coordinate 
density 

w2 
o 

,displacement (state variable) vectors 
supervector of element nodal displacement vectors {Pa} i 
displacementyector as defin'ed in Eq. (42). ' 

4 
EI/mL for 

matrix relatirig strain vecto,r to the displacement field as in Eq. (10) 
.' circular fre,quency, it's exact value and reference value r~spectively 

non-dimensional frequency, given by W = W /wO 
matrices of displacement and stress distribution functio~s in loci! co-
ordinates 

diagonal matrix 

integral over the element and over the entire domain respectively. 
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