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I. INTRODUCTION 

Since the classical finite element displacement method is a piecewise, 
Rayleigh-Ritz method, upper bounds to eigenvalues are assured if consistent, 
and conforming elements are used. But sometimes one may get a lower bound 
to the eigenvalues by using simplified elements [1], [2]. In either case it is des- . 
irable to have an error estimate [1], [3]-[5] in order to assess the accuracy in 
the solution. Normally it is difficult to estimate the error. Under such circum
stances upper and lower bounds to eigenvalues serve the purpose, since the 
difference of the bounds is an indication of the error. 

Recently the authors have suggested a simple scheme of modifying the 
limits of integrals involved in the Rayleigh-Ritz method to get bounds to 
eigenvalues [6]. A finite element analogue of this method was introduced in 
[7]. More recently, a different method intended for a similar purpose has 
appeared in the literature [8]. The purpose of this paper is to bring out- the 
general applicability of our method and to confirm the procedure by 
numerical experiments as well as by error estimates in some cases. 

2. METHOD 

In the case of free vibration problems, following the orthogonality of 
principal modes, the ith natural frequency can be written as 

(1) 

Strain energy 
- ------------------~----------

Kinetic energy per unit circular frequency' 
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where Vi is the eigenvector corresponding to the ith natural mode, K is the 
assembled stiffness matrix and M is the assembled mass matrix. 

In the first instance, we consider the case when the original finite element 
method gives an upper bound to Wi' The nature of the convergence of the 
sequence can be changed, i.e., it can be made to approach the exact from 
below, either 

(1) by consistently increasing kinetic energy without altering strain energy or 

(2) by consistently decreasing strain energy without altering kinetic energy. 

Here we choose to modify the kinetic energy as follows: a modified element 
mass matrix m is constructed by multiplying the dement mass matrix m by a 
modification funCtion R as . 

m=Rm (2)S{ 

and this is used in the formulation instead of m. R is a function of element 
displacements and/or number of elements and contains a scalar parameter A. 
Further it must satisfy the conditions . 

for any N, 

RN+ 1 < RN for any N, (3) 
RN -+ 1 as N -+ 00. 

From a study of the modified .convergence curvescon:esponding to various 
values of A, it is possible to bracket the eXact eigenvalue. 

If the original finite element method gives a lower bound, then the upper 
bound can be generated by using a modified mass matrix m defined as 

_ 1 
m=-' m 

R' (4) 

instead of that defined in (2). It is obvious that the case of linear structural 
stability can be treated similarly. 1n/ 

3. SOME NUMERICAL EXPERIMENTS 

We have used the above mentioned procedure, with success to generate 
bounds for eigenvalues of several problems covering vibrations and stability 
of plates and beams. Here we present briefly a typical illustration to show the 
application as well as to bring out the salient features of this procedure. 

We consider here the problem of transverse oscillations of a, tapered 
cantilever beam. Four degrees offreedom consistent tapered elements [2J 

" 

-" 



-4.! 

FlNITE ELEMENT EIGENVALUES 381 

have been used for· analysis and this results in upper bounds to the fre
quency. To apply the present procedure, a modification function R, defined as 

(5) 

where Vr is the lateral displacement of the beam at the rth node, will be used. 
It may be noted here that R satisfies all the required conditions (equation (3». 
As R involves the displacements v, the method of numerical solution becomes 
iterative and the main steps are: 

(I) obtain the solution with R = 1 (A = 0), 

(2) assume a suitable value for A, 

i ( (3) evaluate R for each element using the eigenvector from the previous 
step, 

(4) construct iii for each element, 

(5) using m instead of m obtain a new solution, 

(6) repeat the steps 3, 4, 5 until the solution converges, 

(7) repeat the procedure for various numbers of terms in order to construct 
the convergence curve, and 

(8) repeat the procedure with different values of A, to construct different 
modified convergence curves. 

Tables I and 2 show the trend in convergence for typical values of A in the 
case of uniform and tapered cantilever beams respectively. This numerical 
experiment indicates the possibility of generating close bounds by a suitable 
choice of A, by trial and error. 

TABLE 1. Frequency parameter A of a uniform cantilever beam. - I mode. Exact 
value = 12· 36236. 

N A = 0·0 A = 0'2 A = 0·4 A = 0·6 

2 12·3743 12·3707 12·3168 ]2·0830 
4 12·3632 12·3629 12·3592 12·3434 
6 12·3625 12'3625 12·3617 12'3585 
8 12·3624 12·3624 12·3621 12'3611 

Nature 
of bound· UB UB LB LB 

• UB = upper bound; LB = lower bound. 
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TABLE 2. Frequency parameter A of a tapered cantilever beam. (T R= 0'8) with' ' .... 
linear taper in depth -/ mode. 

N A = 0'0 A = 0'2 A = 0'4 A = 0'6 

2 13'4542 . 13'4496 13'3810 13'0834 
4 13'4459 13'4456 13'4408 13'4199 
6 13'4452 13·4452 13'4442 13'4400 
8 13'4451 13'4451 13'4447 13'4434 

Nature 
of bound· UB UB . LB LB 

• UB = Upper Bound~ LB = Lower Bound. 

4. CHOICE OF THE SCALAR PARAMETER A 

Our experience indicates that it is economical to choose A initially, by trial 
and error, using the solution with only. a .few elements. Two successive 
approximations to the eigenvalues are worked out with various values of A, 
then A is chosen such that the higher approximation is greater (lower) than 
the lower one to get a lower (upper) bound. In the case of beams 2 element 
and 4 element solutions are used to give a satisfactory value of A. 

5. DISCRETIZATION' ERRORS 

We calculate the discretization errors involved in the finite element ideal
ization for anum ber of eigenvalue problems: From the knowledge of the error 
estimates it is possible to prove convergence of method in each case. Here, the 
modification function R is assumed as . 

R= {I +~.} - N C ' 
c ~ I, 

( 

where N
C 

is respectively the number of elements or number of elements per 
side for one- and two-dimensional problems. This satisfies all the require~ 
conditions (equation (3». To ,calculate the discretization errors, we use the
procedure given in [4]. For the sake of completeness and clarity, we explain 
the method here considering asimple.problem, namely, vibrations of bars. 

6. AXIAL VIBRATIONS OF -BARS 

The stiffness matrix k and modified lumped mass matrix m of the bar element 
are given by 

(7) 

'::A' • 
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and 
_ Rpl [1 
m = -2- 0 ~] , (8) 

where E is Young's modulus, A the area of cross-section of the bar element 
and p the mass per unit length. The length 1 of the element is equal to 

L 
1=

N' 
(9) 

where'L is the length of the bar and N is the number of elements into which 
the bar is idealized. 

(
Following the procedure given in [4], one can write the equilibrium 

equation of the bar at the rth node, from (7) and (8), as 

(10) 

Expanding the displacements ur+ 1 and ur~ 1 about Ur by means of Taylor's 
series, we get 

Rpro2 u _ 0 
+ EA - , (11) 

where primes denote the order of differentiation with respect to the axial 
co-ordinate, As 1-+ 0, i.e., as N -+ 00, (11) becomes 

pro 2 

u" + -_-u = 0 
EA 

(12) 

. ( which is the exact differential equation for the vibration of bars. By comparing 
. (11) and (12), one can see that the error in the differential equation, due to 

discretization, is (/2/12)u"'" + 0(/4) + .... The error term containing the 
smallest power of 1 will be ~alled the principal error. The remaining error 
terms are negligible for small values of 1 compared to the principle error. 

Considering a bar with fixed ends [u(O) = u (L) = 0], one can take the 
known exact solution 

u = Uo SIn 
MnX 

L 

where M is the number of half waves in the x-direction. 

(13) 
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Problem 

]. Axial vibrations Of bars 
" .' ~. 

(a) Lumped masS.,matrix , 
, - . ..r. 

(b) Consistent mass matrix {9] 
2., Transverse viprations of 'simply , 

supported beams: 
(a) LUrhpe-d ma:ss 'matrix 

(b) Simplified mass matrix [1] 
-:(c) Consistent mass matrix '[9] 

3., Stability,of s'imply supported 
:columns 

(a) Simplified geometricstiff-
ness matrix [2] . 

... 

(b) . Consistent geometric 

TABLE 3. Discretization errors. 

Modificationfunction R 

1 ...:... A (Mrr/ N)2 

1 + A (Mrr/ ,..i)2 

1 - A (j\'lrr/ N)4 

1 + A (Mrrj'N)2' 

1 + A (Mrr/ N)4 

1 + A (Mrr/ N)2 

Principal error 

w 2 (}.{rrJN)2(A ~ _I ) 
, ,ex • 1 2 

w;x(Mrr/ N)2(fl - A) 

w;x(Mrr/ N)\A - 7 hi) 
w;x(Mrr/ Nf(! - A) 

w;x(Mrr/ N)4(7 ~ 0 - A) 

Pex(lvfn/ N)2(fl -:- A) 

stiffness matrix [9] , '1 + A (Mrr/ N)4 
4 .. Vibrations. of'simply suppor-

- Pex(/lrfrr/ N)2(7 ~ 0 - A) 

ted square plate with lumped 

.Upper 

bound 

, J., 
A>12 

1 A <12 

- 1 
A> 720 
A,<! 

1 ' 
A< 720 ' 

j 
A <12 

. 1 
A < 720 

mass approximation* : l-A[rr2/(M 2+ M2)](~H1/ N)2 
w;/A-rt)trr

2
/(M2 +M 2)](MM/N)2 A> rt, 

, -

i .. 

V v2 

* rt = ! - - + - ~or Melosh's model {IO]; rt = iO + v) for ACM model [11], [12]. 
12 48 ; , , " 

, L <. 

.~ --- ... , 

'..-, . 

~. 

~ 

l~ 
" .. 'l; 1 

Lower 
'bound 

1 A <12 
1 A >12 

1 
A < 720 

A>! 
1 A >'720 

A> -h-

1 
A> 720 

A <rt 
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Substituting (13) in (I I) and ignoringterms of the order /4 and higher, we 
get 

W
2 = 

w;,JI - -h:(M 2 n 2 )jN 2
] 

(14) R 

where 
2 

Wex = (:7rr~A. (15) 

For convenience, we write the modification function R in the form 

(16) R= {I -A(~nr}. 
( From (14) and (16), we get 

( 

(17) 

and the principal error e is given by 

e=W -w =W - A--. 2 2 2 (M7r)2 ( 1 ) 
ex ex N 12 (18) 

From (18) it is clear that for A < 1/12, e is negative and for A > 1/12, e is 
positive. Thus, the use of the modified mass matrix with A > 1/12 gives a 
positive principal error and therefore an upper bound to the frequency, 
whereas the use of the unmodified mass matrix gives a lower bound to the 
frequency. The use of modified mass matrices with A < 1/12 will give a 
refined frequency, but it is still a lower bound. 

The above procedure is used to work out the discretization errors with 
modified mass or geometric stiffness matrices in a number of eigenvalue 
problems and the results are given in Table 3. 

7. CONCLUSIONS 

We have presented here a simple method for generating bounds for 
finite element eigenvalues. The method is based on the use of a modification 
function to modify the mass (or geometric stiffness) matrix. By an appro
priate choice of two values for the scalar parameter in the modification 
function it is possible to generate two converging sequences approaching the 
exact from either side. Discretization errors worked out in several cases 
confirm this proposition. For practical applications it is economical to choose 
the scalar parameter A initially with a small number of elements. 
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It has been our experience that an adhoc choice of the scalar parameter may 
sometimes gives a convergence curve crossing the exact. But it crosses the 
exact once and only once and thi~ crossing occurs when the number of ele
ments are very sI1].all (2 OJ;" 3 in the case of beams [13J). This feature does not 
effect the main conclusions; namely, that one can always choose two values 
for the scalar parameter, so that the corresponding convergence curves 
bracket the exact solution. However, a more elaborate definition to R, in 
terms of more scalar parameters, can lead a greater control of the 
converg~nce curve. 
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